1
|
Liang J, Wang Y, Wang T, Chu C, Yi J, Liu Z. Enhancing fermented vegetable flavor with Lactobacillus plantarum and Rhodotorula mucilaginosa. Food Res Int 2025; 200:115500. [PMID: 39779143 DOI: 10.1016/j.foodres.2024.115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/18/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
The formation of flavor in fermented vegetables is directly associated with the interactions among the resident microbial strains. This study explored the cooperative dynamics between Lactobacillus plantarum and Rhodotorula mucilaginosa in a simulated cabbage juice system. The obtained results indicated that the co-cultivation of these strains accelerated fermentation kinetics and enhanced lactic acid production. The strains achieved a balanced consumption of substrates within the co-fermentation system through the exchange of metabolites. Additionally, co-fermentation facilitated the synthesis of characteristic flavor compounds while reducing the levels of undesirable flavors. Growth monitoring and transcriptomic analysis revealed that L. plantarum, as the dominant strain, perceived the surrounding environment through quorum sensing signals and upregulated genes related to the synthesizing of key compounds, enhancing product yields and forming biofilms to adapt to the symbiotic environment. Conversely, R. mucilaginosa responded to the stress induced by L. plantarum via upregulating transporters of metabolites, genes related to antioxidant stress, and longevity regulating, ultimately achieving coexistence with L. plantarum. This research provides a comprehensive understanding of the interplay between microbial strains in modulating fermentation processes and flavor profiles in vegetable fermentation.
Collapse
Affiliation(s)
- Jiaqian Liang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500 Kunming, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Yanfei Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500 Kunming, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Tao Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500 Kunming, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China.
| | - Chuanqi Chu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500 Kunming, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China.
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500 Kunming, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China.
| | - Zhijia Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500 Kunming, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China.
| |
Collapse
|
2
|
Liu W, Wang Y, Zhao T, Zheng Y, Mu G, Qian F. Effects of Different Production Methods on the Quality and Microbial Diversity of Sauerkraut in Northeast China. Foods 2024; 13:3947. [PMID: 39683020 DOI: 10.3390/foods13233947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/25/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Sauerkraut is a popular fermented food in Northeast China. However, owing to the different production methods used, the quality of commercial sauerkraut is often quite different, which is reflected mainly in the differences between starter culture (Group-L), additive addition (Group-P) and natural fermentation (Group-H) methods. The purpose of this study was to explore the differences among the three fermentation methods by measuring physical and chemical indices, microbial diversity indices, flavour indices and volatile substances. The results revealed that there was no significant difference in the physical or chemical indices among the groups. The content of esters and alcohols in Group-L was the highest, and the taste richness, aftertaste-a and aftertaste-b were the highest, which had a positive effect on flavour. The highest level of microbial diversity was found in Group-H, which contained many pathogenic bacteria, such as Janibacter, Pseudomonas, and Vagococcus, which reduced the food safety of sauerkraut. At the genus level, the dominant bacterial genera in the starter and additive groups included Lactobacillus and Pediococcus. The correlation analysis revealed that Group-L was positively correlated with the contents of Lactobacillus plantarum, Lactobacillus brevis, Pediococcus, ethyl oleate and vanillin. In summary, this study evaluated the different production methods of northeast sauerkraut, providing theoretical support for the production of high-quality northeast sauerkraut.
Collapse
Affiliation(s)
- Weichao Liu
- School of Food Science, Dalian Polytechnic University, Dalian 116034, China
| | - Yunchao Wang
- School of Food Science, Dalian Polytechnic University, Dalian 116034, China
| | - Tong Zhao
- Dalian Center for Certification and Food and Drug Control, Dalian 116021, China
| | - Yunfang Zheng
- School of Food Science, Dalian Polytechnic University, Dalian 116034, China
| | - Guangqing Mu
- School of Food Science, Dalian Polytechnic University, Dalian 116034, China
| | - Fang Qian
- School of Food Science, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Li Y, He W, Liu S, Hu X, He Y, Song X, Yin J, Nie S, Xie M. Innovative omics strategies in fermented fruits and vegetables: Unveiling nutritional profiles, microbial diversity, and future prospects. Compr Rev Food Sci Food Saf 2024; 23:e70030. [PMID: 39379298 DOI: 10.1111/1541-4337.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 10/10/2024]
Abstract
Fermented fruits and vegetables (FFVs) are not only rich in essential nutrients but also contain distinctive flavors, prebiotics, and metabolites. Although omics techniques have gained widespread recognition as an analytical strategy for FFVs, its application still encounters several challenges due to the intricacies of biological systems. This review systematically summarizes the advances, obstacles and prospects of genomics, transcriptomics, proteomics, metabolomics, and multi-omics strategies in FFVs. It is evident that beyond traditional applications, such as the exploration of microbial diversity, protein expression, and metabolic pathways, omics techniques exhibit innovative potential in deciphering stress response mechanisms and uncovering spoilage microorganisms. The adoption of multi-omics strategies is paramount to acquire a multidimensional network fusion, thereby mitigating the limitations of single omics strategies. Although substantial progress has been made, this review underscores the necessity for a comprehensive repository of omics data and the establishment of universal databases to ensure precision in predictions. Furthermore, multidisciplinary integration with other physical or biochemical approaches is imperative, as it enriches our comprehension of this intricate process.
Collapse
Affiliation(s)
- Yuhao Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Weiwei He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Shuai Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Xiaoyi Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Yuxing He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Xiaoxiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Junyi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Xian S, Zhao F, Huang X, Liu X, Zhang Z, Zhou M, Shen G, Li M, Chen A. Effects of Pre-Dehydration Treatments on Physicochemical Properties, Non-Volatile Flavor Characteristics, and Microbial Communities during Paocai Fermentation. Foods 2024; 13:2852. [PMID: 39272618 PMCID: PMC11395261 DOI: 10.3390/foods13172852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
The paocai industry faces challenges related to the production of large volumes of high-salinity and acidic brine by-products. Maintaining paocai quality while reducing brine production is crucial. This study utilized high-throughput sequencing technology to analyze microbial changes throughout the fermentation process, along with the non-volatile flavor compounds and physicochemical properties, to assess the impact of hot-air and salt-pressing pre-dehydration treatments on paocai quality. The findings indicate that pre-dehydration of raw material slowed the fermentation process but enhanced the concentration of non-volatile flavor substances, including free amino acids and organic acids. Hot-air pre-dehydration effectively reduced initial salinity to levels comparable to those in high-salinity fermentation of fresh vegetables. Furthermore, pre-dehydration altered microbial community structures and simplified inter-microbial relationships during fermentation. However, the key microorganisms such as Lactobacillus, Weissella, Enterobacter, Wallemia, Aspergillus, and Kazachstania remained consistent across all groups. Additionally, this study found that biomarkers influenced non-volatile flavor formation differently depending on the treatment, but these substances had minimal impact on the biomarkers and showed no clear correlation with high-abundance microorganisms. Overall, fermenting pre-dehydrated raw materials presents an environmentally friendly alternative to traditional paocai production.
Collapse
Affiliation(s)
- Shuang Xian
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Feng Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xinyan Huang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xingyan Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Man Zhou
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Meiliang Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
5
|
Xian S, Li Y, Liu X, Shen G, Zhou M, Li M, Hou X, Li S, Luo Q, Zhang Z, Chen A. Impact of microorganisms on key processes of organic acid metabolism during the occurrence and disappearance of paocai pellicle. J Food Sci 2024; 89:5047-5064. [PMID: 38922911 DOI: 10.1111/1750-3841.17178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
In vegetable fermentation, pellicle is a common quality deterioration phenomenon. This study investigates the characteristics of glucose, organic acids, amino acids, and biogenic amines during the pellicle occurrence and disappearance of paocai. The results revealed a slight increase in pH of the fermentation system after pellicle occurred, and glucose was the main carbohydrate that microbial activity primary relied on. The microorganisms responsible for pellicle formation consumed organic acids in brine, but the lactic acid in paocai gradually increased and exceeded 25 mg/g. The appearance of pellicle caused a decrease in total free amino acids from 200.390 mg/100 g to 172.079 when pellicle occurred, whereas its impact on biogenic amines was not apparent. Through Kyoto Encyclopedia of Genes and Genomes pathway enrichment of metagenomics sequencing data, screening, and sorting of the key enzymes involved in organic acid metabolism, it was observed that the composition and species of the key microorganisms capable of metabolizing organic acids were more abundant before the appearance of pellicle. When pellicle occurred, lactic acid may be metabolized by Lactobacillus plantarum; in contrast, Lactobacillus and Pichia were associated with citric acid metabolism, and Lactobacillus, Pichia, Saccharomycodes, and Kazachstania were linked to malic acid metabolism. Moreover, Prevotella, Kazachstania, Lactobacillus, Vibrio, and Siphonobacter were implicated in succinic acid metabolism. Additionally, the production of tartaric acid and oxalic acid in paocai and brine resulted from abiotic effects. This knowledge offers a theoretical basis for precise control of paocai fermentation process. PRACTICAL APPLICATION: Our study revealed the specific situation of the metabolites produced by the microorganisms during the pollution and recovery process of pellicle in paocai fermentation, especially the effect of pellicle on the key process of organic acid metabolism. These research results provided theoretical basis for precise control of paocai fermentation.
Collapse
Affiliation(s)
- Shuang Xian
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yanlan Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Xingyan Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Man Zhou
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Meiliang Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Xiaoyan Hou
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Shanshan Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qingying Luo
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
6
|
Bo T, Zhang J, Zong E, Lv N, Bai B, Yang Y, Zhang J, Fan S. Selective Elucidation of Living Microbial Communities in Fermented Grains of Chinese Baijiu: Development of a Technique Integrating Propidium Monoazide Probe Pretreatment and Amplicon Sequencing. Foods 2024; 13:1782. [PMID: 38891011 PMCID: PMC11171695 DOI: 10.3390/foods13111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
The fermentation process of Chinese Baijiu's fermented grains involves the intricate succession and metabolism of microbial communities, collectively shaping the Baijiu's quality. Understanding the composition and succession of these living microbial communities within fermented grains is crucial for comprehending fermentation and flavor formation mechanisms. However, conducting high-throughput analysis of living microbial communities within the complex microbial system of fermented grains poses significant challenges. Thus, this study addressed this challenge by devising a high-throughput analysis framework using light-flavor Baijiu as a model. This framework combined propidium monoazide (PMA) pretreatment technology with amplicon sequencing techniques. Optimal PMA treatment parameters, including a concentration of 50 μM and incubation in darkness for 5 min followed by an exposure incubation period of 5 min, were identified. Utilizing this protocol, viable microorganism biomass ranging from 8.71 × 106 to 1.47 × 108 copies/μL was successfully detected in fermented grain samples. Subsequent amplicon sequencing analysis revealed distinct microbial community structures between untreated and PMA-treated groups, with notable differences in relative abundance compositions, particularly in dominant species such as Lactobacillus, Bacillus, Pediococcus, Saccharomycopsis, Issatchenkia and Pichia, as identified by LEfSe analysis. The results of this study confirmed the efficacy of PMA-amplicon sequencing technology for analyzing living microbial communities in fermented grains and furnished a methodological framework for investigating living microbial communities in diverse traditional fermented foods. This technical framework holds considerable significance for advancing our understanding of the fermentation mechanisms intrinsic to traditional fermented foods.
Collapse
Affiliation(s)
- Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, No. 63 Nanzhonghuan East Road, Taiyuan 030006, China; (T.B.); (N.L.)
- Xinghuacun Fenjiu Distillery Co., Ltd., Fenyang 032200, China
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
- Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, No. 63 Nanzhonghuan East Road, Taiyuan 030006, China; (J.Z.); (E.Z.); (B.B.); (Y.Y.); (J.Z.)
| | - Jiaojiao Zhang
- Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, No. 63 Nanzhonghuan East Road, Taiyuan 030006, China; (J.Z.); (E.Z.); (B.B.); (Y.Y.); (J.Z.)
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, No. 63 Nanzhonghuan East Road, Taiyuan 030031, China
| | - Enxiang Zong
- Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, No. 63 Nanzhonghuan East Road, Taiyuan 030006, China; (J.Z.); (E.Z.); (B.B.); (Y.Y.); (J.Z.)
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, No. 63 Nanzhonghuan East Road, Taiyuan 030031, China
| | - Na Lv
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, No. 63 Nanzhonghuan East Road, Taiyuan 030006, China; (T.B.); (N.L.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
- Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, No. 63 Nanzhonghuan East Road, Taiyuan 030006, China; (J.Z.); (E.Z.); (B.B.); (Y.Y.); (J.Z.)
| | - Baoqing Bai
- Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, No. 63 Nanzhonghuan East Road, Taiyuan 030006, China; (J.Z.); (E.Z.); (B.B.); (Y.Y.); (J.Z.)
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, No. 63 Nanzhonghuan East Road, Taiyuan 030031, China
| | - Yukun Yang
- Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, No. 63 Nanzhonghuan East Road, Taiyuan 030006, China; (J.Z.); (E.Z.); (B.B.); (Y.Y.); (J.Z.)
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, No. 63 Nanzhonghuan East Road, Taiyuan 030031, China
| | - Jinhua Zhang
- Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, No. 63 Nanzhonghuan East Road, Taiyuan 030006, China; (J.Z.); (E.Z.); (B.B.); (Y.Y.); (J.Z.)
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, No. 63 Nanzhonghuan East Road, Taiyuan 030031, China
| | - Sanhong Fan
- Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, No. 63 Nanzhonghuan East Road, Taiyuan 030006, China; (J.Z.); (E.Z.); (B.B.); (Y.Y.); (J.Z.)
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, No. 63 Nanzhonghuan East Road, Taiyuan 030031, China
| |
Collapse
|
7
|
Hye Baek J, Min Han D, Gyu Choi D, Ok Jeon C. Unraveling the carbohydrate metabolic characteristics of Leuconostoc mesenteroides J18 through metabolite and transcriptome analyses. Food Chem 2024; 435:137594. [PMID: 37804726 DOI: 10.1016/j.foodchem.2023.137594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/27/2023] [Accepted: 09/23/2023] [Indexed: 10/09/2023]
Abstract
The metabolic characteristics of Leuconostoc mesenteroides subsp. mesenteroides J18, which is mainly responsible for kimchi fermentation, on various carbon sources were investigated through carbon utilization, metabolite, and transcriptome analyses at different culture conditions (10 and 30 °C with/without 2.5% NaCl). The metabolic features of strain J18 were relatively similar across the four culture conditions. However, the metabolic characteristics of strain J18 showed significant variations depending on the carbon source. These distinct metabolic traits of strain J18 on various carbon sources were validated through transcriptomic analyses and the reconstruction of metabolic pathways. The transcriptional expression of the metabolic pathways in response to each carbon source consistently correlated with the production profiles of metabolites, including ethanol, acetoin, diacetyl, and riboflavin, in each carbon source. Our findings suggests that the abundance of Leu. mesenteroides during fermentation and the taste and flavor of fermented food products can be controlled by altering the carbon sources.
Collapse
Affiliation(s)
- Ju Hye Baek
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dong Min Han
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dae Gyu Choi
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
8
|
Yang M, Lai H, Wang Y, Mei Y, Huang Y, Zeng X, Ge L, Zhao J, Zhu Y, Huang Q, Zhao N. Characterizing the impact of species/strain-specific Lactiplantibacillus plantarum with community assembly and metabolic regulation in pickled Suancai. Food Res Int 2023; 174:113650. [PMID: 37986488 DOI: 10.1016/j.foodres.2023.113650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023]
Abstract
To investigate the colonization and impact of the specific Lactiplantibacillus plantarum strains, four isolated strains were applied in pickled Suancai which is a traditional pickled mustard (Brassica juncea). Results showed that strain-8 with the highest lactic acid bacteria (LAB) counts and acetic acid (p < 0.05). There were 11.42 % ∼ 32.35 % differential volatile compounds detected, although nitriles, esters, and acids were predominant. L. plantarum disturbed the microbial community, in which the microbial composition of strain-11 was most similar to the naturally fermented sample. Amino acids, carbohydrate metabolism, and metabolism of cofactors and vitamins were the main functional classes because of the similar dominant microbes (Lactiplantibacillus and Levilactobacillus). The functional units were separated based on NMDS analysis, in which bacterial chemotaxis, amino acid-related units, biotin metabolism, fatty acid biosynthesis, and citrate cycle were significantly different calculated by metagenomeSeq and Benjamin-Hochberg methods (p < 0.05). The contents of most flavor compounds were consistent with their corresponding enzymes. In particular, glucosinolates metabolites were different and significantly related to the myrosinase and metabolic preference of LAB. Therefore, this study revealed the impact mechanism of the specific L. plantarum strains and provided a perspective for developing microbial resources to improve the flavor diversity of fermented vegetables.
Collapse
Affiliation(s)
- Menglu Yang
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Haimei Lai
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Yali Wang
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Yuan Mei
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Yuli Huang
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Xueqing Zeng
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Lihong Ge
- College of Life Science, Sichuan Normal University, Chengdu 610066, China
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yongqing Zhu
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Qiaolian Huang
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Nan Zhao
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| |
Collapse
|
9
|
Liu Y, Yu L, Tian F, Chen W, Zhai Q. Meta-analysis of microbiomes reveals metagenomic features of fermented vegetables. Food Res Int 2023; 173:113248. [PMID: 37803564 DOI: 10.1016/j.foodres.2023.113248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 10/08/2023]
Abstract
An insightful exploration of the fermented vegetable microbiome is the key to improving food quality and sustainability. Based on 57 fermented vegetable samples from China, Ireland, the UK, and Germany retrieved from public genome databases, we conducted a high-resolution meta-analysis of the fermented vegetable microbiomes. There were significant differences in the microbiota composition and functional pathway diversity of the tested samples, as reflected by the differences in their geographical origins. Metagenomic analysis also revealed the metagenomic features of carbohydrate-active enzymes and antibiotic resistance genes in the fermented vegetable metagenomes. Five putative new species were detected by recovering 221 metagenome-assembled genomes belonging to the genera Rubrobacteraceae, Bifidobacteriaceae, and Ruminococcaceae. Our results provide new ecological insights into the implications of fermented vegetable microbiota composition and functional potential and highlight the importance of high-resolution metagenomic analysis to further investigate the fermented food microbiome.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
10
|
Xu L, Wang J, Tian A, Wang S, Zhao K, Zhang R, Wu X, Liu Y, Liu X, Chen K, Li X, Karrar E, Gao P, Ying X, Xiao G, Ma L. Characteristic volatiles fingerprints in olive vegetable stored at different conditions by HS-GC-IMS. Food Chem X 2023; 18:100707. [PMID: 37397187 PMCID: PMC10314173 DOI: 10.1016/j.fochx.2023.100707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/01/2023] [Accepted: 05/04/2023] [Indexed: 07/04/2023] Open
Abstract
The olive vegetable is popular food owing to its unique flavor. This study innovatively used headspace-gas chromatography-ion mobility spectrometry to evaluate olive vegetables' volatiles under different conditions. A total of 57 volatile compounds were determined from olive vegetables, including 30 aldehydes, 8 ketones, 5 alcohols, 2 esters, 8 hydrocarbons, 1 furans, 3 sulfur compounds. The PCA distinguished the olive vegetable stored at different conditions by volatiles. The gallery plot showed that olive vegetables stored at 4 °C for 21 d produced more limonene, which had a desirable fruity odor. The (E)-2-octenal, (E)-2-pentenal, (E,E)-2,4-heptadienal, 5-methylfurfural, and heptanal in fresh olive vegetables were lowest and increased with storage time. Furthermore, the change of volatiles was the least when the olive vegetable was stored at 0 °C. This study can provide theoretical bases for improving the flavor quality of olive vegetables and developing traditional food for standardized industrial production.
Collapse
Affiliation(s)
- Lirong Xu
- Institute of Nutrition and Health, Qingdao University, 266071 Qingdao, China
| | - Jianxia Wang
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ailing Tian
- Institute of Nutrition and Health, Qingdao University, 266071 Qingdao, China
| | - Shihao Wang
- Institute of Nutrition and Health, Qingdao University, 266071 Qingdao, China
| | - Kuan Zhao
- Institute of Nutrition and Health, Qingdao University, 266071 Qingdao, China
| | - Rao Zhang
- Institute of Nutrition and Health, Qingdao University, 266071 Qingdao, China
| | - Xiaoqing Wu
- Institute of Nutrition and Health, Qingdao University, 266071 Qingdao, China
| | - Yajun Liu
- Institute of Nutrition and Health, Qingdao University, 266071 Qingdao, China
| | - Xinyang Liu
- Institute of Nutrition and Health, Qingdao University, 266071 Qingdao, China
| | - Kaixuan Chen
- Institute of Nutrition and Health, Qingdao University, 266071 Qingdao, China
| | - Xinyi Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Emad Karrar
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Pan Gao
- College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu South Road, Changqing Garden, Wuhan 430023, PR China
| | - Xiaoguo Ying
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, China
| | - Gengsheng Xiao
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lukai Ma
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
11
|
Chen L, Wang G, Teng M, Wang L, Yang F, Jin G, Du H, Xu Y. Non-gene-editing microbiome engineering of spontaneous food fermentation microbiota-Limitation control, design control, and integration. Compr Rev Food Sci Food Saf 2023; 22:1902-1932. [PMID: 36880579 DOI: 10.1111/1541-4337.13135] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023]
Abstract
Non-gene-editing microbiome engineering (NgeME) is the rational design and control of natural microbial consortia to perform desired functions. Traditional NgeME approaches use selected environmental variables to force natural microbial consortia to perform the desired functions. Spontaneous food fermentation, the oldest kind of traditional NgeME, transforms foods into various fermented products using natural microbial networks. In traditional NgeME, spontaneous food fermentation microbiotas (SFFMs) are typically formed and controlled manually by the establishment of limiting factors in small batches with little mechanization. However, limitation control generally leads to trade-offs between efficiency and the quality of fermentation. Modern NgeME approaches based on synthetic microbial ecology have been developed using designed microbial communities to explore assembly mechanisms and target functional enhancement of SFFMs. This has greatly improved our understanding of microbiota control, but such approaches still have shortcomings compared to traditional NgeME. Here, we comprehensively describe research on mechanisms and control strategies for SFFMs based on traditional and modern NgeME. We discuss the ecological and engineering principles of the two approaches to enhance the understanding of how best to control SFFM. We also review recent applied and theoretical research on modern NgeME and propose an integrated in vitro synthetic microbiota model to bridge gaps between limitation control and design control for SFFM.
Collapse
Affiliation(s)
- Liangqiang Chen
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Kweichow Moutai Distillery Co., Ltd., Zunyi, China
| | | | | | - Li Wang
- Kweichow Moutai Distillery Co., Ltd., Zunyi, China
| | - Fan Yang
- Kweichow Moutai Distillery Co., Ltd., Zunyi, China
| | - Guangyuan Jin
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hai Du
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Mei Y, Ge L, Lai H, Wang Y, Zeng X, Huang Y, Yang M, Zhu Y, Li H, Li J, Guo C, Hu T, Zhao N. Decoding the evolution of aromatic volatile compounds and key odorants in Suancai (a Chinese traditional fermented vegetable) during fermentation using stir bar sorptive extraction–gas chromatography–olfactometry–mass spectrometry. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
13
|
GC-TOF-MS-Based Non-Targeted Metabolomic Analysis of Differential Metabolites in Chinese Ultra-Long-Term Industrially Fermented Kohlrabi and Their Associated Metabolic Pathways. Metabolites 2022; 12:metabo12100991. [PMID: 36295893 PMCID: PMC9610423 DOI: 10.3390/metabo12100991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/17/2022] Open
Abstract
Fermented kohlrabi is a very popular side dish in China. Chinese kohlrabies industrially fermented for 0 years (0Y), 5 years (5Y), and 10 years (10Y) were employed and analyzed by non-targeted metabolomics based on GC-TOF-MS, and the differential metabolites were screened using multivariate statistical analysis techniques, including principal component analysis (PCA) and orthogonal partial least squares discrimination analysis (OPLS-DA). The results showed that 47, 38, and 33 differential metabolites were identified in the three treatment groups of 0Y and 5Y (A1), 0Y and 10Y (A2), and 5Y and 10Y (A3), respectively (VIP > 1, p < 0.05). The metabolites were mainly carbohydrates, amino acids, and organic acids. Furthermore, 13 differential metabolites were screened from the three groups, including L-glutamic acid, L-aspartic acid, γ-aminobutyric acid, and other compounds. Four metabolic pathways termed alanine, aspartate, and glutamate metabolism, arginine biosynthesis, arginine and proline metabolism, and glycolysis/gluconeogenesis were the most significant pathways correlated with the differential metabolites, as analyzed according to the Kyoto Encyclopedia of Genes and Genomes (KEGG). The odors for the three ultra-long-term industrially fermented kohlrabies were significantly different, as detected by E-nose. The present work describes the changes in metabolites between different ultra-long-term industrially fermented kohlrabies and the associated metabolic pathways, providing a theoretical basis for the targeted regulation of characteristic metabolite biosynthesis in Chinese fermented kohlrabi.
Collapse
|
14
|
Deng W, Liu LL, Yu GB, Li N, Yang XY, Xiao W. Testing the Resource Hypothesis of Species-Area Relationships: Extinction Cannot Work Alone. Microorganisms 2022; 10:1993. [PMID: 36296268 PMCID: PMC9611600 DOI: 10.3390/microorganisms10101993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
The mechanisms that underpin the species-area relationship (SAR) are crucial for both the development of biogeographic theory and the application of biodiversity conservation. Since its origin, the resource hypothesis, which proposes that rich resources in vast ecosystems will lower extinction rates and shape the SAR, has not been tested. The impossibility to quantify resources and extinction rates using plants and animals as research subjects, as well as the inability to rule out the influences of the area per se, habitat diversity, dispersal, and the historical background of biodiversity, make testing this hypothesis problematic. To address these challenges and test this hypothesis, two sets of microbial microcosm experimental systems with positive and negative correlated resources and volumes were created in this work. The results of 157 high-throughput sequencing monitoring sessions at 11 time points over 30 consecutive days showed that neither of the experimental groups with positive or negative correlations between total resources and microcosm volume had a significant SAR, and there were no negative correlations between extinction rates and resources. Therefore, in our microcosmic system, resources do not influence extinction rates or shape the SAR. Dispersal should be the principal mode of action if the resource theory is correct.
Collapse
Affiliation(s)
- Wei Deng
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali 671003, China
| | - Li-Lei Liu
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali 671003, China
| | - Guo-Bin Yu
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali 671003, China
| | - Na Li
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali 671003, China
- International Centre of Biodiversity and Primates Conservation, Dali 671003, China
| | - Xiao-Yan Yang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali 671003, China
| | - Wen Xiao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali 671003, China
- International Centre of Biodiversity and Primates Conservation, Dali 671003, China
- Yunling Black-and-White Snub-Nosed Monkey Observation and Research Station of Yunnan Province, Dali 761003, China
| |
Collapse
|
15
|
Lindner JDD, Bernini V. New Insights into Food Fermentation. Foods 2022; 11:foods11030283. [PMID: 35159435 PMCID: PMC8834541 DOI: 10.3390/foods11030283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Food fermentation has been used for thousands of years for food preservation [...]
Collapse
Affiliation(s)
- Juliano De Dea Lindner
- Food Technology and Bioprocess Research Group, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis 88034-000, Brazil
- Correspondence: (J.D.D.L.); (V.B.)
| | - Valentina Bernini
- Department of Food and Drug, University of Parma (UNIPR), 43124 Parma, Italy
- Correspondence: (J.D.D.L.); (V.B.)
| |
Collapse
|