1
|
Wu F, Wang H, Lin Y, Feng S, Li X. Biocontrol mechanisms of antagonistic yeasts on postharvest fruits and vegetables and the approaches to enhance the biocontrol potential of antagonistic yeasts. Int J Food Microbiol 2025; 430:111038. [PMID: 39740307 DOI: 10.1016/j.ijfoodmicro.2024.111038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
During storage and transportation, fruits and vegetables are susceptible to various pathogens, leading to quality degradation and significant economic losses. Currently, chemical pesticides are primarily used for control; however, their overuse poses serious threats to human health and causes environmental pollution. Biocontrol, known for its environmentally friendly characteristics, has been extensively studied. Among biocontrol agents, yeasts are widely distributed and possesses strong antagonistic abilities, making them crucial agents against numerous pathogenic fungi. Despite their considerable promise, the full potential of antagonistic yeasts for broader application remains untapped. Therefore, this paper reviews the mechanisms of antagonistic yeasts as biocontrol agents for postharvest diseases, including space and nutrients competition, competition for scarce iron resources, parasitism, production of soluble and volatile antifungal compounds, and induction of host systemic resistance. The paper also introduces research on the combined application of antagonistic yeasts with physical, chemical, and other microbial methods. Ultimately, this review provides a potential pathway to enhance the biocontrol effectiveness of antagonistic yeasts and expand their application prospects.
Collapse
Affiliation(s)
- Fangfang Wu
- National Key Laboratory of Tropical Crop Breeding, School of Tropical Agriculture and Foresty, Hainan University, Haikou 570228, Hainan, China
| | - Haibo Wang
- National Key Laboratory of Tropical Crop Breeding, School of Tropical Agriculture and Foresty, Hainan University, Haikou 570228, Hainan, China
| | - Yankun Lin
- National Key Laboratory of Tropical Crop Breeding, School of Tropical Agriculture and Foresty, Hainan University, Haikou 570228, Hainan, China
| | - Shun Feng
- National Key Laboratory of Tropical Crop Breeding, School of Tropical Agriculture and Foresty, Hainan University, Haikou 570228, Hainan, China; Sanya Nanfan Research Institute, Hainan University, Haikou 570228, Hainan, China.
| | - Xinguo Li
- National Key Laboratory of Tropical Crop Breeding, School of Tropical Agriculture and Foresty, Hainan University, Haikou 570228, Hainan, China.
| |
Collapse
|
2
|
Quiroga J, Lambrese YS, García MG, Ochoa NA, Calvente VE. Enhancing apple postharvest protection: Efficacy of pectin coatings containing Cryptococcus laurentii against Penicillium expansum. Int J Food Microbiol 2025; 426:110934. [PMID: 39405798 DOI: 10.1016/j.ijfoodmicro.2024.110934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/27/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024]
Abstract
The aim of this work is the application of pectin coatings containing Cryptococcus laurentii as a method of biocontrol of Penicillium expansum for postharvest protection of apples. For this purpose, the yeast was incorporated into a pectin matrix, and its viability and biocontrol activity in vitro and in vivo against P. expansum was evaluated over time. In addition, the influence of the sterilization process on coating thickness was studied. Results showed that pectin coating with C. laurentii enhanced mycelial growth inhibition in vitro studies, while no significant differences were observed in disease incidence and severity reduction in vivo studies. The sterilization process reduced the viscosity of the pectin solution, resulting in coating thicknesses ranging from 0.5 to 1 μm. As a general evaluation, in vitro and in vivo, biocontrol assays were useful in demonstrating better postharvest protection of the yeast at 7 °C concerning 25 °C.
Collapse
Affiliation(s)
- Julieta Quiroga
- Instituto de Física Aplicada, CCT San Luis, CONICET, Argentina; Área de Tecnología Química y Biotecnología, Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis CP 5700, Argentina
| | - Yésica Sabrina Lambrese
- Instituto Nacional de Tecnología Industrial, INTI San Luis, INTI, Argentina; Área de Básicas Agronómicas, Departamento de Ciencias Agropecuarias, Facultad de Ingeniería y Ciencias Agropecuarias, Universidad Nacional de San Luis, Ruta Prov. N° 55 (Ex. 148) Extremo Norte, Villa Mercedes CP 5730, Argentina.
| | - María Guadalupe García
- Instituto de Física Aplicada, CCT San Luis, CONICET, Argentina; Área de Tecnología Química y Biotecnología, Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis CP 5700, Argentina
| | - Nelio Ariel Ochoa
- Instituto de Física Aplicada, CCT San Luis, CONICET, Argentina; Área de Tecnología Química y Biotecnología, Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis CP 5700, Argentina
| | - Viviana Edith Calvente
- Área de Tecnología Química y Biotecnología, Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis CP 5700, Argentina
| |
Collapse
|
3
|
Gajendran VP, Rajamani S. Recent Advancements in Harnessing Lactic Acid Bacterial Metabolites for Fruits and Vegetables Preservation. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10392-3. [PMID: 39514163 DOI: 10.1007/s12602-024-10392-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Postharvest losses in fruits and vegetables exert substantial economic and environmental repercussions. Chemical interventions are being widely utilized for the past six decades which may lead to significant health complications. Bioprotection of fruits and vegetables is the need of the hour in which use of lactic acid bacteria (LAB) with GRAS status predominantly stands out. Incorporation of LAB in postharvest fruits and vegetables suppresses the growth of spoilage organisms by synthesizing various antimicrobial compounds such as bacteriocins, organic acids, hydrogen peroxide (H2O2), exopolysaccharides (EPS), and BLIS. For example, Pediococcus acidilactici, Lactobacillus plantarum, and Limosilactobacillus fermentum convert natural sugars in fruits and vegetables to lactic acid and create an acidic environment that do not favour spoilage organisms. LAB can improve the bioavailability of vitamins and minerals and enrich the phenolic profile and bioactivity components. LAB has remarkable physiological characteristics like resistance towards bacteriophage, proteolytic activity, and polysaccharide production which adds to the safety of foods. They modify the sensory properties and preserve the nutritional quality of fruits and vegetables. They can also perform therapeutic role in the intestinal tract as they tolerate low pH, high salt concentration. Thus application of LAB, whether independently or in conjunction with stabilizing agents as edible coatings, is regarded as an exceptionally promising methodology for ensuring safer consumption of fruits and vegetables. This review addresses the most recent research findings that harness the antagonistic property of lactic acid bacterial metabolites, formulations and coatings containing their bioactive compounds for extended shelf life of fruits and vegetables.
Collapse
Affiliation(s)
- Vaishnavi Pratha Gajendran
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Subhashini Rajamani
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India.
| |
Collapse
|
4
|
Fenta L, Mekonnen H. Microbial Biofungicides as a Substitute for Chemical Fungicides in the Control of Phytopathogens: Current Perspectives and Research Directions. SCIENTIFICA 2024; 2024:5322696. [PMID: 38449800 PMCID: PMC10917481 DOI: 10.1155/2024/5322696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
These days, two important issues are causing concern in the global community: the alarmingly growing trend of the human population and the issue of food security. To this end, people around the world have been searching for solutions that could feed the needy in a sustainable way. In response to this urgent call, scientists from around the world started working on increasing crop production and productivity by controlling crop pathogens that could harm the productivity of crops. Synthetic fungicides have been in use for controlling crop diseases for several decades, but later, due to the evidenced side effects of the fungicides, there have been attempts to shift towards a less cost-effective and eco-friendly method of controlling crop diseases, and so far, many remarkable results have been achieved. However, due to the less effective and shorter shelf life of microbial biofungicides, as well as the less accessibility of these microbial biofungicides to growers around the world, it became difficult to remove the fungicides totally from the market. To minimize this problem, researchers suggested an integrated approach: the combination of microbial biofungicides with a reduced dose of synthetic fungicides. Hence, this review explored the status as well as the merits and demerits of microbial biofungicides as compared to synthetic fungicides.
Collapse
Affiliation(s)
- Lamenew Fenta
- Department of Biology, Debre Markos University, Debre Markos, Ethiopia
| | - Habtamu Mekonnen
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
5
|
Stasenko N, Shukhratov I, Savinov M, Shadrin D, Somov A. Deep Learning in Precision Agriculture: Artificially Generated VNIR Images Segmentation for Early Postharvest Decay Prediction in Apples. ENTROPY (BASEL, SWITZERLAND) 2023; 25:987. [PMID: 37509935 PMCID: PMC10378337 DOI: 10.3390/e25070987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023]
Abstract
Food quality control is an important task in the agricultural domain at the postharvest stage for avoiding food losses. The latest achievements in image processing with deep learning (DL) and computer vision (CV) approaches provide a number of effective tools based on the image colorization and image-to-image translation for plant quality control at the postharvest stage. In this article, we propose the approach based on Generative Adversarial Network (GAN) and Convolutional Neural Network (CNN) techniques to use synthesized and segmented VNIR imaging data for early postharvest decay and fungal zone predictions as well as the quality assessment of stored apples. The Pix2PixHD model achieved higher results in terms of VNIR images translation from RGB (SSIM = 0.972). Mask R-CNN model was selected as a CNN technique for VNIR images segmentation and achieved 58.861 for postharvest decay zones, 40.968 for fungal zones and 94.800 for both the decayed and fungal zones detection and prediction in stored apples in terms of F1-score metric. In order to verify the effectiveness of this approach, a unique paired dataset containing 1305 RGB and VNIR images of apples of four varieties was obtained. It is further utilized for a GAN model selection. Additionally, we acquired 1029 VNIR images of apples for training and testing a CNN model. We conducted validation on an embedded system equipped with a graphical processing unit. Using Pix2PixHD, 100 VNIR images from RGB images were generated at a rate of 17 frames per second (FPS). Subsequently, these images were segmented using Mask R-CNN at a rate of 0.42 FPS. The achieved results are promising for enhancing the food study and control during the postharvest stage.
Collapse
Affiliation(s)
- Nikita Stasenko
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | | | - Maxim Savinov
- Saint-Petersburg State University of Aerospace Instrumentation (SUAI), 190000 Saint-Petersburg, Russia
| | - Dmitrii Shadrin
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Department of Information Technology and Data Science, Irkutsk National Research Technical University, 664074 Irkutsk, Russia
| | - Andrey Somov
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| |
Collapse
|
6
|
Fenta L, Mekonnen H, Kabtimer N. The Exploitation of Microbial Antagonists against Postharvest Plant Pathogens. Microorganisms 2023; 11:microorganisms11041044. [PMID: 37110467 PMCID: PMC10143894 DOI: 10.3390/microorganisms11041044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Postharvest disease management is vital to increase the quality and productivity of crops. As part of crop disease protection, people used different agrochemicals and agricultural practices to manage postharvest diseases. However, the widespread use of agrochemicals in pest and disease control has detrimental effects on consumer health, the environment, and fruit quality. To date, different approaches are being used to manage postharvest diseases. The use of microorganisms to control postharvest disease is becoming an eco-friendly and environmentally sounds approach. There are many known and reported biocontrol agents, including bacteria, fungi, and actinomycetes. Nevertheless, despite the abundance of publications on biocontrol agents, the use of biocontrol in sustainable agriculture requires substantial research, effective adoption, and comprehension of the interactions between plants, pathogens, and the environment. To accomplish this, this review made an effort to locate and summarize earlier publications on the function of microbial biocontrol agents against postharvest crop diseases. Additionally, this review aims to investigate biocontrol mechanisms, their modes of operation, potential future applications for bioagents, as well as difficulties encountered during the commercialization process.
Collapse
Affiliation(s)
- Lamenew Fenta
- Department of Biology, Debre Markos University, Debre Markos P.O. Box 269, Ethiopia
| | - Habtamu Mekonnen
- Department of Biology, Bahir Dar University, Bahir Dar P.O. Box 79, Ethiopia
| | - Negash Kabtimer
- Department of Biology, Bahir Dar University, Bahir Dar P.O. Box 79, Ethiopia
| |
Collapse
|