1
|
Hu L, Hu Y, Hong A, Guo J, Zhong C, Cai J, Shen L, Ding Y, Zhang H, Zhang X, Deng H, Zhu Y, Cai Q. Comparison of lipid profiles of male and female silkworm (Bombyx mori) pupae through high-resolution mass spectrometry-based lipidomics and chemometrics. Food Chem 2024; 459:140396. [PMID: 39024883 DOI: 10.1016/j.foodchem.2024.140396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/19/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Silkworm (Bombyx mori) pupae lipid profiles were analyzed using high-resolution mass spectrometry-based lipidomics. A total of 241 lipid molecular species were annotated with high confidence in male and female silkworm pupae. Triacylglycerol (TG), phosphoethanolamine (PE) and phosphocholine (PC) were the main lipid subclasses of silkworm pupae, accounting for 63, 41 and 38 lipid molecular species, respectively. No unique lipid molecular species were identified, but there were differences in the abundance of lipid molecular species between male and female silkworm pupae. Therefore, the differences in the lipid abundance of male and female silkworm pupae were analyzed by chemometrics. As a result, 8 lipid molecular species were screened for differential lipids. Hierarchical clustering analysis (HCA) showed that male and female silkworm pupae samples formed two distinct branches, indicating that these differential lipids could potentially be used as biomarkers to distinguish between male and female silkworm pupae.
Collapse
Affiliation(s)
- Lingping Hu
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yaqin Hu
- College of Food Science and Engineering, Hainan Tropical Ocean University, Yazhou Bay Innovation Institute, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya 572022, China
| | - Aimei Hong
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China
| | - Jing Guo
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chao Zhong
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China
| | - Jialing Cai
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China
| | - Lingjin Shen
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China
| | - Yingjie Ding
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China
| | - Hongwei Zhang
- Food and Agricultural Products Testing Agency, Technology Center of Qingdao Customs District, Qingdao, Shandong Province 266002, China
| | - Xiaomei Zhang
- Food and Agricultural Products Testing Agency, Technology Center of Qingdao Customs District, Qingdao, Shandong Province 266002, China
| | - Haiteng Deng
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yin Zhu
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China.
| | - Qiang Cai
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China.
| |
Collapse
|
2
|
Chukiatsiri S, Wongsrangsap N, Kiatwuthinon P, Phonphoem W. Purification and identification of novel antioxidant peptides derived from Bombyx mori pupae hydrolysates. Biochem Biophys Rep 2024; 38:101707. [PMID: 38601751 PMCID: PMC11004502 DOI: 10.1016/j.bbrep.2024.101707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
The biological importance of antioxidant peptides was the focus of new natural sources of food preservatives. Bombyx mori pupae are considered a valuable by-product of the silk-reeling industry due to their high-quality protein content. This study aimed to purify and identify the antioxidant peptides obtained from enzymatically hydrolyzed B. mori pupae, which could be used as new sources of natural food preservatives. Among the prepared hydrolysates, pepsin hydrolysate with the highest antioxidant activities was purified sequentially using ultrafiltration and reversed-phase high-performance liquid chromatography (RP-HPLC). The DPPH radical scavenging and ferrous ion chelating activity were used to evaluate antioxidant activity. Fractions with high activity were further analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Three peptides were identified as Glu-Asn-Ile-Ile-Leu-Phe-Arg (ENIILFR), Leu-Asn-Lys-Asp-Leu-Met-Arg (LNKDLMR), and Met-Leu-Ile-Ile-Ile-Met-Arg (MLIIIMR), respectively. All three novel identified peptides exhibited significantly stronger antioxidant capacity than synthetic antioxidants used in the food industry, including butylated hydroxyanisole (BHA), and butylated hydroxytoluene (BHT). ENIILFR showed the best antioxidant activity. These findings indicate that the three peptides have potential applications as natural antioxidants in the food industry.
Collapse
Affiliation(s)
- Suttida Chukiatsiri
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Pichamon Kiatwuthinon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Wannarat Phonphoem
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
3
|
Lin X, Fan Y, Li L, Chen J, Huang S, Yue W, Wu X. The Protective Effects of Silkworm ( Bombyx mori) Pupae Peptides on UV-Induced Skin Photoaging in Mice. Foods 2024; 13:1971. [PMID: 38998477 PMCID: PMC11241504 DOI: 10.3390/foods13131971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Silkworm (Bombyx mori) pupae are popular edible insects with high nutritional and therapeutic value. Currently, there is growing interest in the comprehensive application of silkworm pupae. In this study, peptides that exhibited anti-photoaging activity were obtained from silkworm pupae protein, aiming to investigate the protective effects and potential mechanisms of silkworm pupae peptides (SPPs) on skin photoaging. The results showed that SPPs were composed of 900 short peptides and could effectively alleviate skin photoaging progression. They significantly eliminated excessive production of ROS and MDA; meanwhile, they also renovated the antioxidant enzyme activities. The biomarkers related to collagen synthesis and degradation, including hydroxyproline, interstitial collagenase, and gelatinase, demonstrated that SPPs could suppress collagen degradation. Histopathological results showed that SPPs could reduce the inflammatory infiltrate and the thickness of the dermis and epidermis, as well as increase the collagen bundles and muscle fibers. The histopathological and biochemical results confirmed that SPPs could alleviate photoaging by inhibiting abnormal skin changes, reducing oxidative stress, and immune suppression. Overall, these data prove the protective effects of SPPs against the photoaging process, suggesting their potential as an active ingredient in skin photoaging prevention and therapy.
Collapse
Affiliation(s)
- Xiao Lin
- Medical School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.L.); (L.L.); (S.H.)
| | - Yuting Fan
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, China; (Y.F.); (J.C.); (W.Y.)
| | - Liuying Li
- Medical School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.L.); (L.L.); (S.H.)
| | - Jiamin Chen
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, China; (Y.F.); (J.C.); (W.Y.)
| | - Songyuan Huang
- Medical School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.L.); (L.L.); (S.H.)
| | - Wenqi Yue
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, China; (Y.F.); (J.C.); (W.Y.)
| | - Xuli Wu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, China; (Y.F.); (J.C.); (W.Y.)
| |
Collapse
|
4
|
Zhu X, Zhao YF, Wen HJ, Lu Y, You S, Herman RA, Wang J. Silkworm pupae protein co-degradation by magnetic nanoparticles immobilized proteinase K and Mucor circinelloides aspartic protease for further utilization of sericulture by-products. ENVIRONMENTAL RESEARCH 2024; 249:118385. [PMID: 38331140 DOI: 10.1016/j.envres.2024.118385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Silkworm pupae, by-product of sericulture industry, is massively discarded. The degradation rate of silkworm pupae protein is critical to further employment, which reduces the impact of waste on the environment. Herein, magnetic Janus mesoporous silica nanoparticles immobilized proteinase K mutant T206M and Mucor circinelloides aspartic protease were employed in the co-degradation. The thermostability of T206M improved by enhancing structural rigidity (t1/2 by 30 min and T50 by 5 °C), prompting the degradation efficiency. At 65 °C and pH 7, degradation rate reached the highest of 61.7%, which improved by 26% compared with single free protease degradation. Besides, the immobilized protease is easy to separate and reuse, which maintains 50% activity after 10 recycles. Therefore, immobilized protease co-degradation was first applied to the development and utilization of silkworm pupae resulting in the release of promising antioxidant properties and reduces the environmental impact by utilizing a natural and renewable resource.
Collapse
Affiliation(s)
- Xuan Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Yi-Fan Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Hong-Jian Wen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Yu Lu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Shuai You
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Richard Ansah Herman
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| |
Collapse
|
5
|
Hăbeanu M, Gheorghe A, Dinita G, Mihalcea T. An In-Depth Insight into the Profile, Mechanisms, Functions, and Transfer of Essential Amino Acids from Mulberry Leaves to Silkworm Bombyx mori L. Pupae and Fish. INSECTS 2024; 15:332. [PMID: 38786888 PMCID: PMC11122254 DOI: 10.3390/insects15050332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
The silkworm Bombyx mori, the second most varied group of insects, is a fascinating insect that belongs to the Lepidoptera species. We aimed to deepen our knowledge about the composition and significance of amino acids (AA) from the sericulture chain to fish. AAs are the most prevalent molecules throughout the growth process of silkworms. We described AAs classification, occurrence, metabolism, and functions. Online datasets revealed that the essential AAs (EAA) level in fish meal and silkworm pupae (SWP) is comparable. SWP have a high content of methionine and lysine, which are the principal limiting AAs in fish diets, indicating that SWP have nutritional potential to be added to fish diets. Additionally, an overview of the data analyzed displays that SWP have a higher protein efficiency ratio than fish meal, the classical protein-rich source (>1.19 times), and compared to soybean meal, the second-most preferred source of protein in aquaculture (>2.08 times), indicating that SWP can be considered effective for animal feeding. In this study, we provide an overview of the current knowledge concerning AAs, paying special emphasis to EAAs and explaining, to some extent, certain mechanisms and functions of these compounds, from mulberry leaves to larvae-pupae and fish diets.
Collapse
Affiliation(s)
- Mihaela Hăbeanu
- Research Station for Sericulture Baneasa, 013685 Bucharest, Romania; (A.G.); (T.M.)
| | - Anca Gheorghe
- Research Station for Sericulture Baneasa, 013685 Bucharest, Romania; (A.G.); (T.M.)
| | - Georgeta Dinita
- Faculty of Animal Productions Engineering and Management, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., District 1, 011464 Bucharest, Romania;
| | - Teodor Mihalcea
- Research Station for Sericulture Baneasa, 013685 Bucharest, Romania; (A.G.); (T.M.)
| |
Collapse
|
6
|
Sinha B, Choudhury Y. Revisiting edible insects as sources of therapeutics and drug delivery systems for cancer therapy. Front Pharmacol 2024; 15:1345281. [PMID: 38370484 PMCID: PMC10869617 DOI: 10.3389/fphar.2024.1345281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Cancer has been medicine's most formidable foe for long, and the rising incidence of the disease globally has made effective cancer therapy a significant challenge. Drug discovery is targeted at identifying efficacious compounds with minimal side effects and developments in nanotechnology and immunotherapy have shown promise in the fight against this complicated illness. Since ancient times, insects and insect-derived products have played a significant role in traditional medicine across several communities worldwide. The aim of this study was to inspect the traditional use of edible insects in various cultures and to explore their modern use in cancer therapy. Edible insects are sources of nutrients and a variety of beneficial substances with anticancer and immunomodulatory potential. Recently, insect derived bioactive-components have also been used as nanoparticles either in combination with chemotherapeutics or as a nano-cargo for the enhanced delivery of chemotherapeutic drugs due to their high biocompatibility, low bio-toxicity, and their antioxidant and anticancer effects. The crude extracts of different edible insects and their active components such as sericin, cecropin, solenopsin, melittin, antimicrobial peptides and fibroin produce anti-cancer and immunomodulatory effects by various mechanisms which have been discussed in this review.
Collapse
|
7
|
Tanga CM, Ekesi S. Dietary and Therapeutic Benefits of Edible Insects: A Global Perspective. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:303-331. [PMID: 37758222 DOI: 10.1146/annurev-ento-020123-013621] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Edible insects are gaining traction worldwide for research and development. This review synthesizes a large and well-established body of research literature on the high nutritional value and variety of pharmacological properties of edible insects. Positive benefits of insect-derived products include immune enhancement; gastrointestinal protection; antitumor, antioxidant, and anti-inflammatory capacities; antibacterial activities; blood lipid and glucose regulation; lowering of blood pressure; and decreased risk of cardiovascular diseases. However, the pharmacological mechanisms of these active components of edible insects in humans have received limited research attention. In addition, we discuss health risks (safety); application prospects; regulations and policies governing their production and consumption with a view to promote innovations, intraglobal trade, and economic development; and suggestions for future directions for further pharmacological functional studies. The aim is to review the current state of knowledge and research trends on edible insects as functional ingredients beneficial to the nutrition and health of humans and animals (livestock, aquatic species, and pets).
Collapse
Affiliation(s)
- Chrysantus Mbi Tanga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya; ,
| | - Sunday Ekesi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya; ,
| |
Collapse
|
8
|
Thongwong P, Wattanathorn J, Thukhammee W, Tiamkao S. The potential role of the novel orodispersible film from rice polymer loaded with silkworm pupae hydrolysate and the combined extract of holy basil and ginger for the management of stroke with stress. Biomaterials 2023; 299:122175. [PMID: 37262936 DOI: 10.1016/j.biomaterials.2023.122175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 04/02/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023]
Abstract
The prevalence of stroke under stress conditions is rising and the severity of stroke is increasing. Owing to the limitation of the current therapeutic strategy, a novel effective strategy for treating this condition is needed. In this study, we explored the neuroprotective effect of an orodispersible film derived from a rice polymer loaded with silkworm pupae and the combined extract of holy basil and ginger (JP1). Male Wistar rats weighing 200-250 g were administered JP1 at the doses of 1, 10, and 100 mg/kg BW 45 min prior to an exposure to a 6-h immobilization stress for 14 days. Permanent, occlusion of the right middle cerebral artery (MCAO) was performed, and JP1 was administered continually for 21 days after MCAO. Assessments of the brain infarction volume, oxidative stress, inflammation, and apoptosis in the cerebral cortex were carried out 24 h after MCAO. Neurological severity scores were also determined for the rats every 7 days after MCAO until the end of the study period. The results clearly showed that all doses of JP1 decreased the brain infarct volume, oxidative stress, inflammation, and apoptosis and improved neurological deficits. Therefore, JP1 is a potential novel neuroprotective supplement for combating ischemic stroke under stress conditions. However, a clinical trial is essential to confirm this beneficial effect.
Collapse
Affiliation(s)
- Putthiwat Thongwong
- Department of Physiology and Graduate School (Neuroscience Program), Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Jintanaporn Wattanathorn
- Integrative Complementary Alternative Medicine Research and Development Center in Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, 40002, Thailand; Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| | - Wipawee Thukhammee
- Integrative Complementary Alternative Medicine Research and Development Center in Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, 40002, Thailand; Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| | - Somsak Tiamkao
- Integrative Complementary Alternative Medicine Research and Development Center in Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, 40002, Thailand; Department of Internal Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
9
|
Zhou Y, Ji X, Wang D, Guo Y, Zhao J, Yan W. Effect of silkworm pupae ( Bombyx mori) protein on colon cancer in nude mice: inhibition of tumor growth, oxidative stress and inflammatory response. Front Pharmacol 2023; 14:1138742. [PMID: 37538184 PMCID: PMC10394231 DOI: 10.3389/fphar.2023.1138742] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023] Open
Abstract
Silkworm pupa (bombyx mori) protein (SPP) is a potential therapeutic bioactive substance that has anti-tumor activity against breast, liver, and gastric cancers. The aim of this study was to investigate the antitumor effect of SPP on colon cancer nude mice. Using a subcutaneous tumor formation method, we validated the therapeutic effect of SPP on colon cancer nude mice in vivo. Results showed that SPP was cytotoxic to tumor cells. SPP could protect the liver of the nude mice by lowering hepatic oxidative stress and regulating serum inflammation levels by decreasing TNF-α and IL-2 levels while in-creasing INF-γ levels. In addition, diminished Ki-67 protein, enhanced cleaved caspase-3 protein, di-minished Vimentin, enhanced E-cadherin. These findings suggested that SPP's antitumor activity may be achieved by reducing inflammation, inhibiting tumor proliferation and metastasis, and inducing apoptosis in cancer cells. In the future, SPP could be used as an anticancer drug, potentially providing a new source of drugs for the treatment of colon cancer.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Xiaojiao Ji
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yu Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Jian Zhao
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| |
Collapse
|
10
|
Fan YX, Andoh V, Chen L. Multi-omics study and ncRNA regulation of anti-BmNPV in silkworms, Bombyx mori: an update. Front Microbiol 2023; 14:1123448. [PMID: 37275131 PMCID: PMC10232802 DOI: 10.3389/fmicb.2023.1123448] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Bombyx mori silkworm is an important economic insect which has a significant contribution to the improvement of the economy. Bombyx mori nucleopolyhedrovirus (BmNPV) is a vitally significant purulent virus that impedes the sustainable and stable development of the silkworm industry, resulting in substantial economic losses. In recent years, with the development of biotechnology, transcriptomics, proteomics, metabolomics, and the related techniques have been used to select BmNPV-resistant genes, proteins, and metabolites. The regulatory networks between viruses and hosts have been gradually clarified with the discovery of ncRNAs, such as miRNA, lncRNA, and circRNA in cells. Thus, this paper aims to highlight the results of current multi-omics and ncRNA studies on BmNPV resistance in the silkworm, providing some references for resistant strategies in the silkworm to BmNPV.
Collapse
|
11
|
Hăbeanu M, Gheorghe A, Mihalcea T. Nutritional Value of Silkworm Pupae ( Bombyx mori) with Emphases on Fatty Acids Profile and Their Potential Applications for Humans and Animals. INSECTS 2023; 14:insects14030254. [PMID: 36975939 PMCID: PMC10051144 DOI: 10.3390/insects14030254] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 05/27/2023]
Abstract
Bombyx mori is an ideal lepidopteran species representative of many scientific studies, a model of studies for medicine and a significant insect from an ecological standpoint. This review was performed to summarize the fatty acids (FA) composition of silkworm pupae (SP) that are associated with other important compounds that could add value to SP, diversifying the ways of valorization. The proposal to complete plant-based feeds with insect-based feeds represents a viable option to beneficially impact human and animal health and the environment. The quality and quantity of fats consumed significantly impact the aetiology of certain diseases. The key compounds of fat named essential FA (EFA) substantially influence the prevention and treatment of several diseases through their nutraceutical functions. Due to its excellent profile in nutrients such as protein and fat, amino acids and fatty acids composition, SP has become an important alternative feed ingredient and source of EFA. SP is a by-product that was discarded in large quantities. Following the need to act to improve human health and reduce climate change impact, many researchers focused on studying SP applications in the medical and agricultural industries. Several authors noticed an improvement in the health markers by using SP. The feed cost for the animal was reduced with economic implications. Minimization of environmental impact was recorded. Few precautions were recommended regarding SP use, although they should not be ignored. The composition of SP and its potential for use in various industries provides us with persuasive arguments for continuing to develop the sericulture industry.
Collapse
|
12
|
Tanga CM, Mokaya HO, Kasiera W, Subramanian S. Potential of Insect Life Stages as Functional Ingredients for Improved Nutrition and Health. INSECTS 2023; 14:136. [PMID: 36835705 PMCID: PMC9959540 DOI: 10.3390/insects14020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to provide information on the nutrients of the edible larval stage of Gonimbrasia cocaulti (GC) for the first time, while exploring the potential nutrient content of the pupal life stages of the domestic silkworm (Bombyx mori; BM) and the Eri silkworm (Samia Cynthia ricini; SC). The three insects were analyzed for fatty acids, minerals, proximate composition and vitamins. Among the fatty acids, linoleic, a polyunsaturated fatty acid, was approximately threefold higher in GC than in the silkworms. The Ca, Fe and K contents were highest in GC. However, the Zn and Na contents were highest in BM, while Mg content was predominant in SC. The crude protein content of the various developmental life stages of the edible caterpillars and pupae ranged between 50 and 62%. Further, the fiber content of GC was substantially higher compared to the pupal stages of the two silkworm species. The vitamin (B6, B9, B12 and α-tocopherol) levels of the two insect life stages were considerably high. These insects are comparably rich in nutrients with potential suitability to be utilized in food fortification and thus ease pressure on the over-reliance on animal and plant-based sources, which are becoming unsustainable.
Collapse
|
13
|
Choi JI, Kweon HY, Lee YL, Lee JH, Lee SY. Efficacy of Silkworm Pupae Extract on Muscle Strength and Mass in Middle-Aged and Older Individuals: A Randomized, Double-Blind, Placebo-Controlled Trial. J Nutr Health Aging 2023; 27:578-585. [PMID: 37498105 DOI: 10.1007/s12603-023-1942-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/06/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVES We investigated the efficacy and safety of silkworm pupae extract (SWP) consumption for 12 weeks on muscle mass and strength in middle-aged and older individuals with relatively low skeletal muscle mass who do regular low-intensity exercise. DESIGN A randomized double-blinded placebo-controlled trial. PARTICIPANTS The study was conducted with 54 participants with relatively low skeletal muscle mass (SMM) (64.4 ± 6.1 years; body mass index, 23.8 ± 2.4 kg/m2). INTERVENTION AND MEASUREMENTS Participants were randomly assigned to one of two groups: 1000 mg of SWP/day plus regular exercise (SWP group, n=27) or placebo plus regular exercise (placebo group, n=27). All participants were required to engage in 30-60 minutes/day of walking for ≥3 days/week for 12 weeks. The primary outcome was knee extension/flexion strength (Nm), measured at the velocity of 60°/s. Secondary outcomes included body composition, biomarkers (creatine kinase and creatinine), handgrip strength, and quality of life questionnaire. RESULTS Both the intention-to-treat (ITT) and per-protocol (PP) analyses revealed no significant impact of SWP on knee strength compared to the placebo group over 12 weeks. On the other hand, the SWP group had significantly greater increases in right-handgrip strength by 1.94 kg (95% CI: 0.08-3.79; p = 0.041) and left-handgrip strength by 1.83 kg (0.25-3.41; p = 0.024) compared to the placebo group in the ITT population, after 12 weeks. Moreover, in the PP population, the SWP group revealed an even greater increase in right-handgrip strength by 2.07 kg (0.15-3. 98; p = 0.035) and left-handgrip strength by 2.21 kg (0.60-3.83; p = 0.008) for the 12-week period. However, this study resulted in a failure to detect significant differences in the body composition, biomarkers, quality of life questionnaire, physical activity, and caloric intake between the groups. None of the participants in the SWP group experienced any significant adverse events. In the placebo group, two participants experienced urticaria and allergic side effects, leading to their withdrawal from the study and two exhibited elevated levels of liver enzyme and increased diastolic blood pressure, respectively at 12 weeks. CONCLUSION SWP, in addition to low-intensity exercise, may enhance handgrip strengths in middle-aged and older adults with relatively lower SMM. Future studies need to use a large sample size over longer periods to validate our findings. This trial was registered at clinicaltrials.gov as NCT04994054.
Collapse
Affiliation(s)
- J I Choi
- Sang Yeoup Lee, Family Medicine Clinic, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea, Telephone: +82-55-390-1442, E-mail: , Fax: +82-51-510-8125
| | | | | | | | | |
Collapse
|
14
|
Ferdousi L, Begum M, Yeasmin MS, Uddin J, Miah MAA, Rana GM, Chowdhury TA, Boby F, Maitra B, Khan R, Emran TB, Siddique MAB. Facile acid fermentation extraction of silkworm pupae oil and evaluation of its physical and chemical properties for utilization as edible oil. Heliyon 2023; 9:e12815. [PMID: 36647348 PMCID: PMC9840356 DOI: 10.1016/j.heliyon.2023.e12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Considering the increasing demand for edible oil in recent times, their price in the world market is becoming skyrocketing. In this research, we produced cost-effective edible oil from desilked silkworm pupae (Bombyx mori) applying a facile acid fermentation process, for the first time. The extraction was performed using two different types of organic acids, 3% of each acetic and citric acid. The yield of the extracted oil was 3.52 ± 0.23% from fresh silkworm pupae. The produced oil was then characterized physically and chemically to know its suitability to be used as edible oil. The oil was found with a low peroxide and acid value of 4.82 meq/kg and 1.35 mg KOH/g oil, respectively, and comprised of different fatty acids, in which palmitic acid (32.04%) and oleic acid (34.62%) were in large portions among the total fatty acids. Additionally, the extracted oil included linoleic, α-linolenic, and dihomo-gamma-linolenic acid which have health benefits. The oil was rich with minerals such as Iron, Sodium, Potassium, Calcium, Magnesium, Zinc, and Phosphorus with a negligible concentration of toxic elements such as Manganese, Cobalt, Nickel, Copper, Lead, Cadmium, Chromium, Arsenic, and Silver, indicating a good nutritive value of the extracted oil. Overall, the outcomes of all the characterizations showed that the extracted oil could be used as good edible oil and the corresponding acid fermentation extraction process has the potential to be used as an effective oil extraction method for silkworm pupae.
Collapse
Affiliation(s)
- Lailatul Ferdousi
- BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research (BCSIR), Rajshahi, 6206, Bangladesh
| | - Mohajira Begum
- BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research (BCSIR), Rajshahi, 6206, Bangladesh
| | - Mst. Sarmina Yeasmin
- BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research (BCSIR), Rajshahi, 6206, Bangladesh
| | - Jasim Uddin
- BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research (BCSIR), Rajshahi, 6206, Bangladesh
| | - Md. Al-Amin Miah
- BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research (BCSIR), Rajshahi, 6206, Bangladesh
| | - G.M. Masud Rana
- BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research (BCSIR), Rajshahi, 6206, Bangladesh
| | - Tahmina Akter Chowdhury
- BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research (BCSIR), Rajshahi, 6206, Bangladesh
| | - Farhana Boby
- BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research (BCSIR), Rajshahi, 6206, Bangladesh
| | - Bijoy Maitra
- BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research (BCSIR), Rajshahi, 6206, Bangladesh
| | - Rahat Khan
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md. Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| |
Collapse
|
15
|
Zhou Y, Wang D, Zhou S, Duan H, Guo J, Yan W. Nutritional Composition, Health Benefits, and Application Value of Edible Insects: A Review. Foods 2022; 11:3961. [PMID: 36553703 PMCID: PMC9777846 DOI: 10.3390/foods11243961] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
For thousands of years, edible insects have been used as food to alleviate hunger and improve malnutrition. Some insects have also been used as medicines because of their therapeutic properties. This is not only due to the high nutritional value of edible insects, but more importantly, the active substances from edible insects have a variety of biofunctional activities. In this paper, we described and summarized the nutritional composition of edible insects and discussed the biological functions of edible insects and their potential benefits for human health. A summary analysis of the findings for each active function confirms that edible insects have the potential to develop functional foods and medicines that are beneficial to humans. In addition, we analyzed the issues that need to be considered in the application of edible insects and the current status of edible insects in food and pharmaceutical applications. We concluded with a discussion of regulations related to edible insects and an outlook on future research and applications of edible insects. By analyzing the current state of research on edible insects, we aim to raise awareness of the use of edible insects to improve human health and thus promote their better use and development.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Shiqi Zhou
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Hao Duan
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Jinhong Guo
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| |
Collapse
|
16
|
Sabarees G, Tamilarasi G, Velmurugan V, Alagarsamy V, Sibuh BZ, Sikarwar M, Taneja P, Kumar A, Gupta PK. Emerging trends in silk fibroin based nanofibers for impaired wound healing. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|