1
|
Łata B, Latocha P, Łaźny R, Gutfeld A. Comparison in Antioxidant Potential and Concentrations of Selected Bioactive Ingredients in Fruits of Lesser-Known Species. Foods 2024; 13:2926. [PMID: 39335855 PMCID: PMC11431385 DOI: 10.3390/foods13182926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Fruits with a high content of biologically active compounds are essential in preventing many diseases. Therefore, the interest in searching for and testing new plant sources for bioactive constituents remains strong. Although many publications on individual species exist, their results are difficult to compare directly due to varying methods and conditions of analysis. Only a few studies have investigated many different species in a single analysis. Therefore, we examined and compared 21 different genotypes, using various measurement methods for total phenolic content (TPC) (Folin-Ciocalteu, FBBB), total antioxidant capacity (ABTS, FRAP, DPPH), and the HPLC technique for the total ascorbate concentration in freshly harvested fruits. One-way ANOVA, Principal Component Analysis, and Pearson Correlation were used to analyse and compare the results. The tested samples showed significant differences in TPC, ascorbate content, and antioxidant capacity. The correlation between the content of bioactive compounds and antioxidant capacity depended on the analytical methods, with results obtained using the FRAP test being the most strongly correlated. Due to higher levels of polyphenols, ascorbate, and antioxidant potential, the most promising species for further evaluation appear to be Chaenomeles × californica, Actinidia kolomikta, Mespilus germanica, and ×Sorboaronia fallax.
Collapse
Affiliation(s)
- Barbara Łata
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Piotr Latocha
- Department of Environmental Protection and Dendrology, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Radosław Łaźny
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Anna Gutfeld
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
2
|
Xiong X, Liu Z, Che X, Zhang X, Li X, Gao W. Chemical composition, pharmacological activity and development strategies of Rubus chingii: A review. CHINESE HERBAL MEDICINES 2024; 16:313-326. [PMID: 39072206 PMCID: PMC11283228 DOI: 10.1016/j.chmed.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/10/2023] [Accepted: 01/11/2024] [Indexed: 07/30/2024] Open
Abstract
Raspberries are used for both food and medicine, but it has not yet attracted widespread attention. In this paper, the chemical constituen of the original plant raspberry. R. chingii is one of the new "Zhe Bawei" medicinal materials selected in 2017. "Zhe Bawei" refers to eight kinds of genuine medicinal materials in Zhejiang Province. The chemical constituents, pharmacological effects, processing, and application of Rubus chingii Hu were reviewed to provide a reference for its further development. Relevant literature in recent years was collected in databases such as China Knowledge Network, Web of Science, Elsevier, PubMed, and X-Mol, using "raspberry", "Rubus chingii", "traditional use", "chemical composition", "pharmacology", etc. as keywords individually or in combination. The summary of pharmacological activities shows that the relationship between the pharmacological activities of raspberry is still not deep enough. More in-depth research should be carried out in this direction to explore the mechanism of action of its active ingredients and provide effective reference for the further development of the raspberry industry. In the future, with the participation of more researchers, it is expected to develop innovative drugs based on raspberry for the treatment of diseases.
Collapse
Affiliation(s)
- Xiangmei Xiong
- Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
| | - Zheng Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300110, China
| | - Xiance Che
- Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
| | - Xuemin Zhang
- Key Laboratory of Advanced Chinese Medicine Resources Research Enterprises, Tianjin 300402, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300110, China
| | - Wenyuan Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300110, China
| |
Collapse
|
3
|
Qian H, Hu Y, Wang Z, Ren A, Zhang H, Chu S, Peng H. Comprehensive quality evaluation of different types of Gardeniae Fructus ( Zhizi) and Shuizhizi based on LC-MS/MS. FRONTIERS IN PLANT SCIENCE 2024; 15:1346591. [PMID: 38476680 PMCID: PMC10927785 DOI: 10.3389/fpls.2024.1346591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/31/2024] [Indexed: 03/14/2024]
Abstract
Gardeniae Fructus (Zhizi) serves as both a medicinal and edible substance and finds widespread use in various industries. There are often two kinds of medicinal materials in the market: Zhizi and Shuizhizi. Typically, Zhizi with small, round fruit is used for medicinal purposes, while Shuizhizi, characterized by large, elongated fruit, is employed for dyeing. Market surveys have revealed a diverse range of Zhizi types, and modern research indicates that Shuizhizi contains rich chemical components and pharmacological activities. In this study, we collected 25 batches of Zhizi and Shuizhizi samples, categorizing them based on appearance into obovate and round fruits, with seven length grades (A-G). Using the ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QQQ-MS/MS) method, we simultaneously quantified 13 main chemical components in fruits of Gardenia species. In addition, we compared the weight percentage of the pericarp, flesh, and seeds parts of samples with different traits, and quantified 13 chemical components in different parts. Results indicated that, aside from a few instances of overlapping fruit size ranges, Shuizhizi generally exhibits larger and longer dimensions than Zhizi. The weight proportion of the Shuizhizi pericarp is often higher than that of the Zhizi pericarp. Quantitative results highlighted significant differences in the chemical component content between Zhizi and Shuizhizi, with Shuizhizi generally containing higher levels of iridoids. The PCA and OPLS-DA analysis distinctly divided Shuizhizi and Zhizi, among which three iridoids, two organic acids, and one flavonoid made significant contributions to their classification. Cluster heatmap analysis also demonstrated complete separation between Zhizi and Shuizhizi, with clear distinctions among Zhizi samples from different origins. The distribution of the 13 chemical components in different Zhizi and Shuizhizi parts remained consistent, with iridoids and pigments concentrated in the seeds and flesh, and two organic acids and one flavonoid enriched in the pericarp. In summary, this study contributes valuable insights for classifying Zhizi and offers guidance on the rational use of Shuizhizi and the different parts of Zhizi.
Collapse
Affiliation(s)
- Huimin Qian
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yan Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhiwei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Aoyu Ren
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Research Unit of DAO-DI Herbs, Chinese Academy of Medical Sciences (2019RU57), Beijing, China
| | - Haiwen Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Shanshan Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Department of Traditional Chinese Medicine, Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Huasheng Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Research Unit of DAO-DI Herbs, Chinese Academy of Medical Sciences (2019RU57), Beijing, China
| |
Collapse
|
4
|
Kurt-Celep I, Zheleva-Dimitrova D, Sinan KI, Uba AI, Nilofar, Mahomoodally MF, Aumeeruddy MZ, Cakilcioglu U, Dall'Acqua S, Zengin G. Uncovering chemical profiles, biological potentials, and protection effect against ECM destruction in H 2 O 2 -treated HDF cells of the extracts of Stachys tundjeliensis. Arch Pharm (Weinheim) 2024; 357:e2300528. [PMID: 37974540 DOI: 10.1002/ardp.202300528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
The genus Stachys L., one of the largest genera of the Lamiaceae family, is highly represented in Turkey. This study was conducted to determine the bio-pharmaceutical potential and phenolic contents of six different extracts from aerial parts of Stachys tundjeliensis. The obtained results showed that the ethanol extract exhibited the highest antioxidant activity in the antioxidant assays. Meanwhile, the ethanol extract displayed strong inhibitory activity against α-tyrosinase, the dichloromethane extract exhibited potent inhibition against butyrylcholinesterase, and the n-hexane extract against α-amylase. Based on ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry analysis, more than 90 secondary metabolites, including hydroxybenzoic acid, hydroxycinnamic acid, and their glycosides, acylquinic acids, phenylethanoid glycosides, and various flavonoids were identified or tentatively annotated in the studied S. tundjeliensis extracts. It was observed that the application of S. tundjeliensis eliminated H2 O2 -induced oxidative stress. It was determined that protein levels of phospho-nuclear factor kappa B (NF-κB), receptor for advanced glycation endproducts, and activator protein-1, which are activated in the nucleus, decreased, and the synthesis of matrix metalloproteinase (MMP)-2 and MMP-9 also decreased to basal levels. Overall, these findings suggest that S. tundjeliensis contains diverse bioactive compounds for the development of nutraceuticals or functional foods with potent biological properties.
Collapse
Affiliation(s)
- Inci Kurt-Celep
- Department of Pharmacognosy, Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | | | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Turkey
| | - Nilofar
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | | | - Ugur Cakilcioglu
- Pertek Sakine Genç Vocational School, Munzur University, Pertek, Tunceli, Turkey
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
5
|
Varzaru I, Oancea AG, Vlaicu PA, Saracila M, Untea AE. Exploring the Antioxidant Potential of Blackberry and Raspberry Leaves: Phytochemical Analysis, Scavenging Activity, and In Vitro Polyphenol Bioaccessibility. Antioxidants (Basel) 2023; 12:2125. [PMID: 38136244 PMCID: PMC10740815 DOI: 10.3390/antiox12122125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The goal of this research was nutritional evaluation through the phytochemical analysis of blackberry and raspberry leaves, the screening of their biological activity (antioxidant capacity and inhibition of lipid peroxidation), and the investigation of the effect of in vitro gastrointestinal digestion (GID) of blackberry and raspberry leaves on the bioaccessibility of polyphenol subclasses. The concentrations of the analyzed liposoluble antioxidants were higher (p < 0.05) in blackberry leaves compared to raspberry leaves, while a significant (p < 0.05) higher content of water-soluble antioxidants was registered in raspberry leaves (with a total polyphenol content of 26.2 mg GAE/g DW of which flavonoids accounted for 10.6 mg/g DW). Blackberry leaves had the highest antioxidant capacity inhibition of the superoxide radicals (O2•-), while raspberry leaves registered the highest inhibition of hydroxyl radicals (•OH), suggesting a high biological potency in scavenging-free radicals under in vitro systems. The maximum inhibition percentage of lipid peroxidation was obtained for blackberry leaves (24.86% compared to 4.37% in raspberry leaves), suggesting its potential to limit oxidative reactions. Simulated in vitro digestion showed that hydroxybenzoic acids registered the highest bioaccessibility index in the intestinal phase of both types of leaves, with gallic acid being one of the most bioaccessible phenolics. The outcomes of this investigation reveal that the most significant release of phenolic compounds from blackberry and raspberry leaves occurs either during or after the gastric phase. Knowledge about the bioaccessibility and stability of polyphenol compounds during digestion can provide significant insights into the bioavailability of these molecules and the possible effectiveness of plant metabolites for human health.
Collapse
Affiliation(s)
- Iulia Varzaru
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No. 1, 077015 Balotesti, Romania; (A.G.O.); (P.A.V.); (M.S.)
| | | | | | | | - Arabela Elena Untea
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No. 1, 077015 Balotesti, Romania; (A.G.O.); (P.A.V.); (M.S.)
| |
Collapse
|
6
|
Yang R, Yang Y, Hu Y, Yin L, Qu P, Wang P, Mu X, Zhang S, Xie P, Cheng C, Zhang J. Comparison of Bioactive Compounds and Antioxidant Activities in Differentially Pigmented Cerasus humilis Fruits. Molecules 2023; 28:6272. [PMID: 37687101 PMCID: PMC10488777 DOI: 10.3390/molecules28176272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Chinese dwarf cherry (Cerasus humilis) is a wild fruit tree and medicinal plant endemic to China. Its fruits are rich in various bioactive compounds, such as flavonoids and carotenoids, which contribute greatly to their high antioxidant capacity. In this study, the contents of bioactive substances (chlorophyll, carotenoids, ascorbic acid, anthocyanin, total flavonoids, and total phenols), antioxidant capacities, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonicacid) (ABTS+) scavenging ability, and ferric-reducing antioxidant power (FRAP)) in differentially pigmented C. humilis fruits of four varieties were determined and compared. The results revealed that anthocyanin, total flavonoids and total phenols were the three main components responsible for the antioxidant activity of C. humilis fruits. 'Jinou No.1' fruits with dark red peel and red flesh had the highest contents of anthocyanin, total flavonoids, and total phenols, as well as the highest antioxidant capacities; 'Nongda No.5' fruits with yellow-green peel and yellow flesh had the highest contents of carotenoids and chlorophyll, while 'Nongda No.6' fruit had the highest ascorbic acid content. To further reveal the molecular mechanism underlying differences in the accumulation of carotenoids and flavonoids among differentially pigmented C. humilis fruits, the expression patterns of structural genes involved in the biosynthesis of the two compounds were investigated. Correlation analysis results revealed that the content of carotenoids in C. humilis fruits was very significantly positively correlated with the expression of the ChCHYB, ChZEP, ChVDE, ChNSY, ChCCD1, ChCCD4, ChNCED1, and ChNCED5 genes (p < 0.01) and significantly negatively correlated with the expression of ChZDS (p < 0.05). The anthocyanin content was very significantly positively correlated with ChCHS, ChFLS, and ChUFGT expression (p < 0.01). The total flavonoid content was very significantly positively correlated with the expression of ChCHS, ChUFGT, and ChC4H (p < 0.01) and significantly positively correlated with ChFLS expression (p < 0.05). This study can provide a basis for understanding the differences in the accumulation of bioactive substances, and is helpful for clarifying the mechanisms underlying the accumulation of various carotenoids and flavonoids among differentially pigmented C. humilis fruits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chunzhen Cheng
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (R.Y.); (Y.Y.); (Y.H.); (L.Y.); (P.Q.); (P.W.); (X.M.); (S.Z.); (P.X.)
| | - Jiancheng Zhang
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (R.Y.); (Y.Y.); (Y.H.); (L.Y.); (P.Q.); (P.W.); (X.M.); (S.Z.); (P.X.)
| |
Collapse
|
7
|
Zhao H, Wu Y, Wu W, Li W, Jin Y. Screening and Evaluation of Excellent Blackberry Cultivars and Strains Based on Nutritional Quality, Antioxidant Properties, and Genetic Diversity. PLANTS (BASEL, SWITZERLAND) 2023; 12:2982. [PMID: 37631193 PMCID: PMC10459901 DOI: 10.3390/plants12162982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
To screen and evaluate excellent blackberry cultivars and strains, 17 indexes of plant growth and fruit horticultural and nutritional characteristics were measured, 20 simple sequence repeat (SSR) markers were analyzed, the fingerprints of 23 blackberry cultivars and strains were constructed, and the processing characteristics of 10 excellent cultivars and strains were evaluated. The results showed that 'Chester' and 'Shuofeng' had the highest plant yield (6.5 kg per plant), of which the 'Chester' fruit also had the highest hardness (2.78 kg/cm2). 'Kiowa' had the highest single fruit weight (10.43 g). '10-5n-2' had the highest total anthocyanin content (225.4 mg/100 g FW) and total polyphenol content (3.24 mg/g FW), but a low plant yield. These results suggest that 'Shuofeng' and 'Chester' are the top two blackberry cultivars planted in Nanjing, with the best growth and comprehensive quality. Moreover, a total of 119 alleles were detected with an average number of 6 alleles per locus. The polymorphism information content (PIC) was 0.374~0.844, with an average of 0.739, indicating a high genetic diversity among the 23 blackberry cultivars and strains. This study provides insight into the plant growth, fruit characteristics and genetic diversity of the 23 blackberry cultivars and strains, and is thus conducive to the protection and utilization of blackberry cultivars and strains.
Collapse
Affiliation(s)
- Huifang Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China;
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China; (Y.W.); (W.W.)
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China; (Y.W.); (W.W.)
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China; (Y.W.); (W.W.)
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China;
| | - Yongcan Jin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China;
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Xia S, Fang D, Shi C, Wang J, Lyu L, Wu W, Lu T, Song Y, Guo Y, Huang C, Li W. Preparation of a thermosensitive nanofibre membrane for blackberry preservation. Food Chem 2023; 415:135752. [PMID: 36881958 DOI: 10.1016/j.foodchem.2023.135752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/16/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
Blackberries provide multiple health benefits. However, they deteriorate easily during harvesting, storage, and transportation (temperature-changing). Therefore, to extend their shelf-life under variable temperature conditions, a temperature-sensitive nanofibre-based material with good preservation attributes was developed, composed of polylactic acid (PLA) electrospun fibres, loaded with lemon essential oil (LEO) and covered with poly (N-isopropylacrylamide) (PNIPAAm). Compared with PLA and PLA/LEO nanofibres, PLA/LEO/PNIPAAm exhibited good mechanical properties, oxidation resistance, antibacterial ability, and controlled release of LEO. The PNIPAAm layer prevented rapid LEO release below the low critical solution temperature (32 °C). When the temperature exceeded 32 °C, the PNIPAAm layer underwent a chain-to-globule transition and accelerated LEO release (slower than PLA/LEO). The temperature-controlled release of LEO via PLA/LEO/PNIPAAm membrane prolongs its action time. Therefore, PLA/LEO/PNIPAAm effectively maintained the appearance and nutritive quality of blackberries during variable storage temperatures. Our research demonstrated that active fibre membranes have great potential applications in preserving fresh products.
Collapse
Affiliation(s)
- Shuqiong Xia
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Donglu Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Chong Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Junying Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Lianfei Lyu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu 210014, China
| | - Wenlong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu 210014, China
| | - Tao Lu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Provincial Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yuanyuan Song
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Provincial Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yalong Guo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Chaobo Huang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Provincial Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
9
|
Wu Y, Wu W, Zhang C, Lyu L, Li W. Breeding and Growth Performance of 'Ningzhi 4', a New Blackberry Cultivar with High Yield Potential and Good Quality in China. PLANTS (BASEL, SWITZERLAND) 2023; 12:1661. [PMID: 37111883 PMCID: PMC10147019 DOI: 10.3390/plants12081661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
The thornless blackberry cultivar 'Ningzhi 4' was developed by the Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen). The new blackberry cultivar was selected from the 'Kiowa' (female parent) and 'Hull Thornless' (male parent) F1 hybrid. 'Ningzhi 4' had excellent plant characteristics, including thornlessness, semi-erect to erect canes, vigorous growth and good disease resistance. 'Ningzhi 4' had large fruit and high yield. In addition, the parents of the superior hybrid plant were further identified by SSR markers, which provided the basis for the fingerprint of the new blackberry cultivar 'Ningzhi 4'. This is a commercial cultivar to be grown for fruit production for either shipping or local sales. It also has value as a home-garden plant. This unique type of blackberry fruit was a traditional summer fruit. This new cultivar has thornless semi-erect to erect canes and produces high-quality berries with large size, good firmness, excellent flavor, and potential for shipping and postharvest storage. The new blackberry cultivar 'Ningzhi 4' is adapted to all areas of southern China and is expected to replace or complement 'Kiowa', 'Hull Thornless', 'Chester Thornless' and 'Triple Crown'. A local cultivar patent has been approved by the Jiangsu Variety Approval Committee as 'Rubus spp. Ningzhi 4' in 2020 (S-SV-RS-014-2020). In the future, 'Ningzhi 4' could be promoted as an advantageous thornless blackberry cultivar in the main production regions of China.
Collapse
Affiliation(s)
- Yaqiong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Qian Hu Hou Cun No. 1, Nanjing 210014, China; (Y.W.); (C.Z.); (L.L.)
| | - Wenlong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Qian Hu Hou Cun No. 1, Nanjing 210014, China; (Y.W.); (C.Z.); (L.L.)
| | - Chunhong Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Qian Hu Hou Cun No. 1, Nanjing 210014, China; (Y.W.); (C.Z.); (L.L.)
| | - Lianfei Lyu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Qian Hu Hou Cun No. 1, Nanjing 210014, China; (Y.W.); (C.Z.); (L.L.)
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| |
Collapse
|
10
|
Ren X, Wang S, Wang J, Xu D, Ye Y, Song Y. Widely targeted metabolome profiling of different plateau raspberries and berry parts provides innovative insight into their antioxidant activities. FRONTIERS IN PLANT SCIENCE 2023; 14:1143439. [PMID: 36993862 PMCID: PMC10042140 DOI: 10.3389/fpls.2023.1143439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Raspberries are highly nutritious and have powerful antioxidant properties, making them functional berries with positive effects on physiological functioning. However, there is limited information available on the diversity and variability of metabolites in raspberry and its parts, especially in plateau raspberries. To address this, commercial raspberries and their pulp and seeds from two plateaus in China were subjected to LC-MS/MS-based metabolomics analysis and evaluated for antioxidant activity using four assays. A metabolite-metabolite correlation network was established based on antioxidant activity and correlation analysis. The results showed that 1661 metabolites were identified and classified into 12 categories, with significant variations in composition between the whole berry and its parts from different plateaus. Flavonoids, amino acids and their derivatives, and phenolic acids were found to be up-regulated in Qinghai's raspberry compared to Yunnan's raspberry. The main differently regulated pathways were related to flavonoid, amino acid, and anthocyanin biosynthesis. The antioxidant activity of Qinghai's raspberry was stronger than Yunnan's raspberry, and the order of antioxidant capacity was seed > pulp > berry. The highest FRAP (420.31 µM TE/g DW) values was found in the seed of Qinghai's raspberry. Overall, these findings suggest that the environment in which the berries grow can affect their chemical composition, and comprehensive exploitation and cultivation of whole raspberry and its parts from different plateaus can lead to new opportunities for phytochemical compositions and antioxidant activity.
Collapse
Affiliation(s)
- Xiaoli Ren
- Agriculture and Animal Husbandry College, Qinghai University, Xining, China
| | - Shulin Wang
- Agriculture and Animal Husbandry College, Qinghai University, Xining, China
| | - Jinying Wang
- Agriculture and Animal Husbandry College, Qinghai University, Xining, China
| | - Dan Xu
- Department of Public Health, Medical College, Qinghai University, Xining, China
| | - Ying Ye
- Agriculture and Animal Husbandry College, Qinghai University, Xining, China
| | - Yangbo Song
- Agriculture and Animal Husbandry College, Qinghai University, Xining, China
| |
Collapse
|
11
|
Analysis of flavonoid-related metabolites in different tissues and fruit developmental stages of blackberry based on metabolome analysis. Food Res Int 2023; 163:112313. [PMID: 36596208 DOI: 10.1016/j.foodres.2022.112313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Blackberry is an economically important shrub species of Rubus in the Rosaceae family. It is rich in phenolic compounds, which have many health effects and pharmaceutical value. The utilization of metabolites from various blackberry tissues is still in the primary stage of development, so investigating the metabolites in various tissues is of practical significance. In this study, nontargeted LC - MS metabolomics was used to identify and measure metabolites in the roots, stems, leaves and fruits (green, red, and black fruits) of blackberry "Chester". We found that 1,427 and 874 metabolites were annotated in the positive and negative ion modes (POS; NEG), respectively. Differentially abundant metabolites (DAMs) between the leaf and root groups were the most abundant (POS: 249; NEG: 141), and the DAMs between the green and red fruit groups were the least abundant (POS: 21; NEG: 14). Moreover, the DAMs in different fruit development stages were far less than those in different tissues. There were significant differences in flavonoid biosynthesis-related pathways among the comparison groups. Trend analysis showed that the profile 10 had the largest number of metabolites. This study provides a scientific basis for the classification and efficient utilization of resources in various tissues of blackberry plants and the directional development of blackberry products.
Collapse
|
12
|
Wu Y, Liu Y, Wu J, Ou K, Huang Q, Cao J, Duan T, Zhou L, Pan Y. Chemical profile and antioxidant activity of bidirectional metabolites from Tremella fuciformis and Acanthopanax trifoliatus as assessed using response surface methodology. Front Nutr 2022; 9:1035788. [DOI: 10.3389/fnut.2022.1035788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
This study aimed to establish a bidirectional fermentation system using Tremella fuciformis and Acanthopanax trifoliatus to promote the transformation and utilization of the synthesized antioxidant metabolites from fermentation supernatant. The effect of fermentation conditions on the total phenolic content was investigated using response surface methodology in terms of three factors, including temperature (22–28°C), pH (6–8), and inoculum size (2–8%, v/v). The optimized fermentation parameters were: 28°C, pH 8, and an inoculum size of 2%, which led to a maximum total phenolic content of 314.79 ± 6.89 μg/mL in the fermentation supernatant after 24 h culture. The content of total flavonoids and polysaccharides reached 78.65 ± 0.82 μg/mL and 9358.08 ± 122.96 μg/mL, respectively. In addition, ABTS+, DPPH⋅, and ⋅OH clearance rates reached 95.09, 88.85, and 85.36% at 24 h under optimized conditions, respectively. The content of total phenolics, flavonoids and polysaccharides in the optimized fermentation supernatant of T. fuciformis–Acanthopanax trifoliatus increased by 0.88 ± 0.04, 0.09 ± 0.02, and 33.84 ± 1.85 times that of aqueous extracts from A. trifoliatus, respectively. Simultaneously, 0.30 ± 0.00, 0.26 ± 0.01, and 1.19 ± 0.12 times increase of antioxidant activity against ABTS+, DPPH⋅, and ⋅OH clearance rates were observed, respectively. Additionally, the metabolite composition changes caused by fermentation were analyzed using ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) based on untargeted metabolomics and the phytochemical profile of fermentation supernatant differentiated significantly based on unsupervised principal component analysis (PCA) during fermentation from 24 to 96 h. Furthermore, a significant increase in antioxidant phenolic and flavonoid compounds, such as ellagic acid, vanillin, luteolin, kaempferol, myricetin, isorhamnetin, and (+)-gallocatechin, was observed after fermentation. Thus, these results indicated that the fermentation broth of T. fuciformis and A. trifoliatus had significant antioxidant activity, and may have potential application for health products such as functional beverages, cosmetics, and pharmaceutical raw materials.
Collapse
|
13
|
Relationship between Phenolic Compounds and Antioxidant Activity in Berries and Leaves of Raspberry Genotypes and Their Genotyping by SSR Markers. Antioxidants (Basel) 2022; 11:antiox11101961. [PMID: 36290690 PMCID: PMC9599021 DOI: 10.3390/antiox11101961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
The red raspberry is one of the world’s most popular berries. The main direction of its breeding has switched to nutritional quality, and the evaluation of raspberry germplasm for antioxidant content and activity is very important. As berries, raspberry leaves contain valuable bioactive compounds, but the optimal time for their collection is unknown. We evaluated 25 new breeding lines and standard raspberry cultivars for their polyphenolic content and antioxidant capacity. The antioxidant activity of berries correlated better with the content of total phenolics (0.88 and 0.92) and flavonoids (0.76 and 0.88) than with anthocyanins (0.37 and 0.66). Two breeding lines were significantly superior to the standard cultivars and can be used in further breeding. Leaves collected in three phenological phases of the raspberry contained more phenolics (5.4-fold) and flavonoids (4.1-fold) and showed higher antioxidant activities (2.4-fold in FRAP assay, 2.2-fold in ABTS) than berries. The optimal time for harvesting raspberry leaves is the fruit ripening stage, with exceptions for some cultivars. Genetic diversity analysis using microsatellite (SSR) markers from flavonoid biosynthesis genes divided the genotypes into five clusters, generally in agreement with their kinships. The relationship between genetic data based on metabolism-specific SSR markers and the chemical diversity of cultivars was first assessed. The biochemical and genetic results show a strong correlation (0.78). This study is useful for further the improvement of raspberry and other berry crops.
Collapse
|
14
|
Composition and Antioxidant Activity of Anthocyanins and Non-Anthocyanin Flavonoids in Blackberry from Different Growth Stages. Foods 2022; 11:foods11182902. [PMID: 36141030 PMCID: PMC9498317 DOI: 10.3390/foods11182902] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
The high nutritional value and unique flavor of blackberries make them a popular food choice among consumers. Anthocyanin content (AC) and non-anthocyanin flavonoid content (NAFC) are important functional components in blackberry. We tested the AC, NAFC, and antioxidant activities of two blackberry—Ningzhi 1 and Hull—during the following ripening stages: green-fruit stage (GFS), color-turning stage (CTS), reddening stage (RDS), and ripening stage (RPS). The results showed that NAFC decreased and AC increased gradually during the ripening stages. The NAFC of Hull blackberry was the highest during GFS (889.74 μg/g), while the AC of Ningzhi 1 blackberry was the highest during RPS (1027.08 μg/g). NAFC was the highest at the initial stage and gradually decreased with ripening. Anthocyanin accumulation mainly occurred during the later ripening stages. These results provide a reference for comparing the NAFC, AC, and antioxidant activity of Ningzhi 1 and Hull and their changes during different ripening stages.
Collapse
|
15
|
Halim MA, Kanan KA, Nahar T, Rahman MJ, Ahmed KS, Hossain H, Mozumder NR, Ahmed M. Metabolic profiling of phenolics of the extracts from the various parts of blackberry plant (Syzygium cumini L.) and their antioxidant activities. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|