1
|
Günal-Köroğlu D, Karabulut G, Ozkan G, Yılmaz H, Gültekin-Subaşı B, Capanoglu E. Allergenicity of Alternative Proteins: Reduction Mechanisms and Processing Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7522-7546. [PMID: 40105205 PMCID: PMC11969658 DOI: 10.1021/acs.jafc.5c00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
The increasing popularity of alternative proteins has raised concerns about allergenic potential, especially for plant-, insect-, fungal-, and algae-based proteins. Allergies arise when the immune system misidentifies proteins as harmful, triggering IgE-mediated reactions that range from mild to severe. Main factors influencing allergenicity include protein structure, cross-reactivity, processing methods, and gut microbiota. Disruptions in gut health or microbiota balance heighten risks. Common allergens in legumes, cereals, nuts, oilseeds, single-cell proteins, and insect-based proteins are particularly challenging, as they often remain stable and resistant to heat and digestion despite various processing techniques. Processing methods, such as roasting, enzymatic hydrolysis, and fermentation, show promise in reducing allergenicity by altering protein structures and breaking down epitopes that trigger immune responses. Future research should focus on optimizing these methods to ensure that they effectively reduce allergenic risks while maintaining the nutritional quality and safety of alternative protein products.
Collapse
Affiliation(s)
- Deniz Günal-Köroğlu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Gulsah Karabulut
- Department
of Food Engineering, Faculty of Engineering, Sakarya University, 54050 Sakarya, Türkiye
| | - Gulay Ozkan
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Hilal Yılmaz
- Department
of Biotechnology, Faculty of Science, Bartın
University, 74100 Kutlubey Campus, Bartın, Türkiye
| | - Büşra Gültekin-Subaşı
- Center
for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| |
Collapse
|
2
|
Gradl K, Richter P, Somoza V. Bitter peptides formed during in-vitro gastric digestion induce mechanisms of gastric acid secretion and release satiating serotonin via bitter taste receptors TAS2R4 and TAS2R43 in human parietal cells in culture. Food Chem 2025; 482:144174. [PMID: 40184744 DOI: 10.1016/j.foodchem.2025.144174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/02/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
A key barrier in transitioning to plant-based, more satiating diets, is the bitter taste of plant proteins. We hypothesize that both, a more bitter tasting (MBT) and a less bitter tasting (LBT) pea protein hydrolysate (PPH) can be digested in the stomach into bitter tasting peptides that stimulate proton secretion (PS) and serotonin release, as two of the key gastric satiety signals, via the functional involvement of bitter taste receptors (TAS2Rs). Using a sensory-guided LC-MS approach, we identified six bitter peptides that were released from LBT-PPH and MBT-PPH during gastric digestion in vitro. TAS2R4 and TAS2R43 involvement in PS and serotonin release was confirmed via CRISPR-Cas9 knockout experiments. Our hypothesis was proven with all six peptides equally stimulating PS in immortalized human gastric HGT-1 cells, and LBT-PPH-derived peptides eliciting a higher serotonin release in HGT-1 cells than MBT-PPH peptides, indicating a satiating potential of less bitter tasting protein hydrolysates.
Collapse
Affiliation(s)
- Katrin Gradl
- TUM School of Life Sciences, Technical University of Munich, Alte Akademie 8, 85354 Freising, Germany; Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Phil Richter
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Veronika Somoza
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany; Chair of Nutritional Systems Biology, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
3
|
Hajfathalian M, Ghelichi S, Jacobsen C. Anti-obesity peptides from food: Production, evaluation, sources, and commercialization. Compr Rev Food Sci Food Saf 2025; 24:e70158. [PMID: 40111015 PMCID: PMC11924896 DOI: 10.1111/1541-4337.70158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/29/2025] [Accepted: 02/23/2025] [Indexed: 03/22/2025]
Abstract
The global obesity epidemic has heightened interest in natural solutions, with anti-obesity peptides emerging as promising candidates. Derived from food sources such as plants, algae, marine organisms, and products like milk and eggs, these peptides combat obesity through various mechanisms but face challenges in production and scalability. The aim of this review is to explore their sources, mechanisms, measurement, and synthesis methods, including innovative approaches such as de novo synthesis, proteomics, and bioinformatics. Its unique contribution lies in critically analyzing the current state of research while highlighting novel synthesis techniques and their practical relevance in addressing commercialization challenges, offering valuable insights for advancing anti-obesity peptide development. Diverse methods for assessing the anti-obesity properties of these peptides are discussed, encompassing both in vitro and in vivo experimental approaches, as well as emerging alternatives. The review also explores the integration of cutting-edge technologies in peptide synthesis with the potential to revolutionize scalability and cost-effectiveness. Key findings assert that despite the great potential of peptides from various food sources to fight against obesity and advances in their identification and analysis, challenges like scalability, regulatory hurdles, bioavailability issues, high production costs, and consumer appeal persist. Future research should explore the use of bioinformatics tools and advanced peptide screening technologies to identify and design peptides with enhanced efficacy and bioavailability, efficient and cost-effective extraction and purification methods, sustainable practices such as utilizing byproducts from the food industry, and the efficacy of products containing isolated anti-obesity peptides versus whole materials in clinical settings.
Collapse
Affiliation(s)
- Mona Hajfathalian
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sakhi Ghelichi
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
4
|
Masiá C, Fernández-Varela R, Logan A, Bose U, Stockmann R, Ong L, Gras S, Jensen PE, Yazdi SR, Gambetta JM. Assessing the impact of bacterial blends, crosslinking enzyme and storage times on volatile and non-volatile compound production in fermented pea protein emulsion gels. Food Chem 2025; 465:142030. [PMID: 39579398 DOI: 10.1016/j.foodchem.2024.142030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/14/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
Pea protein is a promising ingredient for plant-based cheese production but has poor consumer acceptance due to intrinsic beany flavors. Fermentation could potentially decrease these off-flavors while also producing desirable cheese-like aromas. Pea protein emulsion gels were fermented using four different bacterial blends for 16 weeks with and without the crosslinking enzyme transglutaminase. The volatile organic compound (VOC) profiles were assessed by GC-MS and the peptide profile was measured by LC-MS/MS during storage. VOC production was mainly affected by the composition of the bacterial blends, followed by storage time. Crosslinking of the protein gel structure had minimal impact on VOC production. The peptide-level profiling revealed that crosslinking can reduce peptide size and the production of bitterness-like peptides in some blends. This study provides insights into the effect of bacterial blends, storage time, and enzymatic crosslinking on the production of volatile components and peptides related to aroma and peptide profiles for pea protein.
Collapse
Affiliation(s)
- Carmen Masiá
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee 3030, VIC, Australia; Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg 1958, Denmark; Plant Based Application Department, Novonesis, Gl. Venlighedsvej 14, 2970 Hørsholm, Denmark; The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | | | - Amy Logan
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee 3030, VIC, Australia
| | - Utpal Bose
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee 3030, VIC, Australia
| | - Regine Stockmann
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee 3030, VIC, Australia
| | - Lydia Ong
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Sally Gras
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg 1958, Denmark
| | - Saeed Rahimi Yazdi
- Plant Based Application Department, Novonesis, Gl. Venlighedsvej 14, 2970 Hørsholm, Denmark
| | - Joanna M Gambetta
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee 3030, VIC, Australia.
| |
Collapse
|
5
|
Pang L, Li R, Chen C, Huang Z, Zhang W, Man C, Yang X, Jiang Y. Combined processing technologies: Promising approaches for reducing Allergenicity of food allergens. Food Chem 2025; 463:141559. [PMID: 39393111 DOI: 10.1016/j.foodchem.2024.141559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
Food allergy is a severe threat to human health. Although processing technologies are widely used to reduce allergenicity, hypoallergenic foods produced by a single processing technology cannot satisfy consumer demands. Combined processing technology (CPT) is a promising strategy for efficiently producing high-quality hypoallergenic foods. This paper reviews the effects of CPT on the allergenicity of food allergens from three aspects: physical-biochemical CPT, biochemical-biochemical CPT, and physical-physical CPT. The synergistic mechanisms, strengths, and limitations of these technologies were discussed. It was found that CPT is generally more effective than single-processing technologies. Physical-biochemical CPT is the most widely studied and well-established because physical and biochemical processing technologies complement each other and effectively disrupt conformational and linear epitopes. Biochemical-biochemical CPT primarily disrupts linear epitopes, but most methods are time-consuming. Physical-physical CPT is the least studied; they mainly disrupt conformational epitopes and only rarely affect linear epitopes.
Collapse
Affiliation(s)
- Lidong Pang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Runze Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chen Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhen Huang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| |
Collapse
|
6
|
Kern K, Santa-Ardharnpreecha S, Delaroque N, Dölle-Bierke S, Treudler R, Ehrentreich-Förster E, Rothkopf I, Worm M, Szardenings M. Heat Treatment of Hazelnut Allergens Monitored by Polyclonal Sera and Epitope Fingerprinting. Foods 2024; 13:3932. [PMID: 39683004 DOI: 10.3390/foods13233932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Hazelnuts are frequently involved in IgE-mediated reactions and are the main cause of nut allergies in Europe. Most food products are processed before human consumption. Food processing can modify the structure, properties, and function of proteins, and as a result, the IgE-binding capacity of allergens can be affected. In this study, we aimed to investigate epitope changes caused by the roasting of hazelnuts using epitope fingerprinting. Rabbit sera were raised against hazelnut proteins, and their epitopes were characterized. Immunoassays using specific polyclonal antibodies from rabbits targeting the main allergens in hazelnuts revealed marked reductions in the levels of Cor a 1 (PR-10), Cor a 11 (7S globulin), and Cor a 14 (2S albumin). However, rabbit antibodies can recognize different epitopes. Using antibodies that are different and characterized could help establish reliable methods for estimating the effects of treatments on the allergenicity of foods. In this work, we provide the first practical application that could lead to sets of peptide epitopes to compare and standardize immune diagnostics, even for complex protein preparations.
Collapse
Affiliation(s)
- Karolin Kern
- Department Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany
| | - Suttinee Santa-Ardharnpreecha
- Department Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany
| | - Nicolas Delaroque
- Department Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany
| | - Sabine Dölle-Bierke
- Division of Allergy and Immunology, Department of Dermatology, Venerology and Allergy, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Regina Treudler
- Institute of Allergology (IFA), Charité-Universitätsmedizin, 12203 Berlin, Germany
| | - Eva Ehrentreich-Förster
- Bioanalytics and Bioprocesses Branch, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam-Golm, Germany
| | - Isabell Rothkopf
- Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany
| | - Margitta Worm
- Division of Allergy and Immunology, Department of Dermatology, Venerology and Allergy, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Michael Szardenings
- Department Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany
- Epitopic GmbH, Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|
7
|
Aghababaei F, McClements DJ, Pignitter M, Hadidi M. A comprehensive review of processing, functionality, and potential applications of lentil proteins in the food industry. Adv Colloid Interface Sci 2024; 333:103280. [PMID: 39216401 DOI: 10.1016/j.cis.2024.103280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/29/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
There is a pressing need for sustainable sources of proteins to address the escalating food demands of the expanding global population, without damaging the environment. Lentil proteins offer a more sustainable alternative to animal-derived proteins (such as those from meat, fish, eggs, or milk). They are abundant, affordable, protein rich, nutritious, and functional, which makes them highly appealing as ingredients in the food, personal care, cosmetics, pharmaceutical and other industries. In this article, the chemical composition, nutritional value, and techno-functional properties of lentil proteins are reviewed. Then, recent advances on the extraction, purification, and modification of lentil proteins are summarized. Hurdles to the widespread utilization of lentil proteins in the food industry are highlighted, along with potential strategies to surmount these challenges. Finally, the potential applications of lentil protein in foods and beverages are discussed. The intention of this article is to offer an up-to-date overview of research on lentil proteins, addressing gaps in the knowledge related to their potential nutritional benefits and functional advantages for application within the food industry. This includes exploring the utilization of lentil proteins as nanocarriers for bioactive compounds, emulsifiers, edible inks for 3D food printing, meat analogs, and components of biodegradable packaging.
Collapse
Affiliation(s)
| | | | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090, Austria
| | - Milad Hadidi
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090, Austria.
| |
Collapse
|
8
|
Chen Y, Ma L, Liu Y, Huo J, Gao Y, Dong S, Li S. Study on the effect of enzymolysis combined fermentation on reducing the off-flavor of egg white powder. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7864-7872. [PMID: 38821888 DOI: 10.1002/jsfa.13616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND The application of egg white powder (EWP) was subject to its off-flavor. In the present study, flavourzyme and lactic acid bacteria were used to treat egg white powder (EWP) and the mechanism effects of enzymolysis-fermentation were explored. RESULTS Compared with the control group, enzymolysis combined with fermentation treatment group (EW-EF) reduced the four-representative off-flavor compounds (geranyl acetone, 1-octen-3-ol, octanal and nonanal) by more than 62.66%. Fermentation produced esters with good flavor, and enzymolysis produced fresh amino acids. Characterization of protein structure indicated that fermentation decreased both fluorescence intensity and surface negative charges, accelerating the aggregation of proteins; enzymolysis promoted aggregation and degradation, improving the stability of the egg white proteins. Meanwhile, enzymolysis broke down the hydrophobic cavities bound to off-flavor compounds, releasing protein-bound off-flavor compounds and removing them through fermentation. CONCLUSION EW-EF had the best effect of off-flavor removal on EWP. The results of the present study could provide a green and effective method for improving the flavor of EWP. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yujie Chen
- Engineering Research Center of Bioprocess, Ministry of Education/Key Laboratory of Animal-derived Food Green Manufacturing and Resource Mining of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lulu Ma
- Engineering Research Center of Bioprocess, Ministry of Education/Key Laboratory of Animal-derived Food Green Manufacturing and Resource Mining of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ying Liu
- Engineering Research Center of Bioprocess, Ministry of Education/Key Laboratory of Animal-derived Food Green Manufacturing and Resource Mining of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jiaying Huo
- Engineering Research Center of Bioprocess, Ministry of Education/Key Laboratory of Animal-derived Food Green Manufacturing and Resource Mining of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ying Gao
- Engineering Research Center of Bioprocess, Ministry of Education/Key Laboratory of Animal-derived Food Green Manufacturing and Resource Mining of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shijian Dong
- Department of Product Research & Development, Anhui Rongda Food Co., Ltd, Guangde, China
| | - Shugang Li
- Engineering Research Center of Bioprocess, Ministry of Education/Key Laboratory of Animal-derived Food Green Manufacturing and Resource Mining of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
9
|
Spaccasassi A, Utz F, Dunkel A, Aragao Börner R, Ye L, De Franceschi F, Bogicevic B, Glabasnia A, Hofmann T, Dawid C. Screening of a Microbial Culture Collection: Empowering Selection of Starters for Enhanced Sensory Attributes of Pea-Protein-Based Beverages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15890-15905. [PMID: 38953212 PMCID: PMC11261627 DOI: 10.1021/acs.jafc.4c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024]
Abstract
Pea-protein-based ingredients are gaining attention in the food industry due to their nutritional benefits and versatility, but their bitter, astringent, green, and beany off-flavors pose challenges. This study applied fermentation using microbial cultures to enhance the sensory qualities of pea-protein-based beverages. Using UHPLC-TOF-MS analyses along with sensory profile comparisons, microbial species such as Limosilactobacillus fermentum, Lactococcus lactis, Lactobacillus johnsonii, Lacticaseibacillus rhamnosus, and Bifidobacterium longum were preselected from an entire culture collection and found to be effective in improving the overall flavor impression by reducing bitter off-notes and enhancing aroma profiles. Notably, L. johnsonii NCC533 and L. fermentum NCC660 exhibited controlled proteolytic activities after 48 h of fermentation, enriching the matrix with taste-active amino acids, nucleotides, and peptides and improving umami and salty flavors while mitigating bitterness. This study has extended traditional volatile analyses, including nonvolatile metabolomic, proteomic, and sensory analyses and offering a detailed view of fermentation-induced biotransformations in pea-protein-based food. The results highlight the importance of combining comprehensive screening approaches and sensoproteomic techniques in developing tastier and more palatable plant-based protein products.
Collapse
Affiliation(s)
- Andrea Spaccasassi
- Chair
of Food Chemistry and Molecular and Sensory Science, TUM School of
Life Sciences, Technical University of Munich, Lise-Meitner-Strasse 34, 85354 Freising, Germany
- TUM
CREATE, 1 CREATE Way,
#10-02 CREATE Tower, Singapore 138602
| | - Florian Utz
- Chair
of Food Chemistry and Molecular and Sensory Science, TUM School of
Life Sciences, Technical University of Munich, Lise-Meitner-Strasse 34, 85354 Freising, Germany
| | - Andreas Dunkel
- Leibniz-Institute
for Food Systems Biology, Technical University
of Munich, 85354 Freising, Germany
| | - Rosa Aragao Börner
- Nestlé
Research, Société des Produits
Nestlé S.A., Route
du Jorat 57, CH 1000 Lausanne 26, Switzerland
| | - Lijuan Ye
- Nestlé
Research, Société des Produits
Nestlé S.A., Route
du Jorat 57, CH 1000 Lausanne 26, Switzerland
| | - Filippo De Franceschi
- Nestlé
Research, Société des Produits
Nestlé S.A., Route
du Jorat 57, CH 1000 Lausanne 26, Switzerland
| | - Biljana Bogicevic
- Nestlé
Research, Société des Produits
Nestlé S.A., Route
du Jorat 57, CH 1000 Lausanne 26, Switzerland
| | - Arne Glabasnia
- Nestlé
Research, Société des Produits
Nestlé S.A., Route
du Jorat 57, CH 1000 Lausanne 26, Switzerland
| | - Thomas Hofmann
- Chair
of Food Chemistry and Molecular and Sensory Science, TUM School of
Life Sciences, Technical University of Munich, Lise-Meitner-Strasse 34, 85354 Freising, Germany
| | - Corinna Dawid
- Chair
of Food Chemistry and Molecular and Sensory Science, TUM School of
Life Sciences, Technical University of Munich, Lise-Meitner-Strasse 34, 85354 Freising, Germany
- TUM
CREATE, 1 CREATE Way,
#10-02 CREATE Tower, Singapore 138602
- Professorship
for Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Strasse 34, 85354 Freising, Germany
| |
Collapse
|
10
|
Wu Q, Kan J, Cui Z, Ma Y, Liu X, Dong R, Huang D, Chen L, Du J, Fu C. Understanding the nutritional benefits through plant proteins-probiotics interactions: mechanisms, challenges, and perspectives. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 38922612 DOI: 10.1080/10408398.2024.2369694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The nutritional benefits of combining probiotics with plant proteins have sparked increasing research interest and drawn significant attention. The interactions between plant proteins and probiotics demonstrate substantial potential for enhancing the functionality of plant proteins. Fermented plant protein foods offer a unique blend of bioactive components and beneficial microorganisms that can enhance gut health and combat chronic diseases. Utilizing various probiotic strains and plant protein sources opens doors to develop innovative probiotic products with enhanced functionalities. Nonetheless, the mechanisms and synergistic effects of these interactions remain not fully understood. This review aims to delve into the roles of promoting health through the intricate interplay of plant proteins and probiotics. The regulatory mechanisms have been elucidated to showcase the synergistic effects, accompanied by a discussion on the challenges and future research prospects. It is essential to recognize that the interactions between plant proteins and probiotics encompass multiple mechanisms, highlighting the need for further research to address challenges in achieving a comprehensive understanding of these mechanisms and their associated health benefits.
Collapse
Affiliation(s)
- Qiming Wu
- Nutrilite Health Institute, Shanghai, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | - Zhengying Cui
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Yuchen Ma
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Xin Liu
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Ruifang Dong
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Lin Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
| | - Caili Fu
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| |
Collapse
|
11
|
Xiao J, Niu L, Tong Z, Jin S, Wang X, Liu X, Xiao C, Fan H. Chemical acylation of pea protein isolate hydrolysate with fatty acid N-hydroxysuccinimide esters: Effect on structure and functional properties. Food Chem 2024; 443:138495. [PMID: 38277937 DOI: 10.1016/j.foodchem.2024.138495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Applications of pea protein in the food industry have been greatly restricted by its poor functional properties. In order to solve this problem, a novel technique combining enzymatic hydrolysis and fatty acid acylation has been applied in this work to construct a pea protein-fatty acid covalent complex that aims to improve its functional properties. The processed pea protein with increased water solubility tends to decrease the chance of self-aggregation. Additionally, emulsifying and antioxidant properties have also been found after this process. On top of that, the modified pea protein has been characterized by Fourier transform infrared and circular dichroism spectroscopy. These results demonstrate that these properties were mainly caused by the acylation of the amino group from hydrolyzed pea protein and the carboxyl group from the fatty acid. The enzymatic hydrolysis/fatty acid acylation research provides insights into manufacturing high-quality functional lipoproteins from inexpensive pea protein for the food industry.
Collapse
Affiliation(s)
- Jing Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Li Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Zongbo Tong
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Shuxiu Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Xiaomei Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Chunxia Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Huafang Fan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
12
|
Su T, Le B, Zhang W, Bak KH, Soladoye PO, Zhao Z, Zhao Y, Fu Y, Wu W. Technological challenges and future perspectives of plant-based meat analogues: From the viewpoint of proteins. Food Res Int 2024; 186:114351. [PMID: 38729699 DOI: 10.1016/j.foodres.2024.114351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/23/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
The global demand for high-quality animal protein faces challenges, prompting a surge in interest in plant-based meat analogues (PBMA). PBMA have emerged as a promising solution, although they encounter technological obstacles. This review discusses the technological challenges faced by PBMA from the viewpoint of plant proteins, emphasizing textural, flavor, color, and nutritional aspects. Texturally, PBMA confront issues, such as deficient fibrous structure, chewiness, and juiciness. Addressing meat flavor and mitigating beany flavor in plant protein are imperative. Furthermore, achieving a distinctive red or pink meat color remains a challenge. Plant proteins exhibit a lower content of essential amino acids. Future research directions encompass (1) shaping myofibril fibrous structures through innovative processing; (2) effectively eliminating the beany flavor; (3) developing biotechnological methodologies for leghemoglobin and plant-derived pigments; (4) optimizing amino acid composition to augment the nutritional profiles. These advancements are crucial for utilization of plant proteins in development of high-quality PBMA.
Collapse
Affiliation(s)
- Tianyu Su
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Bei Le
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Wei Zhang
- Center for Sustainable Protein, DeePro Technology (Beijing) Co., Ltd., Beijing 101200, China
| | - Kathrine H Bak
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Philip O Soladoye
- Agriculture and Agri-Food Canada, Government of Canada, Lacombe Research and Development Centre, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - Zhongquan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Wei Wu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
13
|
Amalia U, Shimizu Y, Joe GH, Saeki H. Impact of backslopping in TERASI manufacture, as an improving method to reduce shrimp allergenicity. Food Chem 2024; 434:137491. [PMID: 37729779 DOI: 10.1016/j.foodchem.2023.137491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
The backslopping method was applied to the manufacture of Terasi (fermented shrimp paste) as countermeasures against the technical issue depending on the raw material, and its contribution to reduction of the potential allergenicity of Terasi was examined. Three kinds of starters, the low allergenic Indonesian commercial Terasi (CT), Akiami (Acetes japonicus) Terasi produced in laboratory scale (AT) and heated AT (HAT) were added to the manufacturing process of the Isazaami (Neomysis awatchensis) Terasi which contained tropomyosin (TM) with high IgE-binding ability. Addition of the starter effectively promoting the degradation of the shrimp protein and the reduction of the IgE-binding ability of TM. Interestingly, Terasi added as a starter would have acted primarily as a nutrient source to promote microbial fermentation rather than as a source of fermenting microorganisms and endogenous proteases. The backslopping method is one of the improving methods for reduction of potential allergenicity of Terasi product.
Collapse
Affiliation(s)
- Ulfah Amalia
- Department of Fisheries Product Technology, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Semarang 50275, Indonesia.
| | - Yutaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
| | - Ga-Hyun Joe
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
| | - Hiroki Saeki
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
14
|
Rathi A, Gaonkar T, Dhar D, Kallapura G, Jadhav S. Study of amino acids absorption and gut microbiome on consumption of pea protein blended with enzymes-probiotics supplement. Front Nutr 2024; 11:1307734. [PMID: 38321993 PMCID: PMC10844538 DOI: 10.3389/fnut.2024.1307734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
The current randomized, double-blind, crossover clinical trial was conducted to evaluate changes in the amino acid absorption and gut microbiota on consumption of pea protein supplemented with an enzymes-probiotics blend (Pepzyme Pro). A total of 15 healthy subjects were instructed to take test (pea protein + Pepzyme Pro) or placebo (pea protein + maltodextrin) for 15 days with a 30-day washout period. Blood samples were analyzed for plasma-free amino acids, insulin, and C-reactive protein (CRP). Additionally, nitrogen levels in urine and feces, along with the composition of gut microbiota, were evaluated. On day 15, the test arm showed a tendency to increase the rate of absorption and total absorption (AUC) of amino acids compared with the placebo arm, though the increase was statistically insignificant. In addition, 15-day test supplementation showed a tendency to reduce Tmax of all the amino acids (statistically insignificant except alanine, p = 0.021 and glycine, p = 0.023) in comparison with the placebo supplementation. There were no changes in urine and fecal nitrogen levels as well as serum CRP levels in the test and placebo arm. The increase in serum insulin level after 4 h was statistically significant in both arms, whereas the insulin level of the placebo and test arm at 4 h was not statistically different. Supplementation showed changes with respect to Archaea and few uncharacterized species but did not show statistically significant variations in microbiome profile at the higher taxonomic levels. A study with large sample size and detailed gut microbiome analysis is warranted to confirm the results statistically as well as to characterize altered species. However, the current study could provide an inkling of a positive alteration in protein digestibility, amino acid absorption, and gut microbiome with regular consumption of protein and enzymes-probiotics blend. Clinical Trial Registration:clinicaltrials.gov/; identifier [CTRI/2021/10/037072].
Collapse
Affiliation(s)
- Abhijit Rathi
- Human Nutrition Department, Advanced Enzymes Technologies Ltd., Louiswadi, Thane, India
| | - Tejal Gaonkar
- Human Nutrition Department, Advanced Enzymes Technologies Ltd., Louiswadi, Thane, India
| | | | | | - Swati Jadhav
- Human Nutrition Department, Advanced Enzymes Technologies Ltd., Louiswadi, Thane, India
| |
Collapse
|
15
|
Yang J, Guo S, Zeng X, Bai W, Sun B, Zhang Y. Synthesis of taste active γ-glutamyl peptides with pea protein hydrolysate and their taste mechanism via in silico study. Food Chem 2024; 430:136988. [PMID: 37544154 DOI: 10.1016/j.foodchem.2023.136988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
Pea (Pisum sativum L.) protein hydrolysate (PPH) has a bitter taste, which has limited its use in food industry. γ-Glutamylation is used to debitter PPH. Results showed that the bitterness of PPH was decreased significantly due to the formation of γ-glutamyl peptides, including 16 γ-[Glu](n=1/2)-amino acids (AAs) and 8 newly discovered γ-glutamyl tripeptides (γ-Glu-Asn-Phe, γ-Glu-Leu-Val, γ-Glu-Leu-Tyr, γ-Glu-Gly-Leu, γ-Glu-Gly-Phe, γ-Glu-Gly-Tyr, γ-Glu-Val-Val, and γ-Glu-Gln-Tyr). Their total production concentrations were 27.25 μmol/L and 77.76 μmol/L, respectively. The γ-Glu-AA-AAs presented an umami-enhancing, salty-enhancing, and kokumi taste when their concentration reached 1.67 ± 0.20 ∼ 2.07 ± 0.20, 1.65 ± 0.25 ∼ 2.29 ± 0.45 and 0.68 ± 0.19 ∼ 1.03 ± 0.22 mmol/L, respectively. The γ-Glu-AA-AAs exhibited a kokumi taste by entering the Venus flytrap (VFT) of the calcium-sensing receptor and interacting with Ser147, Ala168, and Ser170. γ-Glu-AA-AAs can enhance the umaminess of Monosodium Glutamate (MSG) as they can enter the binding pocket of the taste receptor type 1 subunit 3 (T1R3)-MSG complex.
Collapse
Affiliation(s)
- Juan Yang
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Siqi Guo
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| |
Collapse
|
16
|
Fu Y, Guo X, Li W, Simpson BK, Rui X. Construction of hypoallergenic microgel by soy major allergen β-conglycinin through enzymatic hydrolysis and lactic acid bacteria fermentation. Food Res Int 2024; 175:113733. [PMID: 38128990 DOI: 10.1016/j.foodres.2023.113733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Soy allergenicity is a public concern, and the combination of multiple processing methods may be a promising strategy for reducing soy allergenicity. In this study, a novel two-step enzymatic hydrolysis followed by lactic acid bacteria fermentation was proposed for the construction of hypoallergenic soybean protein microgel. β-Conglycinin was used as the main soy allergen. The effects of different enzymatic hydrolysis (Alcalase, Neutrase, and Protamex) and LAB fermentation on β-conglycinin microgel formation and its immunoreactivity were investigated. Results showed that the use of different enzymes and the attainment of different degrees of hydrolysis affected the particle distribution and zeta potential in the microgels and leads to differences in microstructure and immunoreactivity. All hydrolysates compared with intact protein accelerated the formation of gel during LAB fermentation. Among the three assayed enzymes, fermented Protamex hydrolysates at 60 min (PF-60) demonstrated a microgel with an overall reduced average particle size (741.20±7.18 nm), lower absolute values of zeta potential (10.43±0.65 mV), and regular gel network. The antigenicity and IgE-binding capacity decreased to the lowest value of 0.30 % and 6.93 %, respectively. Peptidomics and immunoinformatic analysis suggested that PF-60 disrupted 17/30, 16/44, and 23/75 epitopes in the α, α', and β subunits, respectively. Unlike the LAB-fermented unhydrolyzed β-conglycinin disrupted epitopes mostly located at the loop domain, PF-60 primarily promoted the exposure and disruption of allergen epitopes with β-sheet structure located at the core barrel domain. These findings can provide new perspectives on the preparation of hypoallergenic soybean-gel products on edible particulate systems.
Collapse
Affiliation(s)
- Yumeng Fu
- College of Food Science and Technology, Nanjing Agricultural University, Jiangsu Province, PR China
| | - Xinran Guo
- College of Food Science and Technology, Nanjing Agricultural University, Jiangsu Province, PR China
| | - Wei Li
- College of Food Science and Technology, Nanjing Agricultural University, Jiangsu Province, PR China
| | - Benjamin K Simpson
- Department of Food Science and Agricultural Chemistry, McGill University, Macdonald, Quebec, Canada
| | - Xin Rui
- College of Food Science and Technology, Nanjing Agricultural University, Jiangsu Province, PR China.
| |
Collapse
|
17
|
Zhu X, Li X, Liu X, Li J, Zeng XA, Li Y, Yuan Y, Teng YX. Pulse Protein Isolates as Competitive Food Ingredients: Origin, Composition, Functionalities, and the State-of-the-Art Manufacturing. Foods 2023; 13:6. [PMID: 38201034 PMCID: PMC10778321 DOI: 10.3390/foods13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
The ever-increasing world population and environmental stress are leading to surging demand for nutrient-rich food products with cleaner labeling and improved sustainability. Plant proteins, accordingly, are gaining enormous popularity compared with counterpart animal proteins in the food industry. While conventional plant protein sources, such as wheat and soy, cause concerns about their allergenicity, peas, beans, chickpeas, lentils, and other pulses are becoming important staples owing to their agronomic and nutritional benefits. However, the utilization of pulse proteins is still limited due to unclear pulse protein characteristics and the challenges of characterizing them from extensively diverse varieties within pulse crops. To address these challenges, the origins and compositions of pulse crops were first introduced, while an overarching description of pulse protein physiochemical properties, e.g., interfacial properties, aggregation behavior, solubility, etc., are presented. For further enhanced functionalities, appropriate modifications (including chemical, physical, and enzymatic treatment) are necessary. Among them, non-covalent complexation and enzymatic strategies are especially preferable during the value-added processing of clean-label pulse proteins for specific focus. This comprehensive review aims to provide an in-depth understanding of the interrelationships between the composition, structure, functional characteristics, and advanced modification strategies of pulse proteins, which is a pillar of high-performance pulse protein in future food manufacturing.
Collapse
Affiliation(s)
- Xiangwei Zhu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (X.Z.)
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA;
| | - Xueyin Li
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (X.Z.)
| | - Xiangyu Liu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (X.Z.)
| | - Jingfang Li
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (X.Z.)
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China;
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA;
| | - Yue Yuan
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA;
| | - Yong-Xin Teng
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (X.Z.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China;
| |
Collapse
|
18
|
Auer J, Östlund J, Nilsson K, Johansson M, Herneke A, Langton M. Nordic Crops as Alternatives to Soy-An Overview of Nutritional, Sensory, and Functional Properties. Foods 2023; 12:2607. [PMID: 37444345 DOI: 10.3390/foods12132607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Soy (Glycine max) is used in a wide range of products and plays a major role in replacing animal-based products. Since the cultivation of soy is limited by cold climates, this review assessed the nutritional, sensory, and functional properties of three alternative cold-tolerant crops (faba bean (Vicia faba), yellow pea (Pisum sativum), and oat (Avena sativa)). Lower protein quality compared with soy and the presence of anti-nutrients are nutritional problems with all three crops, but different methods to adjust for these problems are available. Off-flavors in all pulses, including soy, and in cereals impair the sensory properties of the resulting food products, and few mitigation methods are successful. The functional properties of faba bean, pea, and oat are comparable to those of soy, which makes them usable for 3D printing, gelation, emulsification, and extrusion. Enzymatic treatment, fermentation, and fibrillation can be applied to improve the nutritional value, sensory attributes, and functional properties of all the three crops assessed, making them suitable for replacing soy in a broad range of products, although more research is needed on all attributes.
Collapse
Affiliation(s)
- Jaqueline Auer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Johanna Östlund
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Klara Nilsson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Mathias Johansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Anja Herneke
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Maud Langton
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| |
Collapse
|
19
|
Lee NA, Lopata AL, Colgrave ML. Analytical Methods for Allergen Control in Food Processing. Foods 2023; 12:foods12071439. [PMID: 37048260 PMCID: PMC10093617 DOI: 10.3390/foods12071439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Food allergy and food-related anaphylaxis have become a growing public health and food safety issue worldwide [...]
Collapse
|
20
|
Dębińska A, Sozańska B. Fermented Food in Asthma and Respiratory Allergies—Chance or Failure? Nutrients 2022; 14:nu14071420. [PMID: 35406034 PMCID: PMC9002914 DOI: 10.3390/nu14071420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
In the last few decades, a dramatic increase in the global prevalence of allergic diseases and asthma was observed. It was hypothesized that diet may be an important immunomodulatory factor influencing susceptibility to allergic diseases. Fermented food, a natural source of living microorganisms and bioactive compounds, has been demonstrated to possess health-promoting potentials and seems to be a promising strategy to reduce the risk of various immune-related diseases, such as allergic diseases and asthma. The exact mechanisms by which allergic diseases and asthma can be alleviated or prevented by fermented food are not well understood; however, its potential to exert an effect through modulating the immune response and influencing the gut microbiota has been recently studied. In this review, we provide the current knowledge on the role of diet, including fermented foods, in preventing or treating allergic diseases and asthma.
Collapse
|
21
|
Tuppo L, Giangrieco I, Tamburrini M, Alessandri C, Mari A, Ciardiello MA. Detection of Allergenic Proteins in Foodstuffs: Advantages of the Innovative Multiplex Allergen Microarray-Based Immunoassay Compared to Conventional Methods. Foods 2022; 11:878. [PMID: 35327300 PMCID: PMC8949930 DOI: 10.3390/foods11060878] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
Several factors can affect the allergen content and profile of a specific food, including processing procedures often leading to a decrease in allergenicity, although no change, or even an increase, have also been reported. Evaluation of the effectiveness of a processing procedure requires the availability of reliable methodologies to assess the variation in molecules able to induce allergic reactions in the analyzed food. Conventional and innovative strategies and methodologies can be exploited to identify allergenic proteins in foodstuffs. However, depending on the specific purposes, different methods can be used. In this review, we have critically reviewed the advantages of an innovative method, the multiplex allergen microarray-based immunoassay, in the detection of allergens in foodstuffs. In particular, we have analyzed some studies reporting the exploitation of an IgE-binding inhibition assay on multiplex allergen biochips, which has not yet been reviewed in the available literature. Unlike the others, this methodology enables the identification of many allergenic proteins, some of which are still unknown, which are recognized by IgE from allergic patients, with a single test. The examined literature suggests that the inhibition test associated with the multiplex allergen immunoassay is a promising methodology exploitable for the detection of IgE-binding proteins in food samples.
Collapse
Affiliation(s)
- Lisa Tuppo
- Institute of Biosciences and BioResources (IBBR), CNR, 80131 Naples, Italy; (L.T.); (I.G.); (M.T.)
| | - Ivana Giangrieco
- Institute of Biosciences and BioResources (IBBR), CNR, 80131 Naples, Italy; (L.T.); (I.G.); (M.T.)
| | - Maurizio Tamburrini
- Institute of Biosciences and BioResources (IBBR), CNR, 80131 Naples, Italy; (L.T.); (I.G.); (M.T.)
| | - Claudia Alessandri
- Associated Centers for Molecular Allergology (CAAM), 00100 Rome, Italy; (C.A.); (A.M.)
- Allergy Data Laboratories (ADL), 04100 Latina, Italy
| | - Adriano Mari
- Associated Centers for Molecular Allergology (CAAM), 00100 Rome, Italy; (C.A.); (A.M.)
- Allergy Data Laboratories (ADL), 04100 Latina, Italy
| | | |
Collapse
|