1
|
Aghajanzadeh S, Sultana A, Mohammad Ziaiifar A, Khalloufi S. Formation of pores and bubbles and their impacts on the quality attributes of processed foods: A review. Food Res Int 2024; 188:114494. [PMID: 38823873 DOI: 10.1016/j.foodres.2024.114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Pores and bubbles significantly influence the physical attributes (like texture, density, and structural integrity), organoleptic properties, and shelf life of processed foods. Hence, the quality of foods and their acceptance by the consumers could be influenced by the properties and prevalence of pores and bubbles within the food structure. Considering the importance of pores, this review aimed to comprehensively discuss the factors and mechanisms involved in the generation of pores and bubbles during the processing of different food products. Moreover, the characteristics and effects of pores on the properties of chocolates, cheeses, cereal-based foods (like cake, puffed grains, and pasta), dried, and fried products were discussed. The impacts of bubbles on the quality of foam-based products, foam creamers, and beverages were also explored. This review concludes that intrinsic factors (like food compositions, initial moisture content, and porosity) and extrinsic factors (like applied technologies, processing, and storage conditions) affect various properties of the pores and bubbles including their number, size, orientation, and distribution. These factors collectively shape the overall structure and quality of processed food products such as density, texture (hardness, cohesiveness, chewiness), and water holding capacity. The desirability or undesirability of pores and their characteristics depends on the type of products; hence, some practical hints were provided to mitigate their adverse effects or to enhance their formation in foods. For example, pores could increase the nutrient digestion and reduce the shelf life of the products by enhancing the risk of fat oxidation and microbial growth. In conclusion, this study provides a valuable resource for food scientists and industry professionals by discussing the effects of pores on food preservation, heat, and mass transfer (including oxygen, moisture, flavors, and nutrients). Understanding the dynamic changes in porosity during processing will be effective in customization of final product quality with desired attributes, ensuring tailored outcomes for specific applications.
Collapse
Affiliation(s)
- Sara Aghajanzadeh
- Dept. of Soils and Agri-Food Engineering, Laval University, Québec, Canada; Institute of Nutrition and Functional Foods, Québec, Canada
| | - Afroza Sultana
- Dept. of Soils and Agri-Food Engineering, Laval University, Québec, Canada; Institute of Nutrition and Functional Foods, Québec, Canada; Dept. of Food Processing and Engineering, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Aman Mohammad Ziaiifar
- Dept. of Food Process Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seddik Khalloufi
- Dept. of Soils and Agri-Food Engineering, Laval University, Québec, Canada; Institute of Nutrition and Functional Foods, Québec, Canada.
| |
Collapse
|
2
|
Bavaro AR, Di Biase M, Linsalata V, D’Antuono I, Di Stefano V, Lonigro SL, Garbetta A, Valerio F, Melilli MG, Cardinali A. Potential Prebiotic Effect of Inulin-Enriched Pasta after In Vitro Gastrointestinal Digestion and Simulated Gut Fermentation. Foods 2024; 13:1815. [PMID: 38928756 PMCID: PMC11202534 DOI: 10.3390/foods13121815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/26/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
In the current study, the prebiotic potential of an innovative functional pasta enriched with 12% (w/w) inulin was investigated. To this aim, pasta was subjected to in vitro gastrointestinal digestion followed by simulated gut fermentation compared to the control pasta (CTRL) not containing inulin. The incorporation of inulin positively (p < 0.05) affected some organoleptic traits and the cooking quality of the final product, giving an overall score significantly higher than CTRL. The resultant essential amino acid content was similar in both pasta samples while the total protein content was lower in inulin-enriched pasta for the polymer substitution to durum wheat flour. The prebiotic potential of chicory inulin was preliminarily tested in in vitro experiments using seven probiotic strains and among them Lacticaseibacillus paracasei IMPC2.1 was selected for the simulated gut fermentation studies. The positive prebiotic activity score registered with the probiotic strain suggested the suitability of the inulin-enriched pasta with respect to acting as a prebiotic source favoring the growth of the probiotic strain and short chain fatty acid (SCFA) production. The present study contributes to broadening knowledge on the prebiotic efficacy of inulin when incorporated into a complex food matrix.
Collapse
Affiliation(s)
- Anna Rita Bavaro
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy; (A.R.B.); (M.D.B.); (V.L.); (I.D.); (S.L.L.); (A.G.); (A.C.)
| | - Mariaelena Di Biase
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy; (A.R.B.); (M.D.B.); (V.L.); (I.D.); (S.L.L.); (A.G.); (A.C.)
| | - Vito Linsalata
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy; (A.R.B.); (M.D.B.); (V.L.); (I.D.); (S.L.L.); (A.G.); (A.C.)
| | - Isabella D’Antuono
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy; (A.R.B.); (M.D.B.); (V.L.); (I.D.); (S.L.L.); (A.G.); (A.C.)
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy;
| | - Stella Lisa Lonigro
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy; (A.R.B.); (M.D.B.); (V.L.); (I.D.); (S.L.L.); (A.G.); (A.C.)
| | - Antonella Garbetta
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy; (A.R.B.); (M.D.B.); (V.L.); (I.D.); (S.L.L.); (A.G.); (A.C.)
| | - Francesca Valerio
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy; (A.R.B.); (M.D.B.); (V.L.); (I.D.); (S.L.L.); (A.G.); (A.C.)
| | - Maria Grazia Melilli
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), 95126 Catania, Italy
| | - Angela Cardinali
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy; (A.R.B.); (M.D.B.); (V.L.); (I.D.); (S.L.L.); (A.G.); (A.C.)
| |
Collapse
|
3
|
Paucar-Menacho LM, Schmiele M, Vásquez Guzmán JC, Rodrigues SM, Simpalo-Lopez WD, Castillo-Martínez WE, Martínez-Villaluenga C. Smart Pasta Design: Tailoring Formulations for Technological Excellence with Sprouted Quinoa and Kiwicha Grains. Foods 2024; 13:353. [PMID: 38275720 PMCID: PMC10815487 DOI: 10.3390/foods13020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
The pursuit of developing healthier pasta products without compromising technological properties involves a strategic approach via the customization of raw material formulations and the integration of grain germination and extrusion processes. This study explores the impact of incorporating sprouts from quinoa (Chenopodium quinoa Willd) and kiwicha (Chenopodium pallidicaule Aellen) on the physicochemical properties of pasta by employing a centroid mixture design. The desirability function was utilized to identify the optimal ingredient proportions necessary to achieve specific objectives. The study identified optimal formulations for two pasta variations: pasta with the substitution of sprouted quinoa and cushuro powder (PQC), and pasta with partial substitution of sprouted kiwicha and cushuro powder (PKC). The optimal formulation for PKC was determined as 70% wheat flour (WF), 15% sprouted kiwicha flour (SKF), and 15% cushuro powder (CuP), with a desirability score of 0.68. Similarly, for PQC, the optimal formulation comprised 79% WF, 13% sprouted quinoa flour (SQF), and 8% CuP, with a desirability of 0.63. The optimized pasta formulation exhibited longer cooking times (10 and 8 min), increased weight gain (235% and 244%), and minimal loss of solids (1.4 and 1.2%) for PQC and PKC, respectively. Notably, firmness (2.8 and 2.6 N) and breaking strength values (2 and 2.7 N) for PQC and PKC pasta formulations, respectively, were comparable to those of the control sample (2.7 N and 2.6 N for firmness and fracturability, respectively). This research underscores the potential of tailored formulations and innovative processes to enhance the nutritional profile of pasta while maintaining key technological attributes.
Collapse
Affiliation(s)
- Luz María Paucar-Menacho
- Departamento Académico de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02712, Peru; (L.M.P.-M.); (J.C.V.G.); (W.D.S.-L.); (W.E.C.-M.)
| | - Marcio Schmiele
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina 39100-000, Brazil; (M.S.); (S.M.R.)
| | - Juan Carlos Vásquez Guzmán
- Departamento Académico de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02712, Peru; (L.M.P.-M.); (J.C.V.G.); (W.D.S.-L.); (W.E.C.-M.)
| | - Sander Moreira Rodrigues
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina 39100-000, Brazil; (M.S.); (S.M.R.)
| | - Wilson Daniel Simpalo-Lopez
- Departamento Académico de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02712, Peru; (L.M.P.-M.); (J.C.V.G.); (W.D.S.-L.); (W.E.C.-M.)
| | - Williams Esteward Castillo-Martínez
- Departamento Académico de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02712, Peru; (L.M.P.-M.); (J.C.V.G.); (W.D.S.-L.); (W.E.C.-M.)
| | - Cristina Martínez-Villaluenga
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| |
Collapse
|
4
|
Pinel P, Emmambux MN, Bourlieu C, Micard V. Nutritional contributions and processability of pasta made from climate-smart, sustainable crops: A critical review. Crit Rev Food Sci Nutr 2023:1-31. [PMID: 37937848 DOI: 10.1080/10408398.2023.2271952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Total or partial replacement of traditional durum wheat semolina (DWS) by alternative flours, such as legumes or wholegrain cereals in pasta improves their nutritional quality and can make them interesting vector for fortification. Climate-smart gluten-free (C-GF) flours, such as legumes (bambara groundnut, chickpea, cowpea, faba bean, and pigeon pea), some cereals (amaranth, teff, millet, and sorghum), and tubers (cassava and orange fleshed sweet potato), are of high interest to face ecological transition and develop sustainable food systems. In this review, an overview and a critical analysis of their nutritional potential for pasta production and processing conditions are undertaken. Special emphasis is given to understanding the influence of formulation and processing on techno-functional and nutritional (starch and protein digestibility) properties. Globally C-GF flours improve pasta protein quantity and quality, fibers, and micronutrients contents while keeping a low glycemic index and increasing protein digestibility. However, their use introduces anti-nutritional factors and could lead to the alteration of their techno-functional properties (higher cooking losses, lower firmness, and variability in color in comparison to classical DWS pasta). Nevertheless, these alternative pasta remain more interesting in terms of nutritional and techno-functional quality than traditional maize and rice-based gluten free pasta.
Collapse
Affiliation(s)
- P Pinel
- UMR IATE, INRAE, Institut Agro, Univ. Montpellier, Montpellier, France
| | - M N Emmambux
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| | - C Bourlieu
- UMR IATE, INRAE, Institut Agro, Univ. Montpellier, Montpellier, France
| | - V Micard
- UMR IATE, INRAE, Institut Agro, Univ. Montpellier, Montpellier, France
| |
Collapse
|
5
|
Conti V, Piccini C, Romi M, Salusti P, Cai G, Cantini C. Pasta Enriched with Carrot and Olive Leaf Flour Retains High Levels of Accessible Bioactives after In Vitro Digestion. Foods 2023; 12:3540. [PMID: 37835193 PMCID: PMC10572326 DOI: 10.3390/foods12193540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The aim of this research was to evaluate the levels of antioxidants and polyphenols in pasta enriched with either carrot or olive leaf flours after simulating gastrointestinal digestion. Pasta samples were prepared with fixed amounts of carrot and olive leaf flours (15% and 6% of the total mixture, respectively). We measured the antioxidant capacity and polyphenol content at different stages of the pasta production process, starting from the initial flour to the cooked pasta, and tested samples of the liquid component and solid waste resulting from the digestion process. The antioxidant activity was measured by the FRAP method, while the polyphenol content was measured by the Folin-Ciocalteu method. Vitamin E contents were measured by HPLC. The pasta enriched with carrot (1.26 ± 0.05 mmol/100 g) and olive leaf (2.9 ± 0.07 mmol/100 g) exhibited higher antioxidant power compared to the unenriched pasta (0.8 ± 0.1 mmol/100 g). The polyphenol content followed a similar trend, with values of 131.23 ± 3.08 for olive flour-enriched pasta, 79.15 ± 1.11 for carrot flour-enriched pasta, and 67.5 ± 1.39 for the wheat-only pasta. The pasta samples maintained their antioxidant and polyphenol levels even after undergoing the simulated digestion process. Significantly, the liquid component of the pasta with olive leaf flours had the highest levels of antioxidants and polyphenols during all stages of the digestion process. According to the results of this study, pasta enriched with carrot and olive leaf flours shows promising potential for improving nutritional and functional properties by increasing antioxidant and polyphenol content. The samples were also evaluated by a sensory panel, which showed that fortification modified the perception of some organoleptic attributes without affecting the overall taste of the pasta.
Collapse
Affiliation(s)
- Veronica Conti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Chiara Piccini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (C.P.); (M.R.); (G.C.)
| | - Marco Romi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (C.P.); (M.R.); (G.C.)
| | - Patrizia Salusti
- National Research Council of Italy, Institute for Bioeconomy (CNR-IBE), 58022 Follonica, Italy; (P.S.); (C.C.)
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (C.P.); (M.R.); (G.C.)
| | - Claudio Cantini
- National Research Council of Italy, Institute for Bioeconomy (CNR-IBE), 58022 Follonica, Italy; (P.S.); (C.C.)
| |
Collapse
|
6
|
Axentii M, Stroe SG, Codină GG. Development and Quality Evaluation of Rigatoni Pasta Enriched with Hemp Seed Meal. Foods 2023; 12:foods12091774. [PMID: 37174312 PMCID: PMC10178187 DOI: 10.3390/foods12091774] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Existing food trends and modern consumers' nutritional preferences have led to a rising demand for plant-based sources of protein such as hemp seed meal and the possibility of consumption hemp-rich products, most often in wheat-based staple foods, such as pasta. Pasta, as a conventional food product, is widely consumed worldwide due to its nutritional value, long shelf life, easy preparation, versatility of uses and also relatively low cost, which has made this product popular over time. Five formulations of rigatoni-shaped pasta obtained by partial replacement of wheat grain flour with 5%, 10%, 15% and 20% hemp seed meal (HSM) were studied regarding the technological, physicochemical, textural, antioxidant and sensory properties of the pasta samples. The substitution of wheat flour with hemp seed meal (HSM) led to a slight increase in the cooking loss (CL) and optimal cooking time (OCT) compared to the control sample, while the water absorption (WA) and swelling index (SI) decreased during evaluation. The experimental results also showed a decrease in luminosity and fracturability, with an increased firmness of pasta dough. Moreover, the developed pasta showed a significant improvement in antioxidant capacity in terms of total phenolic content (TPC) and antioxidant activity (DPPH). The pasta samples with 15% and 20% HSM substitutes experienced a browning process due to the Maillard reactions during drying, as well as a color loss during cooking; however, the color changes did not affect the acceptability of the product. The partial replacement of wheat flour with hemp seed protein highlighted the possibility of developing a new innovative type of pasta that claims a functional benefit and presents an improved nutritional value, mainly due to the partial protein intake, as well as certain benefits for a human diet.
Collapse
Affiliation(s)
- Marina Axentii
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Silviu-Gabriel Stroe
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | | |
Collapse
|
7
|
Zingale S, Spina A, Ingrao C, Fallico B, Timpanaro G, Anastasi U, Guarnaccia P. Factors Affecting the Nutritional, Health, and Technological Quality of Durum Wheat for Pasta-Making: A Systematic Literature Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:530. [PMID: 36771615 PMCID: PMC9920027 DOI: 10.3390/plants12030530] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/30/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Durum wheat is one of the most important food sources in the world, playing a key role in human nutrition, as well as in the economy of the different countries in which its production areas are concentrated. Its grain also represents a staple and highly versatile ingredient in the development of health foods. Nonetheless, the aspects determining durum wheat's health quality and their interactions are many, complex, and not entirely known. Therefore, the present systematic literature review aims at advancing the understanding of the relationships among nutritional, health, and technological properties of durum wheat grain, semolina, and pasta, by evaluating the factors that, either positively or negatively, can affect the quality of the products. Scopus, Science Direct, and Web of Science databases were systematically searched utilising sets of keywords following the PRISMA guidelines, and the relevant results of the definitive 154 eligible studies were presented and discussed. Thus, the review identified the most promising strategies to improve durum wheat quality and highlighted the importance of adopting multidisciplinary approaches for such purposes.
Collapse
Affiliation(s)
- Silvia Zingale
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia n. 100, 95123 Catania, Italy
| | - Alfio Spina
- Agricultural Research Council and Economics (CREA)—Research Centre for Cereal and Industrial Crops, Corso Savoia, 190, 95024 Acireale, Italy
| | - Carlo Ingrao
- Department of Economics, Management and Business Law, University of Bari Aldo Moro, Largo Abbazia Santa Scolastica, 53, 70124 Bari, Italy
| | - Biagio Fallico
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia n. 100, 95123 Catania, Italy
| | - Giuseppe Timpanaro
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia n. 100, 95123 Catania, Italy
| | - Umberto Anastasi
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia n. 100, 95123 Catania, Italy
| | - Paolo Guarnaccia
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia n. 100, 95123 Catania, Italy
| |
Collapse
|
8
|
How Cooking Time Affects In Vitro Starch and Protein Digestibility of Whole Cooked Lentil Seeds versus Isolated Cotyledon Cells. Foods 2023; 12:foods12030525. [PMID: 36766054 PMCID: PMC9914867 DOI: 10.3390/foods12030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Lentils are sustainable sources of bioencapsulated macronutrients, meaning physical barriers hinder the permeation of digestive enzymes into cotyledon cells, slowing down macronutrient digestion. While lentils are typically consumed as cooked seeds, insights into the effect of cooking time on microstructural and related digestive properties are lacking. Therefore, the effect of cooking time (15, 30, or 60 min) on in vitro amylolysis and proteolysis kinetics of lentil seeds (CL) and an important microstructural fraction, i.e., cotyledon cells isolated thereof (ICC), were studied. For ICC, cooking time had no significant effect on amylolysis kinetics, while small but significant differences in proteolysis were observed (p < 0.05). In contrast, cooking time importantly affected the microstructure obtained upon the mechanical disintegration of whole lentils, resulting in significantly different digestion kinetics. Upon long cooking times (60 min), digestion kinetics approached those of ICC since mechanical disintegration yielded a high fraction of individual cotyledon cells (67 g/100 g dry matter). However, cooked lentils with a short cooking time (15 min) showed significantly slower amylolysis with a lower final extent (~30%), due to the presence of more cell clusters upon disintegration. In conclusion, cooking time can be used to obtain distinct microstructures and digestive functionalities with perspectives for household and industrial preparation.
Collapse
|
9
|
Characterization of Durum-Wheat Pasta Containing Resistant Starch from Debranched Waxy Rice Starch. Foods 2023; 12:foods12020327. [PMID: 36673419 PMCID: PMC9857741 DOI: 10.3390/foods12020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Durum wheat spaghetti samples prepared with increasing levels of resistant starch (RS) from debranched waxy rice starch (DWRS; i.e., 0, 5, 10, 15 g/100 g w/w) were analyzed for chemical composition, quality and sensory parameters and in vitro starch digestion. All the DWRS-containing spaghetti was “high in fibre”, the dietary fiber content being > 6 g/100 g. In addition, spaghetti with the highest level of DWRS showed the highest RS content (p < 0.05), being 11.4 g/100 g dry matter. The starch hydrolysis index decreased (p < 0.05) as the level of DWRS increased, with a reduction of >20% comparing the 15-DWRS pasta to the control. DWRS had a negative impact on quality parameters, especially at higher DWRS levels. The use of DWRS shortened the optimal cooking time and impacted the samples’ cooking loss, firmness, and stickiness. In addition, sensory analysis revealed differences among samples. However, irrespective of the level of DWRS in the recipe, the score for all attributes was > 5, which is considered the limit of acceptability. Substituting part of the semolina flour with DWRS increased the level of RS and the overall nutritional profile and affected the quality of semolina pasta, mainly at higher levels in the recipe.
Collapse
|
10
|
Sissons M. Durum Wheat Products-Recent Advances. Foods 2022; 11:foods11223660. [PMID: 36429252 PMCID: PMC9689131 DOI: 10.3390/foods11223660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Durum wheat is widely used in various products, including long and short dried pasta, fresh and sheeted pasta, couscous, bulgur and baked bread [...].
Collapse
Affiliation(s)
- Mike Sissons
- NSW Department of Primary Industries, Tamworth Agricultural Institute, 4 Marsden Park Road, Calala, NSW 2340, Australia
| |
Collapse
|
11
|
Influence of Some Spaghetti Processing Variables on Technological Attributes and the In Vitro Digestion of Starch. Foods 2022; 11:foods11223650. [PMID: 36429241 PMCID: PMC9689111 DOI: 10.3390/foods11223650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Durum semolina spaghetti is known to have a low-moderate glycaemic index but the impact of various processing variables during the manufacture and cooking of pasta does affect pasta structure and potentially could alter starch digestion. In this study, several process variables were investigated to see if they can impact the in vitro starch digestion in spaghetti while also monitoring the pasta’s technological quality. Cooking time had a large impact on pasta starch digestion and reducing cooking from fully cooked to al dente and using pasta of very high protein content (17%), reduced starch digestion extent. The semolina particle size distribution used to prepare pasta impacted pasta quality and starch digestion to a small extent indicating a finer semolina particle size (<180 µm) may promote a more compact structure and help to reduce starch digestion. The addition of a structural enzyme, Transglutaminase in the pasta formulae improved overcooking tolerance in low protein pasta comparable to high protein pasta with no other significant effects and had no effect on starch digestion over a wide protein range (8.6−17%). While cold storage of cooked pasta was expected to increase retrograded starch, the increase in resistant starch was minor (37%) with no consequent improvement in the extent of starch digestion. Varying three extrusion parameters (die temperature, die pressure, extrusion speed) impacted pasta technological quality but not the extent of starch digestion. Results suggest the potential to subtly manipulate the starch digestion of pasta through some processing procedures.
Collapse
|
12
|
Faheid SM, Rizk IR, Kishk YF, Ragab GH, Mostafa S. Carboxymethyl cellulose and psyllium husk in gluten-free pasta. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2022-2-540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Formulating high-quality pasta from wheat-free materials is a technological challenge. We aimed to make gluten-free pasta with carboxymethyl cellulose and psyllium husk and evaluate their effect on the quality of the final product.
Gluten-free pasta was produced from rice flour, white corn flour, potato starch, soy protein isolate, and carboxymethyl cellulose or psyllium husk used as binding agents. Then, we evaluated the effect of these hydrocolloids on the color, texture, cooking quality, and sensory characteristics of the product.
The uncooked gluten-free pasta containing psyllium husk showed significantly higher values of hardness compared to the samples with carboxymethyl cellulose, while the cooked pasta with psyllium husk had a significantly lower nitrogen loss. Also, psyllium husk improved the texture of the cooked gluten-free pasta, providing the highest values of resilience, springiness, and chewiness. Generally, the psyllium husk samples received higher quality values for texture, cooking quality, and sensory parameters, compared to the pasta with carboxymethyl cellulose.
Psyllium husk showed a better ability to bind gluten-free pasta than carboxymethyl cellulose. Consequently, psyllium husk could become a feasible alternative to wheat gluten in producing high-quality gluten-free pasta.
Collapse
|
13
|
Teterycz D, Sobota A, Starek A. Possibility of using wheat germ and wheat germ protein isolate for high‐protein pasta production. Cereal Chem 2022. [DOI: 10.1002/cche.10602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dorota Teterycz
- Division of Engineering and Cereals Technology, Department of Plant Food Technology and Gastronomy, Faculty of Food Science and BiotechnologyUniversity of Life Sciences in LublinSkromna 820‐704LublinPoland
| | - Aldona Sobota
- Division of Engineering and Cereals Technology, Department of Plant Food Technology and Gastronomy, Faculty of Food Science and BiotechnologyUniversity of Life Sciences in LublinSkromna 820‐704LublinPoland
| | - Agnieszka Starek
- Department of Biological Bases of Food and Feed TechnologiesUniversity of Life Sciences in LublinGłęboka 2820‐612LublinPoland
| |
Collapse
|
14
|
Bianchi F, Giuberti G, Cervini M, Simonato B. Fortification of Durum Wheat Fresh Pasta with Maqui (Aristotelia chilensis) and Its Effects on Technological, Nutritional, Sensory Properties, and Predicted Glycemic Index. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02838-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractPasta, a staple food worldwide consumed, was fortified with maqui (Aristotelia chilensis) berry powder (MBP) and the effect of MBP inclusion was evaluated concerning technological, nutritional, and sensory properties. Fresh pasta samples were formulated by replacing 0, 7.5, and 15 g 100 g−1 of durum wheat semolina with MBP. The inclusion of MBP did not affect the moisture content, but the water activity decreased in the fortified samples, while pH values decreased with increasing MBP levels in the recipe. The pasta fully cooking time and the swelling index were reduced, while the cooking loss and the firmness increased with increasing MBP levels. In addition, MBP increased the total dietary fiber, ash, and phenol contents, along with the in vitro antioxidant activities. The starch hydrolysis index and the predicted glycemic index of cooked fresh pasta decreased along with the increase of MBP addition. The MPB addition to fresh pasta could represent a valuable strategy for increasing its nutritional value, maintaining pasta’s technological properties without affecting the sensory acceptability.
Collapse
|
15
|
Yano H, Fu W. Effective Use of Plant Proteins for the Development of "New" Foods. Foods 2022; 11:foods11091185. [PMID: 35563905 PMCID: PMC9102783 DOI: 10.3390/foods11091185] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Diversity in our diet mirrors modern society. Affluent lifestyles and extended longevity have caused the prevalence of diabetes and sarcopenia, which has led to the increased demand of low-carb, high-protein foods. Expansion of the global population and Westernization of Asian diets have surged the number of meat eaters, which has eventually disrupted the supply–demand balance of meat. In contrast, some people do not eat meat for religious reasons or due to veganism. With these multiple circumstances, our society has begun to resort to obtaining protein from plant sources rather than animal origins. This “protein shift” urges food researchers to develop high-quality foods based on plant proteins. Meanwhile, patients with food allergies, especially gluten-related ones, are reported to be increasing. Additionally, growing popularity of the gluten-free diet demands development of foods without using ingredients of wheat origin. Besides, consumers prefer “clean-label” products in which products are expected to contain fewer artificial compounds. These diversified demands on foods have spurred the development of “new” foods in view of food-processing technologies as well as selection of the primary ingredients. In this short review, examples of foodstuffs that have achieved tremendous recent progress are introduced: effective use of plant protein realized low-carb, high protein, gluten-free bread/pasta. Basic manufacturing principles of plant-based vegan cheese have also been established. We will also discuss on the strategy of effective development of new foods in view of the better communication with consumers as well as efficient use of plant proteins.
Collapse
|
16
|
Influence of adding wild berry powders on the quality of pasta products. EUREKA: LIFE SCIENCES 2022. [DOI: 10.21303/2504-5695.2022.002410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pasta is a popular food item among consumers all over the world. They have high energy value, low cost and long shelf life. However, the biological value of these products is quite low. Adding components rich in dietary fiber, vitamins and minerals to their composition will significantly improve their nutritional value. The purpose of the article is to analyze the possibility of producing pasta with the addition of derivatives from the processing of wild berries Sambucus nigra, Viburnum opulus, Hippophae rhamnoides L., which have a rich nutrient composition and are available raw materials. The technology, developed in the work for processing berries by osmotic dehydration, allows the use of gentle drying modes, which contributes to the maximum preservation of their biological value. Sensory evaluation of pasta was carried out according to the Croatian Official Methods, moisture content of pasta was determined by drying to constant weight. Sensory analysis of pasta showed that the addition of powders does not lead to a deterioration in their quality. Their appearance, taste, smell, shape and elasticity are improved. The quality of the pasta samples, containing 5 % of the powder, was determined as “good” according to the results of the evaluation of the tasting group. And the samples with a powder content of 10 % have a "high" quality. The addition of powders has practically no effect on the drying conditions and moisture content of the finished products. With the addition of Viburnum opulus powders, the moisture content is reduced compared to controls. Humidity of all samples is within the permissible limits, which indicates their resistance to storage
Collapse
|