1
|
Angulo-Sanchez LT, Cruz-Félix MC, Vidal-Gutiérrez M, Torres-Moreno H, Muñoz-Bernal ÓA, Álvarez-Parrilla E, Robles-Zepeda RE, Álvarez-Bajo O, Gutiérrez A, Esqueda M. Ganoderma tuberculosum Liquid Culture With Vineyard Pruning Extracts for Bioactive Composite Production With Antiproliferative Activity. Adv Pharmacol Pharm Sci 2024; 2024:5245451. [PMID: 39484305 PMCID: PMC11527534 DOI: 10.1155/2024/5245451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 11/03/2024] Open
Abstract
Ganoderma species have been studied for their pharmacological approaches, such as anticancer, antitumor, antiproliferative, and antioxidant activity. Elicitors are used to increase Ganoderma bioactive composite production. This study aims to evaluate the antiproliferative activity of ethanolic extracts from mycelium of Ganoderma tuberculosum (G. tuberculosum) grown in a liquid medium with vineyard pruning waste (VPW) extracts as elicitors. Ethanolic and aqueous VPW extracts contain resveratrol dimer 4, resveratrol tetramer 1, and naringenin, while toluene and chloroform extracts contain tetradecanoic acid, hexadecanoic acid, and octadecanoic acid. Polar and nonpolar extracts could be promising elicitors for increasing bioactive molecules. Catechin gallate showed the highest correlation (r = 0.66) with biomass. Mycelial ethanolic extracts of G. tuberculosum (native strain from the Sonoran Desert) and Ganoderma lucidum (G. lucidum) (control) were analyzed by ESI-IT-MS, and 27 molecules were identified for the two species. They showed antiproliferative activity against the A549 and C-33 A cell lines but not for ARPE-19. G. tuberculosum culture with VPW had quinic acid, ganodermenonol, ganoderic acid I (GA-I), C2 (GA-C2), and 20-hydroxylucidenic acid P, among others. Molecular docking of ganodermenonol, GA-I, and GA-C2 demonstrates significant interaction with tumor necrotic factor (TNF-α). These ethanolic extracts of Ganoderma are promising sources of bioactive triterpenoids. Their antiproliferative activity did not change between species or treatment. Likewise, the G. tuberculosum and G. lucidum extracts only affected cancer cell lines. This property seems promising for pharmacological applications of these fungal extracts.
Collapse
Affiliation(s)
- Lucia T. Angulo-Sanchez
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas 46, La Victoria, Hermosillo CP. 83304, Sonora, Mexico
| | - María C. Cruz-Félix
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas 46, La Victoria, Hermosillo CP. 83304, Sonora, Mexico
| | - Max Vidal-Gutiérrez
- Universidad de Sonora, Campus Navojoa, Departamento de Ciencias Químico, Biológicas y Agropecuarias, Lázaro Cárdenas del Río 100, Francisco Villa, Navojoa CP. 85880, Sonora, Mexico
| | - Heriberto Torres-Moreno
- Universidad de Sonora, Campus Caborca, Departamento de Ciencias Químico, Biológicas y Agropecuarias, Avenida K SN, Eleazar Ortiz, H. Caborca CP. 83600, Sonora, Mexico
| | - Óscar A. Muñoz-Bernal
- Universidad Autónoma de Ciudad Juárez, Instituto de Ciencias Biomédicas, Av. Benjamín Franklin 4650, Condominio La Plata, Ciudad Juárez CP. 32310, Chihuahua, Mexico
| | - Emilio Álvarez-Parrilla
- Universidad Autónoma de Ciudad Juárez, Instituto de Ciencias Biomédicas, Av. Benjamín Franklin 4650, Condominio La Plata, Ciudad Juárez CP. 32310, Chihuahua, Mexico
| | - Ramón E. Robles-Zepeda
- Universidad de Sonora, Campus Hermosillo, Departamento de Ciencias Químico Biológicas, Blvd. Luis Donaldo Colosio y Rosales s/n, Centro, Hermosillo CP. 83000, Sonora, Mexico
| | - Osiris Álvarez-Bajo
- Consejo Nacional de Ciencia y Tecnología-Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo CP. 83000, Sonora, Mexico
| | - Aldo Gutiérrez
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas 46, La Victoria, Hermosillo CP. 83304, Sonora, Mexico
| | - Martín Esqueda
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas 46, La Victoria, Hermosillo CP. 83304, Sonora, Mexico
| |
Collapse
|
2
|
Talwar P, Upadhyay A, Verma N, Singh R, Lindenberger C, Pareek N, Kovalev AA, Zhuravleva EA, Litti YV, Masakapalli SK, Vivekanand V. Utilization of agricultural residues for energy and resource recovery towards a sustainable environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57354-57368. [PMID: 37667121 DOI: 10.1007/s11356-023-29500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Fungal pre-treatment using Pleurotus ostreatus (PO) was carried out on individual and combinations of agro-waste wheat straw (WS), rice straw (RS), and pearl millet straw (PMS) with the addition of biochar (5%,7.5% and 10%) to reduce the pre-treatment duration. Further remaining substrate known as spent mushroom substrate (SMS) was used in anaerobic digestor (AD) for estimation enhanced biomethane yield. Equal ratios of RS + WS, WS + PMS, PMS + RS, and RS + PMS + WS and biochar addition were taken for enhancing pre-treatment, PO growth and AD process. The extent of pre-treatment was recorded with the maximum lignin removal of 40.4% for RS + PMS + WS as compared to untreated counterparts and 0.5%, 2.2%, and 3.3% times more lignin removal from individual PMS, RS, and WS respectively. Addition of biochar to the substrates reduced the total pre-treatment duration by days as compared to the non-biochar substrates. Biological efficiency (BE) used for the analysis of mushroom growth varied from 51-92%. Further, the average bio-methane yield was 187 ml/gVS for SMS of PMS + WS + RS with 10% biochar indicating an increment of 83.33% from untreated SMS of PMS + WS + RS. This, higher biomethane yield was 9.35%, 22.22% and 57.14% times higher than individual SMS of PMS, RS, and WS respectively. The current study shows that biochar not only enhances the bio-methane yield but also reduces the biological pre-treatment duration and removes the dependency on one lignocellulosic biomass for energy (bio-methane) and food (mushroom) production.
Collapse
Affiliation(s)
- Prakhar Talwar
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India
| | - Apoorva Upadhyay
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India
| | - Nikita Verma
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India
| | - Rickwinder Singh
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India
| | - Christoph Lindenberger
- University of Applied Sciences Amberg-Weiden, Kaiser-Wilhelm-Ring 23, 92224, Amberg, Germany
| | - Nidhi Pareek
- Department of Sports Bio-Sciences, School of Sports Sciences, Central University of Rajasthan, Ajmer, 305817, India
| | - Andrey A Kovalev
- Federal State Budgetary Scientific Institution "Federal Scientific Agroengineering Center VIM", 1St Institutskiy Proezd, 5, 109428, Moscow, Russia
| | - Elena A Zhuravleva
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Prospekt 33, 2, 119071, Moscow, Russia
| | - Yuriy V Litti
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Prospekt 33, 2, 119071, Moscow, Russia
| | - Shyam Kumar Masakapalli
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, 21 175075, India
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India.
| |
Collapse
|
3
|
Xu M, Meng Q, Zhu S, Yu R, Chen L, Shi G, Wong KH, Fan D, Ding Z. The Performance and Evolutionary Mechanism of Ganoderma lucidum in Enhancing Selenite Tolerance and Bioaccumulation. J Fungi (Basel) 2024; 10:415. [PMID: 38921401 PMCID: PMC11205109 DOI: 10.3390/jof10060415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Selenium (Se) pollution poses serious threats to terrestrial ecosystems. Mushrooms are important sources of Se with the potential for bioremediation. Pre-eminent Se resources must possess the ability to tolerate high levels of Se. To obtain Se-accumulating fungi, we isolated selenite-tolerance-enhanced Ganoderma lucidum JNUSE-200 through adaptive evolution. METHODS The molecular mechanism responsible for selenite tolerance and accumulation was explored in G. lucidum JNUSE-200 by comparing it with the original strain, G. lucidum CGMCC 5.26, using a combination of physiological and transcriptomic approaches. RESULTS G. lucidum JNUSE-200 demonstrated tolerance to 200 mg/kg selenite in liquid culture and exhibited normal growth, whereas G. lucidum CGMCC 5.26 experienced reduced growth, red coloration, and an unpleasant odor as a result of exposure to selenite at the same concentration. In this study, G. lucidum JNUSE-200 developed a triple defense mechanism against high-level selenite toxicity, and the key genes responsible for improved selenite tolerance were identified. CONCLUSIONS The present study offers novel insights into the molecular responses of fungi towards selenite, providing theoretical guidance for the breeding and cultivation of Se-accumulating varieties. Moreover, it significantly enhances the capacity of the bio-manufacturing industry and contributes to the development of beneficial applications in environmental biotechnology through fungal selenite transformation bioprocesses.
Collapse
Affiliation(s)
- Mengmeng Xu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.X.); (D.F.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Q.M.); (L.C.); (G.S.)
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Qi Meng
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Q.M.); (L.C.); (G.S.)
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Song Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (S.Z.); (R.Y.)
| | - Ruipeng Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (S.Z.); (R.Y.)
| | - Lei Chen
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Q.M.); (L.C.); (G.S.)
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Q.M.); (L.C.); (G.S.)
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Ka-Hing Wong
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong 999077, China;
| | - Daming Fan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.X.); (D.F.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (S.Z.); (R.Y.)
| | - Zhongyang Ding
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Q.M.); (L.C.); (G.S.)
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Du M, Huang S, Huang Z, Qian L, Gui Y, Hu J, Sun Y. De novo assembly and characterization of the transcriptome of Morchella esculenta growth with selenium supplementation. PeerJ 2024; 12:e17426. [PMID: 38832042 PMCID: PMC11146319 DOI: 10.7717/peerj.17426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Although Morchella esculenta (L.) Pers. is an edible and nutritious mushroom with significant selenium (Se)-enriched potential, its biological response to selenium stimuli remains unclear. This study explored the effect of selenium on mushroom growth and the global gene expression profiles of M. esculenta. While 5 µg mL-1selenite treatment slightly promoted mycelia growth and mushroom yield, 10 µg mL-1significantly inhibited growth. Based on comparative transcriptome analysis, samples treated with 5 µg mL-1 and 10 µg mL-1 of Se contained 16,061 (452 upregulated and 15,609 downregulated) and 14,155 differentially expressed genes (DEGs; 800 upregulated and 13,355 downregulated), respectively. Moreover, DEGs were mainly enriched in the cell cycle, meiosis, aminoacyl-tRNA biosynthesis, spliceosome, protein processing in endoplasmic reticulum pathway, and mRNA surveillance pathway in both selenium-treated groups. Among these, MFS substrate transporter and aspartate aminotransferase genes potentially involved in Se metabolism and those linked to redox homeostasis were significantly upregulated, while genes involved in isoflavone biosynthesis and flavonoid metabolism were significantly downregulated. Gene expression levels increased alongside selenite treatment concentration, suggesting that high Se concentrations promoted M. esculenta detoxification. These results can be used to thoroughly explain the potential detoxification and Se enrichment processes in M. esculenta and edible fungi.
Collapse
Affiliation(s)
- Mengxiang Du
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Shengwei Huang
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Chuzhou, Anhui, China
| | - Zihan Huang
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Chuzhou, Anhui, China
| | - Lijuan Qian
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Yang Gui
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Chuzhou, Anhui, China
| | - Jing Hu
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Chuzhou, Anhui, China
| | - Yujun Sun
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Chuzhou, Anhui, China
| |
Collapse
|
5
|
LeBlanc KL, Kumlung T, Suárez Priede A, Kumkrong P, Junvee T, Deawtong S, Bettmer J, Montes-Bayón M, Mester Z. Determination of selenium-containing species, including nanoparticles, in selenium-enriched Lingzhi mushrooms. Anal Bioanal Chem 2024; 416:2761-2772. [PMID: 37987766 PMCID: PMC11009765 DOI: 10.1007/s00216-023-05031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Mushrooms are considered a valuable food source due to their high protein and fibre and low fat content, among the other health benefits of their consumption. Selenium is an essential nutrient and is renowned for its chemo-preventative properties. In this study, batches of selenium-enriched Lingzhi mushrooms were prepared by growing mycelium and fruit in substrates containing various concentrations of sodium selenite. The mushroom fruit accumulated low levels of selenium with selenomethionine being the most abundant form in all enriched samples. Conversely, the mycelium showed significant selenium accumulation but relatively low proportions of selenomethionine. The red colour of the selenium-enriched mycelia indicated the probable presence of selenium nanoparticles, which was confirmed by single-particle inductively coupled plasma-mass spectrometry. Mean particle diameters of 90-120 nm were observed, with size distributions of 60-250 nm. Additional analysis with transmission electron microscopy confirmed this size distribution and showed that the biogenic selenium nanoparticles were roughly spherical in shape and contained elemental selenium.
Collapse
Affiliation(s)
- Kelly L LeBlanc
- National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada.
| | - Tantima Kumlung
- Thailand Institute of Scientific and Technological Research, 35 Moo 3, Klong 5, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Andrés Suárez Priede
- Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/Julián Clavería 8, 33006, Oviedo, Spain
| | - Paramee Kumkrong
- National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada
- Thailand Institute of Scientific and Technological Research, 35 Moo 3, Klong 5, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Thippaya Junvee
- Thailand Institute of Scientific and Technological Research, 35 Moo 3, Klong 5, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Suladda Deawtong
- Thailand Institute of Scientific and Technological Research, 35 Moo 3, Klong 5, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Jörg Bettmer
- Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/Julián Clavería 8, 33006, Oviedo, Spain
| | - María Montes-Bayón
- Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/Julián Clavería 8, 33006, Oviedo, Spain
| | - Zoltan Mester
- National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada
| |
Collapse
|
6
|
Milovanovic I, Chillon TS, Hackler J, Schomburg L, Goessler W, Lajin B. Comparative investigation of selenium-enriched Pleurotus ostreatus and Ganoderma lucidum as natural sources of selenium supplementation. Food Chem 2024; 437:137842. [PMID: 37956581 DOI: 10.1016/j.foodchem.2023.137842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023]
Abstract
Selenium (Se) is an essential trace element for human health, but its nutritional supply is insufficient in large parts of the world. Mushrooms can be enriched in selenium and can serve as alternative and natural source of selenium supplementation. In the present study, two common mushroom species (Pleurotus ostreatus and Ganoderma lucidum), were enriched with two selenium compounds (selenite and selenate) to test their suitability as natural sources of selenium supplementation. Sharp differences in the the metabolic patterns of the fortified selenium were observed. Selenium was effectively metabolized in P. ostreatus but remained in inorganic form in G. lucidum. However, mushrooms extracts were effective in enhancing selenoprotein expression in cell lines. The present study highlights the importance of employing selenium speciation analysis with an element-selective technique to examine the metabolic products following mushroom fortification for nutritional purposes due to the different toxicological profile and bioavailability of different selenium biotransformation products.
Collapse
Affiliation(s)
- Ivan Milovanovic
- Innovation Centre of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia.
| | - Thilo Samson Chillon
- Institut für Experimentelle Endokrinologie, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité University Medicine Berlin, CCM, Hessische Straße 4A, 10115 Berlin, Germany
| | - Julian Hackler
- Institut für Experimentelle Endokrinologie, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité University Medicine Berlin, CCM, Hessische Straße 4A, 10115 Berlin, Germany
| | - Lutz Schomburg
- Institut für Experimentelle Endokrinologie, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité University Medicine Berlin, CCM, Hessische Straße 4A, 10115 Berlin, Germany
| | - Walter Goessler
- University of Graz, Institute of Chemistry - Analytical Chemistry for Health and Environment, Universitätsplatz 1/1, 8010 Graz, Austria
| | - Bassam Lajin
- University of Graz, Institute of Chemistry - Analytical Chemistry for Health and Environment, Universitätsplatz 1/1, 8010 Graz, Austria; University of Graz, Institute of Chemistry - ChromICP, Universitätsplatz 1/1, 8010 Graz, Austria
| |
Collapse
|
7
|
Madaan K, Sharma S, Kalia A. Effect of selenium and zinc biofortification on the biochemical parameters of Pleurotus spp. under submerged and solid-state fermentation. J Trace Elem Med Biol 2024; 82:127365. [PMID: 38171269 DOI: 10.1016/j.jtemb.2023.127365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Pleurotus has a remarkable nutritional and nutraceutical profile due to mineral mobilization and accumulation abilities from the substrate. The present study aimed to observe the effect of single and dual supplementations Se and Zn on biochemical parameters of P. florida, P. sajor caju and P. djamor. Also, the bioaccumulation of the trace elements in fortified mushrooms was estimated. METHODS Biomass production and radial growth rate were observed on Se and Zn supplemented broth and agar based medium. Furthermore, the influence of Se and Zn supplementation was recorded on the fruit body yield. The colorimetric assays were employed to estimate total soluble protein, total phenol and total flavonoid contents. The antioxidant activity was assayed as DPPH radical scavenging test. While, ICP-AES was performed to estimate the variation in the Zn and Se content of the fruit bodies. RESULTS The Se supplementation at low rate resulted in improvement in the radial growth rate and biomass production for P. sajor caju. For solid-state fermentation, a better yield was obtained with inorganic salt supplementation in comparison to organically enriched Se straw. The maximum total soluble protein content and total flavonoid content were observed in fruit bodies of P. sajor caju at 4 mg L -1 of Se and Se-Zn respectively. Pleurotus djamor exhibited the highest total phenolic content on Zn supplementation (10 mg L-1). Improved antioxidant potential was recorded with dual supplementations. Salt supplementations caused shrinkage, distortion of the fungal hyphae, and decreased basidiospores with significant amelioration in elemental composition in fortified mushrooms. CONCLUSION The inorganic salt supplementation increased the biochemical potential of Pleurotus spp. in comparison to organically enriched substrate which could further be used for the development of dietary supplements.
Collapse
Affiliation(s)
- Kashish Madaan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Shivani Sharma
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Anu Kalia
- Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab, India.
| |
Collapse
|
8
|
Li J, Wen S, Zhang B, Wang F. Selenium Enrichment of the Edible Medicinal Mushroom Antrodia camphorata by Submerged Fermentation. Molecules 2023; 28:molecules28073036. [PMID: 37049798 PMCID: PMC10095838 DOI: 10.3390/molecules28073036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Selenium (Se) is an essential nutrient element in human physiological metabolism and immune function. Supplementation of bioavailable Se will confer benefit on human life, especially when intake of this nutrient is inadequate. The edible and medicinal mushroom Antrodia camphorata is a unique fungus endemic to Taiwan, which has shown high therapeutic and nutritive value. This study is the first to demonstrate that A. camphorata can assimilate and transform sodium selenite into organic selenium. With an initial concentration of Se (IV) at 10 mg/L in 100 mL of the medium at 25 °C, the total selenium content in Se-enriched A. camphorata mycelia was 1281.3 ± 79.2 µg/g, in which the organic selenium content accounted for 88.1%. Further analysis demonstrated that selenium-enriched polysaccharide was the main form of Se present in A. camphorata (61.5% of the organic selenium). Four water-soluble Se-polysaccharide fractions were separated from A. camphorata, and ACP II was the major fraction of Se-polysaccharide. The scavenging efficiency of Se-polysaccharides on DPPH and ABTS radicals was determined, proving that selenium enrichment dramatically improved the in vitro antioxidant capacity of A. camphorata polysaccharide. Therefore, the selenium accumulation and transformation ability of A. camphorata provides an opportunity for developing this beneficent fungus into a novel selenium-enriched dietary or medicinal supplement.
Collapse
|
9
|
Xu M, Zhu S, Wang Q, Chen L, Li Y, Xu S, Gu Z, Shi G, Ding Z. Pivotal biological processes and proteins for selenite reduction and methylation in Ganoderma lucidum. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130409. [PMID: 36435045 DOI: 10.1016/j.jhazmat.2022.130409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Microbial transformations, especially the reduction and methylation of Se oxyanion, have gained significance in recent years as effective detoxification methods. Ganoderma lucidum is a typical Se enrichment resource that can reduce selenite to elemental Se and volatile Se metabolites under high selenite conditions. However, the detailed biological processes and reduction mechanisms are unclear. In this study, G. lucidum reduced selenite to elemental Se and further aggregated it into Se nanoparticles with a diameter of < 200 nm, simultaneously accompanied by the production of pungent, odorous, and volatile methyl-selenium metabolites. Tandem mass tag-based quantitative proteomic analysis revealed thioredoxin 1, thioredoxin reductase (NADPH), glutathione reductase, 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase, and cystathionine gamma-lyase as proteins involved in selenite reduction and methylation. Furthermore, the high expression of proteins associated with cell structures that prompted cell lysis may have facilitated Se release. The upregulation of proteins involved in the defense reactions was also detected, reflecting their roles in the self-defense mechanism. This study provides novel insights into the vital role of G. lucidum in mediating Se transformation in the biogeochemical Se cycle and contributes to the application of fungi in Se bioremediation.
Collapse
Affiliation(s)
- Mengmeng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Song Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Youran Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Sha Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenghua Gu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Ramezannejad R, Pourianfar HR, Rezaeian S. Interactive Effects of Selenium, Zinc, and Iron on the Uptake of Selenium in Mycelia of the Culinary-Medicinal Winter Mushroom Flammulina velutipes (Agaricomycetes). Int J Med Mushrooms 2023; 25:75-87. [PMID: 37831514 DOI: 10.1615/intjmedmushrooms.2023050153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The present study for the first time addressed whether the simultaneous presence of selenium, zinc and iron may have effects on the selenium uptake in the mycelia of the winter mushroom (also known as enoki), Flammulina velutipes. Response surface methodology was used to optimize concentrations of selenium, zinc and iron in the range of 0 to 120 mg L-1. The findings showed that application of selenium, zinc and iron (singly, in pairs, or triads) significantly enhanced the selenium accumulation in the mycelia. The highest amount of the selenium accumulation was observed when selenium (60 mg L-1) and zinc (120 mg L-1) were applied into submerged culture media, concurrently, leading to an 85-fold and 88-fold increase in the selenium content of the mycelia compared to that of the mycelia treated with selenium only and untreated mycelia, respectively. In addition, accumulation of selenium into the mycelia had no deteriorative effects on the mycelial biomass. The findings presented in this study may have implications for daily nutrition and industrial bioproduction of mushroom mycelia enriched with selenium.
Collapse
Affiliation(s)
- Rezvan Ramezannejad
- Industrial Fungi Biotechnology Research Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Hamid R Pourianfar
- Industrial Fungi Biotechnology Research Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi Branch, Mashhad, Iran
| | - Sharareh Rezaeian
- Industrial Fungi Biotechnology Research Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research, Khorasan Razavi Branch, Mashhad, Iran
| |
Collapse
|
11
|
Edible Mushrooms for Sustainable and Healthy Human Food: Nutritional and Medicinal Attributes. SUSTAINABILITY 2022. [DOI: 10.3390/su14094941] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Global food production faces many challenges, including climate change, a water crisis, land degradation, and desertification. These challenges require research into non-traditional sources of human foods. Edible mushrooms are considered an important next-generation healthy food source. Edible mushrooms are rich in proteins, dietary fiber, vitamins, minerals, and other bioactive components (alkaloids, lactones, polysaccharides, polyphenolic compounds, sesquiterpenes, sterols, and terpenoids). Several bioactive ingredients can be extracted from edible mushrooms and incorporated into health-promoting supplements. It has been suggested that several human diseases can be treated with extracts from edible mushrooms, as these extracts have biological effects including anticancer, antidiabetic, antiviral, antioxidant, hepatoprotective, immune-potentiating, and hypo-cholesterolemic influences. The current study focuses on sustainable approaches for handling edible mushrooms and their secondary metabolites, including biofortification. Comparisons between edible and poisonous mushrooms, as well as the common species of edible mushrooms and their different bioactive ingredients, are crucial. Nutritional values and the health benefits of edible mushrooms, as well as different biomedical applications, have been also emphasized. Further research is needed to explore the economic sustainability of different medicinal mushroom bioactive compound extracts and their potential applications against emerging diseases such as COVID-19. New approaches such as nano-biofortification are also needed to supply edible mushrooms with essential nutrients and/or to increase their bioactive ingredients.
Collapse
|
12
|
Ding W, Zhang X, Yin X, Zhang Q, Wang Y, Guo C, Chen Y. Ganoderma lucidum aqueous extract inducing PHGPx to inhibite membrane lipid hydroperoxides and regulate oxidative stress based on single-cell animal transcriptome. Sci Rep 2022; 12:3139. [PMID: 35210474 PMCID: PMC8873301 DOI: 10.1038/s41598-022-06985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 02/10/2022] [Indexed: 11/09/2022] Open
Abstract
In this study, the single-cell eukaryotic model organism Tetrahymena thermophila was used as an experimental material to reveal the anti-aging mechanism of Ganoderma lucidum aqueous extract. After treatment with the G. lucidum aqueous extract, the logarithmic phase was extended, and the maximum density of T. thermophila increased to 5.5 × 104 cells/mL. The aqueous extract was more effective than the main active monomers of G. lucidum. The membrane integrity in the cell including mitochondria and nucleus appeared improvement after treatment with the G. lucidum aqueous extract, which observed by ammonia silver staining and transmission electron microscopy. Gene Ontology (GO) functional enrichment of the differentially expressed genes in transcriptome showed that the G. lucidum aqueous extract promoted the biological metabolic process of membrane components. According to Kyoto Encyclopedia of Genes and Genomes (KEGG), the glutathione metabolism process was enhanced in both growth phases. Protein–protein interaction (PPI) network analysis illustrated that phospholipid hydroperoxide glutathione peroxidase (PHGPx) played a key role in the anti-aging mechanism. The results suggested that G. lucidum aqueous extract improved the GPX activity as well as reduced the malondialdehyde content and cell damage. More importantly, the expression of PHGPx was promoted to reduce the oxidation degree of the membrane lipids and enhance the integrity of the membrane to achieve anti-aging effects.
Collapse
Affiliation(s)
- Wenqiao Ding
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China.,College of Biology and Food Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Xueying Zhang
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China
| | - Xiaoyu Yin
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China
| | - Qing Zhang
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China
| | - Ying Wang
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Ying Chen
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China. .,School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| |
Collapse
|