1
|
Mohammed R, Nader SM, Hamza DA, Sabry MA. Public health implications of multidrugresistant and methicillinresistant Staphylococcus aureus in retail oysters. Sci Rep 2025; 15:4496. [PMID: 39915632 PMCID: PMC11802730 DOI: 10.1038/s41598-025-88743-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major challenge for food safety and public health. This study aimed to investigate the potential role of oysters sold in Egypt as a source for Staphylococcus aureus (S. aureus), MRSA, and multidrug-resistant methicillin-resistant Staphylococcus aureus (MDR-MRSA). It also examined the occurrence of tsst-1 virulence gene and assessed the associated zoonotic risks. Thirty-three pooled fresh oyster samples were acquired from different retail fish markets in Egypt. S. aureus was identified by conventional culture-based and molecular methods. Antimicrobial resistance was performed by the disk-diffusion method, and the multiple antibiotic resistance index (MARI) was calculated. Antimicrobial resistance (mecA and mecC) and virulence (tsst-1) genes were screened using polymerase chain reaction. The clustering of virulent MDR-MRSA isolates was performed using R with the pheatmap package. The prevalence of S. aureus was 39.4% (13 /33), and 77% of them (10/13) were classified as MDR with MARI values greater than 0.2. Notably, 46.2% (6 /13) of isolates were identified as MRSA and all MRSA isolates displayed MDR. Of the MDR-MRSA isolates, 66.7% (4 /6) possessed the mecA gene, while 16.7% (1 /6) tested positive for the mecC gene. Additionally, the tsst-1 gene was identified in one isolate (16.7%). Interestingly, two MDR-MRSA isolates exhibited a clustered pattern. The study sheds light on the emergence of virulent MDR-MRSA isolates in Egyptian oysters. It highlights oysters as a potential source for spreading these isolates within aquatic ecosystems, posing a threat to food safety and public health.
Collapse
Affiliation(s)
- Rahma Mohammed
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt.
| | - Sara M Nader
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt
| | - Dalia A Hamza
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt.
| | - Maha A Sabry
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt
| |
Collapse
|
2
|
Flint A, Harlow J, McLeod M, Blondin-Brosseau M, Weedmark K, Nasheri N. Genomic characterization of noroviruses from an outbreak associated with oysters. Microbiol Spectr 2025; 13:e0258024. [PMID: 39792002 PMCID: PMC11793256 DOI: 10.1128/spectrum.02580-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025] Open
Abstract
Human noroviruses are the leading cause of non-bacterial shellfish-associated gastroenteritis. In 2022, a multi-jurisdictional norovirus outbreak associated with contaminated oysters occurred that involved hundreds of illnesses. Here, we conducted genetic analysis on 30 clinical samples associated with this oyster outbreak. We first determined the capsid genotypes by Sanger sequencing and viral titers by droplet-digital reverse transcription PCR. Multiple genotypes were identified in this outbreak, which could indicate contamination with wastewaters. The majority of samples belonged to GII.3[P12], followed by GII.2[P16], GII.17[P17], and GII.4 Sydney[P16]. We next proceeded with whole-genome sequencing and obtained full genomes for 19 samples. Phylogenetic analysis revealed that some of the isolates showed high similarity with the sequences isolated from the United States related to the same outbreak. We also analyzed amino acid variations in the sequenced genomes and found that overall the GII.3[P12] isolates have lower variations compared to other genotypes.IMPORTANCENorovirus outbreaks associated with contaminated shellfish occur frequently. Whole-genome sequencing (WGS) could play a critical role in understanding and controlling norovirus outbreaks as it allows for source attribution, tracking transmission pathways, and detecting recurrent or linked outbreaks. Here, we described how the data obtained by WGS were employed for understanding transmission patterns and norovirus epidemiology.
Collapse
Affiliation(s)
- Annika Flint
- Genomics Laboratory, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada
| | - Jennifer Harlow
- National Food Virology Reference Center, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada
| | - Madison McLeod
- National Food Virology Reference Center, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada
| | - Madeleine Blondin-Brosseau
- National Food Virology Reference Center, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada
| | - Kelly Weedmark
- Genomics Laboratory, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada
| | - Neda Nasheri
- National Food Virology Reference Center, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Mohammed R, Nader SM, Hamza DA, Sabry MA. Public health concern of antimicrobial resistance and virulence determinants in E. coli isolates from oysters in Egypt. Sci Rep 2024; 14:26977. [PMID: 39505944 PMCID: PMC11541584 DOI: 10.1038/s41598-024-77519-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
The emergence of critical-priority E. coli, carrying a wide array of resistance and virulence factors through food sources, poses a significant challenge to public health. This study aimed to investigate the potential role of oysters sold in Egypt as a source for E. coli, identify their resistance and virulence-associated gene profiles, and assess associated zoonotic risks. A total of 33 pooled fresh oyster samples were obtained from various retail fish markets in Egypt and examined bacteriologically for the presence of E. coli. Antimicrobial resistance was performed by the disk-diffusion method, and the multiple antibiotic resistance index (MAR) was calculated. All isolates were screened for extended-spectrum beta-lactamase (ESBL) (blaTEM, blaSHV, blaCTX-M, and blaOXA-1), plasmid-mediated AmpC blaCMY-2, and carbapenemases (blaKPC, blaNDM, blaVIM, and blaOXA-48) genes by Polymerase chain reaction. Moreover, the presence of virulence-encoding genes was investigated. The virulent MDR strains were clustered using R with the pheatmap package. The prevalence of E. coli was 72.7% (24 out of 33), with 66.7% of the isolates classified as multi-drug resistant, and 75% exhibited MAR values exceeding the 0.2 threshold. Different antimicrobial sensitivity phenotypes and genotype profiles were identified in E. coli isolates. The most prevalent gene detected among all isolates was blaTEM (22/24, 91.7%). Notably, all non-ESBL producers were positive for blaCMY2. Carbapenem-resistant and carbapenem-intermediate strains were carbapenemase producers, with the predominance of the blaKPC gene (11/24, 45.8%). Remarkably, twelve out of sixteen virulence genes were identified, with papC (21/24, 87.5%) and sfa (16/24, 66.7%) genes being the most prevalent. Most isolates carry virulence genes primarily associated with extra-intestinal pathogenic E. coli (ExPEC) (87.5%) and enteropathogenic (EPEC) (70.8%) pathotypes. Four E. coli isolates exhibit cluster patterns. This study provides the first insight into the emergence of virulent MDR E. coli among oysters in Egypt. It underscores the potential role of oysters as a source for disseminating these strains within aquatic ecosystems, presenting a possible threat to public health.
Collapse
Affiliation(s)
- Rahma Mohammed
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt
| | - Sara M Nader
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt
| | - Dalia A Hamza
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt.
| | - Maha A Sabry
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt
| |
Collapse
|
4
|
Roy PK, Roy A, Jeon EB, DeWitt CAM, Park JW, Park SY. Comprehensive analysis of predominant pathogenic bacteria and viruses in seafood products. Compr Rev Food Sci Food Saf 2024; 23:e13410. [PMID: 39030812 DOI: 10.1111/1541-4337.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/22/2024]
Abstract
Given the growing global demand for seafood, it is imperative to conduct a comprehensive study on the prevalence and persistence patterns of pathogenic bacteria and viruses associated with specific seafood varieties. This assessment thoroughly examines the safety of seafood products, considering the diverse processing methods employed in the industry. The importance of understanding the behavior of foodborne pathogens, such as Salmonella typhimurium, Vibrio parahaemolyticus, Clostridium botulinum, Listeria monocytogenes, human norovirus, and hepatitis A virus, is emphasized by recent cases of gastroenteritis outbreaks linked to contaminated seafood. This analysis examines outbreaks linked to seafood in the United States and globally, with a particular emphasis on the health concerns posed by pathogenic bacteria and viruses to consumers. Ensuring the safety of seafood is crucial since it directly relates to consumer preferences on sustainability, food safety, provenance, and availability. The review focuses on assessing the frequency, growth, and durability of infections that arise during the processing of seafood. It utilizes next-generation sequencing to identify the bacteria responsible for these illnesses. Additionally, it analyzes methods for preventing and intervening of infections while also considering the forthcoming challenges in ensuring the microbiological safety of seafood products. This evaluation emphasizes the significance of the seafood processing industry in promptly responding to evolving consumer preferences by offering current information on seafood hazards and future consumption patterns. To ensure the continuous safety and sustainable future of seafood products, it is crucial to identify and address possible threats.
Collapse
Affiliation(s)
- Pantu Kumar Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Anamika Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Eun Bi Jeon
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | | | - Jae W Park
- OSU Seafood Lab, Oregon State University, Astoria, Oregon, USA
| | - Shin Young Park
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
- OSU Seafood Lab, Oregon State University, Astoria, Oregon, USA
| |
Collapse
|
5
|
Mohammed R, Nader SM, Hamza DA, Sabry MA. Occurrence of carbapenem-resistant hypervirulent Klebsiella pneumoniae in oysters in Egypt: a significant public health issue. Ann Clin Microbiol Antimicrob 2024; 23:53. [PMID: 38886796 PMCID: PMC11184735 DOI: 10.1186/s12941-024-00711-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/02/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The global dissemination of critical-priority carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp) via food sources represents a significant public health concern. Epidemiological data on CR-hvKp in oysters in Egypt is limited. This study aimed to investigate the potential role of oysters sold in Egypt as a source for carbapenem-resistant K. pneumoniae (CRKP), hypervirulent K. pneumoniae (hvKp), and CR-hvKp and assess associated zoonotic risks. METHODS A sample of 330 fresh oysters was randomly purchased from various retail fish markets in Egypt and divided into 33 pools. Bacteriological examination and the identification of Klebsiella pneumoniae were performed. Carbapenem resistance in K. pneumoniae isolates was determined by phenotypic and molecular methods. Additionally, the presence of hypervirulent K. pneumoniae was identified based on virulence gene markers (peg-344, rmpA, rmpA2, iucA, and iroB), followed by a string test. The clustering of CR-hvKp strains was carried out using R with the pheatmap package. RESULTS The overall prevalence of K. pneumoniae was 48.5% (16 out of 33), with 13 isolates displaying carbapenem resistance, one intermediate resistance, and two sensitive. Both carbapenem-resistant K. pneumoniae and carbapenem-intermediate-resistant K. pneumoniae strains exhibited carbapenemase production, predominantly linked to the blaVIM gene (68.8%). HvKp strains were identified at a rate of 62.5% (10/16); notably, peg-344 was the most prevalent gene. Significantly, 10 of the 13 CRKP isolates possessed hypervirulence genes, contributing to the emergence of CR-hvKp. Moreover, cluster analysis revealed the clustering of two CR-hvKp isolates from the same retail fish market. CONCLUSION This study provides the first insight into the emergence of CR-hvKp among oysters in Egypt. It underscores the potential role of oysters as a source for disseminating CR-hvKp within aquatic ecosystems, presenting a possible threat to public health.
Collapse
Affiliation(s)
- Rahma Mohammed
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt
| | - Sara M Nader
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt
| | - Dalia A Hamza
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt.
| | - Maha A Sabry
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt
| |
Collapse
|
6
|
Plante D, Barrera JAB, Lord M, Harlow J, Iugovaz I, Nasheri N. Examining the efficiency of porcine gastric mucin-coated magnetic beads in extraction of noroviruses from frozen berries. Food Microbiol 2024; 120:104461. [PMID: 38431316 DOI: 10.1016/j.fm.2023.104461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 03/05/2024]
Abstract
Human norovirus is the leading cause of foodborne gastroenteritis worldwide. Due to the low infectious dose of noroviruses, sensitive methodologies are required to detect and characterize small numbers of viral particles that are found in contaminated foods. The ISO 15216 method, which is internationally recognized for detection of foodborne viruses from high-risk food commodities, is based on viral precipitation, followed by RNA extraction and identification of the viral genome by RT-PCR. Although the ISO 15216 method is efficient, it is time consuming and tedious, does not report on the viral infectivity, and is sensitive to the presence of RT-PCR inhibitors. Norovirus capture by the porcine gastric mucin conjugated magnetic beads (PGM-MB) was developed as an alternative virus recovery method. It relies on the integrity of the viral capsid being able to bind to PGM. PGM contains a variety of histo-blood group antigens (HBGAs) that act as norovirus receptors. Therefore, the PGM-MB method allows for extraction of noroviruses, with potentially intact viral capsids, from complex food matrices. The viral genome can then be released through heat-shock of the captured virus. For this reason, we performed a parallel comparison between the ISO 15216 method and the PGM-MB method in isolation and quantification of noroviruses from frozen raspberries. We have demonstrated that the efficiency of the PGM-MB method in extraction of murine norovirus (MNV) and human norovirus GII.4 from raspberries is equal or better than the ISO 15216 method, while the PGM-MB has fewer steps and shorter turnaround time. Moreover, the PGM-MB method is more efficient in removing the inhibitors prior to RT-PCR analysis.
Collapse
Affiliation(s)
- Daniel Plante
- Microbiology Laboratory, Regulatory Operations and Enforcement Branch, Health Canada, 1001 St-Laurent Street West, Longueuil, QC, J4K 1C7, Canada
| | - Julio Alexander Bran Barrera
- Microbiology Laboratory, Regulatory Operations and Enforcement Branch, Health Canada, 1001 St-Laurent Street West, Longueuil, QC, J4K 1C7, Canada
| | - Maude Lord
- Microbiology Laboratory, Regulatory Operations and Enforcement Branch, Health Canada, 1001 St-Laurent Street West, Longueuil, QC, J4K 1C7, Canada
| | - Jennifer Harlow
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Irène Iugovaz
- Microbiology Laboratory, Regulatory Operations and Enforcement Branch, Health Canada, 1001 St-Laurent Street West, Longueuil, QC, J4K 1C7, Canada
| | - Neda Nasheri
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada.
| |
Collapse
|
7
|
Tan J, Harlow J, Cecillon J, Nasheri N. Assessing the efficacy of different bead-based assays in capturing hepatitis E virus. J Virol Methods 2024; 324:114860. [PMID: 38061674 DOI: 10.1016/j.jviromet.2023.114860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Hepatitis E virus (HEV) generally causes acute liver infection in humans and its transmission could be waterborne, foodborne, bloodborne, or zoonotic. To date, there is no standard method for the detection of HEV from food and environmental samples. Herein, we explored the possibility of using magnetic beads for the capture and detection of HEV. For this purpose, we employed Dynabeads M-270 Epoxy magnetic beads, coated with different monoclonal antibodies (mAbs) against HEV capsid protein, and the Nanotrap Microbiome A Particle magnetic beads, which are coated with chemical affinity baits, to capture HEV-3 particles in suspension. Viral RNA was extracted by heat-shock or QIAamp viral RNA kit and subjected to quantification using digital-droplet RT-PCR (ddRT-PCR). We demonstrated that the mAb-coupled Dynabeads and the Nanotrap particles, both were able to successfully capture HEV-3. The latter, however had lower limit of detection (<140gc compared with <1400 gc) and significantly higher extraction efficiency in comparison to the mAb-coupled Dynabeads (41.1% vs 8.8%). We have also observed that viral RNA extraction by heat-shock is less efficient compared to using highly denaturing reagents in QIAmp viral RNA extraction kit. As such, magnetic beads have the potential to be used to capture HEV virions for research and surveillance purposes.
Collapse
Affiliation(s)
- Jeremy Tan
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Jennifer Harlow
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
| | - Jonathon Cecillon
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Neda Nasheri
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada.
| |
Collapse
|
8
|
Mao M, Zhang Z, Zhao X, Geng H, Xue L, Liu D. Spatial Distribution and Enrichment Dynamics of Foodborne Norovirus in Oyster Tissues. Foods 2023; 13:128. [PMID: 38201156 PMCID: PMC10778453 DOI: 10.3390/foods13010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The prevalence of norovirus in oysters poses a significant threat to food safety, necessitating a comprehensive understanding of contamination patterns. This study explores the temporal dynamics of norovirus distribution in various oyster tissues over a contamination period ranging from 6 to 96 h. Four tissues-the gill, palp, digestive gland, and stomach-were subjected to systematic monitoring using RT-qPCR for absolute quantification. Results revealed rapid norovirus detection in all tissues six hours post-contamination, with subsequent variations in detection rates. Gill and digestive gland tissues exhibited a peak in detection at 12-24 h, aligning with the oyster's gastrointestinal circulatory system. The digestive gland, distinguished by specific enrichment and adsorption capabilities, demonstrated the highest virus concentration at 48 h. In contrast, the stomach displayed a reemergence of norovirus. Beyond 72 h, detection remained exclusive to the digestive gland, with Ct values comparable to earlier time points. At 96 h, a limited amount of norovirus was detected in the digestive gland, emphasizing the importance for timely monitoring. In addition to providing critical insights into optimal detection strategies, these findings highlight the time-related characteristics of norovirus contamination in oysters. The study identifies the digestive gland as a key target for reliable monitoring, providing valuable data to improve protocols for reducing hazards associated with oyster consumption and foodborne norovirus infections. This research contributes to the understanding of norovirus dynamics in oyster tissues and reinforces current efforts aimed at ensuring food safety and public health.
Collapse
Affiliation(s)
- Mao Mao
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.M.); (Z.Z.)
- Shanghai International Travel Healthcare Center, Shanghai Customs District P. R. China, Shanghai 200335, China
| | - Zilei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.M.); (Z.Z.)
- Inspection and Quarantine Technology Communication Department, Shanghai Customs College, Shanghai 201204, China
| | - Xuchong Zhao
- Jinan Center for Disease Control and Prevention, Jinan 250021, China;
| | - Haoran Geng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 200237, China;
| | - Liang Xue
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.M.); (Z.Z.)
| | - Danlei Liu
- Shanghai International Travel Healthcare Center, Shanghai Customs District P. R. China, Shanghai 200335, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 200237, China;
| |
Collapse
|
9
|
Abstract
Norovirus (NoV) is known to be the second nonbacterial enteric pathogen after rotavirus that causes acute gastroenteritis. They can be spread from person to person through fecal-oral routes. Infection can lead to severe diarrhea, causing stomach pain, vomiting, and nausea. Rapid detection of NoV can control huge economic and productive losses. Genotyping various emerging NoV strains is important to compare the severity among different strains. Conventional immunological and molecular methods have evolved and contributed to developing detection techniques. Immunological (enzyme-linked immunosorbent assay) and molecular detection (reverse transcriptase polymerase chain reaction [RT-PCR], RT-quantitative PCR, loop-mediated isothermal amplification, nucleic acid sequence-based alignment, recombinase polymerase amplification) methods have been mainly used. The development of biosensors using aptasensor, affinity peptides, nanoparticles, microfluidics, and so on, are currently the most researched topics. The availability of next-generation sequencing technologies has greatly influenced the diagnosis of NoV. The complementation of advanced technologies is helpful in identification of new variants. In this study, techniques that are useful in detecting NoV are discussed. This review has investigated the availability of recent methods used in the detection, present status, and futuristic plan of action in case of outbreak and pandemic.
Collapse
Affiliation(s)
- Pulkit Srivastava
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Dinesh Prasad
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
10
|
Rowan NJ. Current decontamination challenges and potentially complementary solutions to safeguard the vulnerable seafood industry from recalcitrant human norovirus in live shellfish: Quo Vadis? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162380. [PMID: 36841407 DOI: 10.1016/j.scitotenv.2023.162380] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Safeguarding the seafood industry is important given its contribution to supporting our growing global population. However, shellfish are filter feeders that bioaccumulate microbial contaminants in their tissue from wastewater discharged into the same coastal growing environments leading to significant human disease outbreaks unless appropriately mitigated. Removal or inactivation of enteric viruses is very challenging particularly as human norovirus (hNoV) binds to specific histo-blood ligands in live oyster tissue that are consumed raw or lightly cooked. The regulatory framework that sets out use of clean seawater and UV disinfection is appropriate for bacterial decontamination at the post-harvest land-based depuration (cleaning) stage. However, additional non-thermal technologies are required to eliminate hNoV in live shellfish (particularly oysters) where published genomic studies report that low-pressure UV has limited effectiveness in inactivating hNoV. The use of the standard genomic detection method (ISO 15, 216-1:2017) is not appropriate for assessing the loss of infectious hNoV in treated live shellfish. The use of surrogate viral infectivity methods appear to offer some insight into the loss of hNoV infectiousness in live shellfish during decontamination. This paper reviews the use of existing and potentially other combinational treatment approaches to enhance the removal or inactivation of enteric viruses in live shellfish. The use of alternative and complementary novel diagnostic approaches to discern viable hNoV are discussed. The effectiveness and virological safety of new affordable hNoV intervention(s) require testing and validating at commercial shellfish production in conjunction with laboratory-based research. Appropriate risk management planning should encompass key stakeholders including local government and the wastewater industry. Gaining a mechanistic understanding of the relationship between hNoV response at molecular and structural levels in individually treated oysters as a unit will inform predictive modeling and appropriate treatment technologies. Global warming of coastal growing environments may introduce additional contaminant challenges (such as invasive species); thus, underscoring need to develop real-time ecosystem monitoring of growing environments to alert shellfish producers to appropriately mitigate these threats.
Collapse
Affiliation(s)
- Neil J Rowan
- Centre for Sustainable Disinfection and Sterilization, Bioscience Research Institute, Technological University of the Shannon Midlands Midwest, Athlone Campus, Ireland.
| |
Collapse
|
11
|
Batista FM, Hatfield R, Powell A, Baker-Austin C, Lowther J, Turner AD. Methodological advances in the detection of biotoxins and pathogens affecting production and consumption of bivalve molluscs in a changing environment. Curr Opin Biotechnol 2023; 80:102896. [PMID: 36773575 DOI: 10.1016/j.copbio.2023.102896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/18/2022] [Accepted: 01/02/2023] [Indexed: 02/11/2023]
Abstract
The production, harvesting and safe consumption of bivalve molluscs can be disrupted by biological hazards that can be divided into three categories: (1) biotoxins produced by naturally occurring phytoplankton that are bioaccumulated by bivalves during filter-feeding, (2) human pathogens also bioaccumulated by bivalves and (3) bivalve pathogens responsible for disease outbreaks. Environmental changes caused by human activities, such as climate change, can further aggravate these challenges. Early detection and accurate quantification of these hazards are key to implementing measures to mitigate their impact on production and safeguard consumers. This review summarises the methods currently used and the technological advances in the detection of biological hazards affecting bivalves, for the screening of known hazards and discovery of new ones.
Collapse
Affiliation(s)
- Frederico M Batista
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom.
| | - Robert Hatfield
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom
| | - Andrew Powell
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom
| | - James Lowther
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom
| | - Andrew D Turner
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom
| |
Collapse
|
12
|
Liu S, Zhao K, Huang M, Zeng M, Deng Y, Li S, Chen H, Li W, Chen Z. Research progress on detection techniques for point-of-care testing of foodborne pathogens. Front Bioeng Biotechnol 2022; 10:958134. [PMID: 36003541 PMCID: PMC9393618 DOI: 10.3389/fbioe.2022.958134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
The global burden of foodborne disease is enormous and foodborne pathogens are the leading cause of human illnesses. The detection of foodborne pathogenic bacteria has become a research hotspot in recent years. Rapid detection methods based on immunoassay, molecular biology, microfluidic chip, metabolism, biosensor, and mass spectrometry have developed rapidly and become the main methods for the detection of foodborne pathogens. This study reviewed a variety of rapid detection methods in recent years. The research advances are introduced based on the above technical methods for the rapid detection of foodborne pathogenic bacteria. The study also discusses the limitations of existing methods and their advantages and future development direction, to form an overall understanding of the detection methods, and for point-of-care testing (POCT) applications to accurately and rapidly diagnose and control diseases.
Collapse
Affiliation(s)
- Sha Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Kaixuan Zhao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Meiyuan Huang
- Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Department of Pathology, Central South University, Zhuzhou, China
| | - Meimei Zeng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Wen Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
13
|
Han Y, Wang J, Zhang S, Yang S, Wang X, Han Y, Shen Z, Xu X. Simultaneous quantification of hepatitis A virus and norovirus genogroup I and II by triplex droplet digital PCR. Food Microbiol 2022; 103:103933. [DOI: 10.1016/j.fm.2021.103933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 11/04/2022]
|
14
|
Hrdy J, Vasickova P. Virus detection methods for different kinds of food and water samples – The importance of molecular techniques. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|