1
|
Lenický M, Sidor E, Dianová L, Tirpák F, Štefunková N, Dżugan M, Halo M, Halo M, Slanina T, Urban I, Bažány D, Greń A, Roychoudhury S, Schneir ER, Massányi P. The effect of bee drone brood on the motility and viability of stallion spermatozoa-an in vitro study. In Vitro Cell Dev Biol Anim 2024; 60:596-608. [PMID: 38772999 PMCID: PMC11286683 DOI: 10.1007/s11626-024-00918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/22/2024] [Indexed: 05/23/2024]
Abstract
Bee drone brood is a beehive by-product with high hormonal activity used in natural medicine to treat male infertility. The aim of the study was to assess the effect of drone brood on stallion spermatozoa during a short-term incubation for its potential use in the equine semen extenders. Three different forms of fixed drone brood (frozen (FR), freeze-dried (FD), and dried extract (DE)) were used. Solutions of drone brood were compared in terms of testosterone, protein, total phenolic content, and antioxidant activity. The stallion semen was diluted with prepared drone brood solutions. The computer-assisted semen analysis (CASA) method was employed to evaluate the movement characteristics of the diluted ejaculate. To determine spermatozoa viability, the mitochondrial toxicity test (MTT) and Alamar Blue test were performed. In terms of testosterone content and antioxidant activity, a close likeness between FR and FD was found whereas DE's composition differed notably. FR had a positive effect mainly on progressive motility, but also on sperm distance and speed parameters after 2 and 3 h of incubation. On the contrary, FD and DE acted negatively, depending on increasing dose and time. For the first time, a positive dose-dependent effect of fixed drone brood on spermatozoa survival in vitro was demonstrated.
Collapse
Affiliation(s)
- Michal Lenický
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976, Nitra, Slovak Republic
| | - Ewelina Sidor
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszów, Ćwiklińskiej 1a St., 35-601, Rzeszów, Poland
- Doctoral School, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland
| | - Lucia Dianová
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976, Nitra, Slovak Republic.
| | - Filip Tirpák
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976, Nitra, Slovak Republic
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211-5300, USA
| | - Nikola Štefunková
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976, Nitra, Slovak Republic
| | - Małgorzata Dżugan
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszów, Ćwiklińskiej 1a St., 35-601, Rzeszów, Poland
| | - Marko Halo
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976, Nitra, Slovak Republic
| | - Marko Halo
- Institute of Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976, Nitra, Slovak Republic
| | - Tomáš Slanina
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976, Nitra, Slovak Republic
| | - Iveta Urban
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976, Nitra, Slovak Republic
| | - Denis Bažány
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976, Nitra, Slovak Republic
| | - Agnieszka Greń
- Institute of Biology, Pedagogical University of Krakow, Podchorazych 2, 30-084, Krakow, Poland
| | | | | | - Peter Massányi
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976, Nitra, Slovak Republic
- Institute of Biology, Pedagogical University of Krakow, Podchorazych 2, 30-084, Krakow, Poland
| |
Collapse
|
2
|
Abd El-Wahed AA, Khalifa SAM, Aldahmash B, Zhang H, Du M, Zhao C, Tahir HE, Saeed A, Hussain H, Guo Z, El-Seedi HR. Exploring the Chemical Constituents and Nutritive Potential of Bee Drone (Apilarnil): Emphasis on Antioxidant Properties. Chem Biodivers 2024; 21:e202400085. [PMID: 38329156 DOI: 10.1002/cbdv.202400085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/09/2024]
Abstract
A lesser-known bee product called drone brood homogenate (DBH, apilarnil) has recently attracted scientific interest for its chemical and biological properties. It contains pharmacologically active compounds that may have neuroprotective, antioxidant, fertility-enhancing, and antiviral effects. Unlike other bee products, the chemical composition of bee drone larva is poorly studied. This study analyzed the chemical compostion of apilarnil using several methods. These included liquid chromatography-mass spectrometry (LC-MS/MS) and a combination of gas chromatography/mass spectrometry with solid phase micro-extraction (SPME/GC-MS). Additionally, antioxidant activity of the apilarnil was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. A chemical assessment of apilarnil showed that it has 6.3±0.00, 74.67±0.10 %, 3.65±0.32 %, 8.80±1.01 %, 13.16±0.94 %, and 8.79±0.49 % of pH, moisture, total lipids, proteins, flavonoids, and carbohydrates, respectively. LC-MS/MS analysis and molecular networking (GNPS) of apilarnil exhibited 44 compounds, including fatty acids, flavonoids, glycerophospholipids, alcohols, sugars, amino acids, and steroids. GC-MS detected 30 volatile compounds in apilarnil, mainly esters (24 %), ketones (23.84 %), ethers (15.05 %), alcohols (11.41 %), fatty acids (10.06), aldehydes (6.73 %), amines (5.46), and alkene (5.53 %). The antioxidant activity of apilarnil was measured using DPPH with an IC50 of 179.93±2.46 μg/ml.
Collapse
Affiliation(s)
- Aida A Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza, 12627, Egypt
| | - Shaden A M Khalifa
- Psychiatry and Neurology Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, 112 19, Stockholm, Sweden
| | - Badr Aldahmash
- Zoology Department, College of science, King Saud University, Riyadh, Saudi Arabia
| | - Hongcheng Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116024, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haroon Elrasheid Tahir
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| |
Collapse
|
3
|
Elashal MH, Abd El-Wahed AA, Mohamed MA, Hamad R, Abd Eldaim MA, Khalifa SAM, Aldahmash B, El-Seedi HR, El-Aarag B. Apilarnil ameliorates Bisphenol A-induced testicular toxicity in adult male rats via improving antioxidant potency and PCNA expression. Reprod Toxicol 2024; 125:108570. [PMID: 38484946 DOI: 10.1016/j.reprotox.2024.108570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024]
Abstract
Apilarnil, a bee-derived product originating from drone larvae, offers a range of advantageous properties for both humans and animals. It functions as an antioxidant, provides neuroprotection, boosts fertility, and has antiviral capabilities. Additionally, it is a provider of androgenic hormones. These beneficial functions are supported by its chemical composition, which comprises mineral salts, vitamins, carbs, lipids, hormones, and amino acids. The current study aimed to evaluate the ameliorative effect of apilarnil against Bisphenol A (BPA)-induced testicular toxicity in male adult rats. Forty-eight Wistar albino rats were randomly classified into six groups. The first, second, and third received olive oil, BPA at a dose of 50 mg/kg body weight (bwt), and apilarnil at a dose of 0.6 g/kg bwt, respectively. The fourth, fifth, and sixth groups received apilarnil with, before, or after BPA administration, respectively. Phytochemical analysis using included linear ion trap-ultra-performance liquid chromatography-tandem mass spectrometry (LTQ-UPLC-MS/MS) and global natural products social molecular networking (GNPS) revealed the presence of lysine, 10-hydroxy-(E)-2-dodecenoic acid, apigenin7-glucoside, testosterone, progesterone, and campesterol. BPA administration decreased serum level of follicle stimulating hormone (FSH), luteinizing hormone (LH), testosterone, glutathione (GSH) concentration, total sperm count, motility, and vitality. Additionally, BPA increased sperm abnormalities, malondialdehyde concentration (MDA), and decreased proliferating cell nuclear antigen (PCNA) expression. The treatment with apilarnil ameliorated BPA reproductive toxicity in rats which was indicated by increased serum testosterone levels, normalized serum levels of FSH and LH, and concentration of MDA and GSH activity. Moreover, apilarnil improved sperm count, motility, morphology, and PCNA expression. Apilarnil was found to enhance reproductive hormones, MDA levels, antioxidant activity, and PCNA expression.
Collapse
Affiliation(s)
- Mohamed H Elashal
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt
| | - Aida A Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt.
| | - Mostafa Abdelgaber Mohamed
- Pathology Department, Faculty of Veterinary Medicine, Menoufia University, Shebin El-Kom 31100107, Egypt.
| | - Rania Hamad
- Pathology Department, Faculty of Veterinary Medicine, Menoufia University, Shebin El-Kom 31100107, Egypt
| | - Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Menoufia University, Shebin El-Kom 31100107, Egypt.
| | - Shaden A M Khalifa
- Psychiatry and Neurology Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, Stockholm 112 19, Sweden; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Badr Aldahmash
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia.
| | - Bishoy El-Aarag
- Biochemistry Division, Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Koom 31100107, Egypt
| |
Collapse
|
4
|
Kieliszek M, Piwowarek K, Kot AM, Wojtczuk M, Roszko M, Bryła M, Trajkovska Petkoska A. Recent advances and opportunities related to the use of bee products in food processing. Food Sci Nutr 2023; 11:4372-4397. [PMID: 37576029 PMCID: PMC10420862 DOI: 10.1002/fsn3.3411] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 08/15/2023] Open
Abstract
Nowadays, natural foods that can provide positive health effects are gaining more and more popularity. Bees and the products they produce are our common natural heritage that should be developed. In the article, we presented the characteristics of bee products and their use in industry. We described the development and importance of beekeeping in the modern world. Due to their high nutritional value and therapeutic properties, bee products are of great interest and their consumption is constantly growing. The basis for the use of bee products in human nutrition is their properties and unique chemical composition. The conducted research and opinions confirm the beneficial effect of bee products on health. The current consumer awareness of the positive impact of food having a pro-health effect on health and well-being affects the increase in interest and demand for this type of food among various social groups. Enriching the daily diet with bee products may support the functioning of the organism. New technologies have appeared on the market to improve the process of obtaining bee products. The use of bee products plays a large role in many industries; moreover, the consumption of bee products and promotion of their medicinal properties are very important in shaping proper eating habits.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food SciencesWarsaw University of Life Sciences—SGGWWarsawPoland
| | - Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food SciencesWarsaw University of Life Sciences—SGGWWarsawPoland
| | - Anna M. Kot
- Department of Food Biotechnology and Microbiology, Institute of Food SciencesWarsaw University of Life Sciences—SGGWWarsawPoland
| | - Marta Wojtczuk
- Department of Food Biotechnology and Microbiology, Institute of Food SciencesWarsaw University of Life Sciences—SGGWWarsawPoland
| | - Marek Roszko
- Department of Food Safety and Chemical AnalysisProf. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research InstituteWarsawPoland
| | - Marcin Bryła
- Department of Food Safety and Chemical AnalysisProf. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research InstituteWarsawPoland
| | - Anka Trajkovska Petkoska
- Faculty of Technology and Technical Social SciencesSt. Kliment Ohridski University‐BitolaVelesNorth Macedonia
| |
Collapse
|
5
|
Botezan S, Baci GM, Bagameri L, Pașca C, Dezmirean DS. Current Status of the Bioactive Properties of Royal Jelly: A Comprehensive Review with a Focus on Its Anticancer, Anti-Inflammatory, and Antioxidant Effects. Molecules 2023; 28:1510. [PMID: 36771175 PMCID: PMC9921556 DOI: 10.3390/molecules28031510] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Royal jelly (RJ) has been one of the most widely used natural products in alternative medicine for centuries. Being produced by both hypopharyngeal and mandibular glands, RJ exhibits an extraordinary complexity in terms of its composition, including proteins, lipids, carbohydrates, polyphenols, vitamins, and hormones. Due to its heterogeneous structure, RJ displays various functional roles for honeybees, including being involved in nutrition, learning, memory, and social behavior. Furthermore, a wide range of studies reported its therapeutic properties, including anticancer, anti-inflammatory, and antioxidant activities, to name a few. In this direction, there is a wide range of health-related problems for which the medical area specialists and researchers are continuously trying to find a cure, such as cancer, atherosclerosis, or infertility. For the mentioned diseases and more, it has been proven that RJ is a key player in finding a valuable treatment. In this review, the great impact of RJ as an alternative medicine agent is highlighted, with a focus on its anticancer, anti-inflammatory, and antioxidant activities. Moreover, we link it to its apitherapeutic potential by discussing its composition. Herein, we discuss a wide range of novel studies and present the latest research work.
Collapse
Affiliation(s)
| | - Gabriela-Maria Baci
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | | | - Claudia Pașca
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | | |
Collapse
|
6
|
UPLC-MS/MS Analysis of Naturally Derived Apis mellifera Products and Their Promising Effects against Cadmium-Induced Adverse Effects in Female Rats. Nutrients 2022; 15:nu15010119. [PMID: 36615776 PMCID: PMC9823550 DOI: 10.3390/nu15010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Honeybee products arouse interest in society due to their natural origin and range of important biological properties. Propolis (P) and royal jelly (RJ) attract scientists' attention because they exhibit antioxidant, anti-inflammatory, anti-bacterial, anti-tumor, and immunomodulatory abilities. In this study, we tested whether P and RJ could mitigate the adverse effects of cadmium (Cd) exposure, with particular emphasis on the reproductive function in female rats. In this line, one week of pretreatment was established. Six experimental groups were created, including (i) the control group (without any supplementation), (ii) the Cd group (receiving CdCl2 in a dose of 4.5 mg/kg/day), (iii) the P group (50 mg of P/kg/day), (iv) RJ group (200 mg of RJ/kg/day), (v) P + Cd group (rats pretreated with P and then treated with P and Cd simultaneously), (vi) RJ + Cd group (animals pretreated with RJ before receiving CdCl2 simultaneously with RJ). Cd treatment of rats adversely affected a number of measured parameters, including body weight, ovarian structure and ultrastructure, oxidative stress parameters, increased ovarian Cd content and prolonged the estrous cycle. Pretreatment and then cotreatment with P or RJ and Cd alleviated the adverse effects of Cd, transferring the clusters in the PCA analysis chart toward the control group. However, clusters for cotreated groups were still distinctly separated from the control and P, or RJ alone treated groups. Most likely, investigated honeybee products can alter Cd absorption in the gut and/or increase its excretion through the kidneys and/or mitigate oxidative stress by various components. Undoubtedly, pretreatment with P or RJ can effectively prepare the organism to overcome harmful insults. Although the chemical composition of RJ and P is relatively well known, focusing on proportion, duration, and scheme of treatment, as well as the effects of particular components, may provide interesting data in the future. In the era of returning to natural products, both P and RJ seem valuable materials for further consideration as anti-infertility agents.
Collapse
|
7
|
Koşum N, Yücel B, Kandemir Ç, Taşkın T, Duru ME, Küçükaydın S, Margaoan R, Cornea-Cipcigan M. Chemical composition and androgenic effect of bee drone larvae (Apilarnil) for goat male kids. Chem Biodivers 2022; 19:e202200548. [PMID: 35770836 DOI: 10.1002/cbdv.202200548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/30/2022] [Indexed: 11/12/2022]
Abstract
Present study aimed to establish the stimulatory effects of bee drone larvae (BDL) on the androgenic effects and growth performance of goat male kids (GMK). The effects of BDL on growth and testosterone hormone levels were investigated in Saanen male kids. A total of 26 Saanen male kids (13 heads control, 13 heads treatment groups) were used for determining the effects of BDL 60 days after the weaning period. BDL was obtained from "good beekeeping practices" hives. Hormone levels, growth trials, testes characteristics, and body measurements were determined every 14 days on the days 75, 90, 105, 120, and 135 of the trial. The increasing level of testosterone hormone in the treatment group on 135 days strengthened the hypothesis that the BDL could have greater effects in case of more application that is expensive and considering the time of maturity of Saanen GMK. The lipid composition of BDL was identified by GC-MS. Oleic acid (64.75%) and palmitic acid (26.08%) were the dominant lipid compounds of BDL. Additionally, the phenolic/organic acid profile investigated by HPLC-DAD revealed that trans -aconitic acid (11.20±0.32 μg/g) and fumaric acid (5.03±0.41 μg/g) were found as major compounds in BDL.
Collapse
Affiliation(s)
- Nedim Koşum
- Ege University: Ege Universitesi, Department of Animal Sciences, 35100 BORNOVA, İZMİR, TURKEY
| | - Banu Yücel
- Ege Universitesi, Department of Animal Science, 35100 Bornova, Izmir, TURKEY
| | - Çağrı Kandemir
- Ege Universitesi, Department of Animal Science, 35100 BORNOVA, Izmir, TURKEY
| | - Turgay Taşkın
- Ege Universitesi, Department of Animal Science, 35100 BORNOVA, Izmir, TURKEY
| | - Mehmet Emin Duru
- Mugla Sitki Kocman Universitesi, Department of Chemistry, 48000 Kötekli, Mugla, TURKEY
| | - Selçuk Küçükaydın
- Mugla Sitki Kocman Universitesi, Department of Medical Services and Techniques, 48000 Kötekli, Mugla, TURKEY
| | - Rodica Margaoan
- University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca Faculty of Horticulture: Universitatea de Stiinte Agricole si Medicina Veterinara Cluj-Napoca Facultatea de Horticultura, Biotechnology and Microbiology, Calea Manastur 3-5, USAMV, cladirea-ICHAT, 400372, Cluj-Napoca, ROMANIA
| | - Mihaiela Cornea-Cipcigan
- University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca Faculty of Horticulture: Universitatea de Stiinte Agricole si Medicina Veterinara Cluj-Napoca Facultatea de Horticultura, Horticulture and Landscaping, Calea Manastur 3-5, Cluj-Napoca, ROMANIA
| |
Collapse
|
8
|
Bagameri L, Baci GM, Dezmirean DS. Royal Jelly as a Nutraceutical Natural Product with a Focus on Its Antibacterial Activity. Pharmaceutics 2022; 14:1142. [PMID: 35745715 PMCID: PMC9227439 DOI: 10.3390/pharmaceutics14061142] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
Royal jelly (RJ) is one of the most valued natural products and is known for its health-promoting properties. Due to its therapeutic effects, it has been used in medicine since antiquity. Nowadays, several studies indicate that RJ acts as a powerful antimicrobial agent. Indeed, researchers shed light on its antioxidant and anticancer activity. RJ's biological properties are related to its bioactive compounds, such as proteins, peptides, phenolic, and fatty acids. The aim of this review is to highlight recent findings on RJ's main bioactive compounds correlated with its health-promoting properties. The available literature suggests that these bioactive compounds can be used as an alternative approach in order to enhance human health. Moreover, throughout this paper, we underline the prominent antibacterial effect of RJ against several target bacterial strains. In addition, we briefly discuss other therapeutic activities, such as antioxidative and anticancer effects, of this outstanding natural product.
Collapse
Affiliation(s)
- Lilla Bagameri
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Gabriela-Maria Baci
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | | |
Collapse
|
9
|
Editorial to Special Issue-Composition and Biological Properties of Bee Products. Foods 2022; 11:foods11040608. [PMID: 35206084 PMCID: PMC8870836 DOI: 10.3390/foods11040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023] Open
|