1
|
El Asri S, Ben Mrid R, Zouaoui Z, Roussi Z, Ennoury A, Nhiri M, Chibi F. Advances in structural modification of fucoidans, ulvans, and carrageenans to improve their biological functions for potential therapeutic application. Carbohydr Res 2024; 549:109358. [PMID: 39718272 DOI: 10.1016/j.carres.2024.109358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Marine sulfated polysaccharides constitute a class of bioactive polymers commonly found in cell walls of macroalgae. Among these macromolecular substances, fucoidans, ulvans, and carrageenans have attracted considerable attention providing interesting therapeutic properties affected by a combination of various structural factors, such as sulfation pattern, molecular weight, monosaccharide composition, and glycosidic linkages. Remarkably, chemical modification, enzymatic hydrolysis and crosslinking are promising approaches for developing the application of these polysaccharides through enhancement and/or addition of new biological properties. This paper reviews the recent advances on these structure modification methods on fucoidans, ulvans, and carrageenans. The physical, chemical and biological properties influenced by the addition of functional groups are also discussed. In addition, an overview of specific enzymes selectively producing oligosaccharides with improved bioactivities as well as ionic and covalent cross-linking strategies are provided. These targeted methods have the potential to develop novel compounds with outstanding biodegradability and biocompatibility, along with low toxicity suitable for diverse applications in biomedical fields, including drug delivery.
Collapse
Affiliation(s)
- Sara El Asri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Reda Ben Mrid
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco; Institute of Biological Sciences (ISSB-P), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P) , Ben-Guerir, 43150, Morocco.
| | - Zakia Zouaoui
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Zoulfa Roussi
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Abdelhamid Ennoury
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Fatiha Chibi
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| |
Collapse
|
2
|
Mendes M, Cotas J, Pacheco D, Ihle K, Hillinger A, Cascais M, Marques JC, Pereira L, Gonçalves AMM. Red Seaweed (Rhodophyta) Phycocolloids: A Road from the Species to the Industry Application. Mar Drugs 2024; 22:432. [PMID: 39452840 PMCID: PMC11509213 DOI: 10.3390/md22100432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024] Open
Abstract
Seaweed polysaccharides are versatile both in their functions in seaweed physiology and in their practical applications in society. However, their content and quality vary greatly. This review discusses the main factors that influence the yield and quality of polysaccharides, specifically carrageenans and agars (sulfated galactans) found in red algae species (Rhodophyta). In addition, its historical, current, and emerging applications are also discussed. Carrageenan has been influenced mainly by photosynthetically active radiation (PAR) and nitrogen, while its relationship with temperature has not yet been replicated by recent studies. Agar's seasonal trend has also been found to be more ambiguous than stated before, with light, temperature, nutrients, and pH being influencing factors. In this review, it is also shown that, depending on the compound type, seaweed polysaccharides are influenced by very different key factors, which can be crucial in seaweed aquaculture to promote a high yield and quality of polysaccharides. Additionally, factors like the extraction method and storage of polysaccharides also influence the yield and quality of these compounds. This review also highlights the drawbacks and inadequacy inherent from the conventional (or current) extraction technology approaches.
Collapse
Affiliation(s)
- Madalena Mendes
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology—Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal (J.C.); (D.P.); (L.P.)
| | - João Cotas
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology—Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal (J.C.); (D.P.); (L.P.)
| | - Diana Pacheco
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology—Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal (J.C.); (D.P.); (L.P.)
| | - Kay Ihle
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology—Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal (J.C.); (D.P.); (L.P.)
- IMBRSea, Ghent University, Krijgslaan 281/S8, 9000 Ghent, Belgium
| | - Alina Hillinger
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology—Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal (J.C.); (D.P.); (L.P.)
- IMBRSea, Ghent University, Krijgslaan 281/S8, 9000 Ghent, Belgium
| | - Miguel Cascais
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology—Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal (J.C.); (D.P.); (L.P.)
- Higher Institute for Tourism and Hotel Management of Estoril, Av. Condes de Barcelona, No. 808, 2769-510 Estoril, Portugal
| | - João Carlos Marques
- MARE—Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Leonel Pereira
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology—Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal (J.C.); (D.P.); (L.P.)
| | - Ana M. M. Gonçalves
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology—Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal (J.C.); (D.P.); (L.P.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Gong J, Wang X, Ni H, Wang Y. The Volatile Compounds Change during Fermentation of Saccharina japonica Seedling. Foods 2024; 13:1992. [PMID: 38998498 PMCID: PMC11241180 DOI: 10.3390/foods13131992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
It is important to eliminate the fishy odor and improve the aroma quality of seafood. In this study, the Saccharina japonica (S. japonica) seedling, which is a new food material, was investigated for the effects of fermentation with Saccharomyces cerevisiae (S. cerevisiae) through sensory evaluation, GC-MS, and odor activity value (OAV) analysis. GC-MS analysis revealed the presence of 43 volatile compounds in the unfermented S. japonica seedling, with 1-octen-3-ol, hexanal, and trans-2,4-decadienal identified as the main contributors to its fishy odor. After fermentation with S. cerevisiae, 26 volatile compounds were identified in the S. japonica seedling. Notably, the major malodorous fish compounds, including 1-octen-3-ol, hexanal and trans-2,4-decadienal, were no longer present. The results indicate that fermentation with S. cerevisiae is an effective method for removing fishy malodor compounds and enhancing the volatile components with fruity, sweet, green, and floral notes in the Saccharina japonica seedling. This process facilitates the elimination of fishy malodor and enhance the fruity, sweet, green, and floral notes of S. japonica seeding and other seaweeds.
Collapse
Affiliation(s)
- Jingni Gong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaolin Wang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Lab of Food Microbiology and Enzyme, Jimei University, Xiamen 361021, China
- School of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361000, China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Youmei Institute of Intelligent Bio-Manufacturing, Foshan 528225, China
| |
Collapse
|
4
|
Generalić Mekinić I, Šimat V. Marine Algae Bioactives: Isolation, Characterization, and Potential Application. Foods 2024; 13:1736. [PMID: 38890964 PMCID: PMC11171929 DOI: 10.3390/foods13111736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
This Special Issue (SI) of Foods, entitled "Marine Algae Bioactives: Isolation, Characterization, and Potential Application", was focused on algal organisms, both microalgae and macroalgae, which have recently been recognized as new, cost-effective, and valuable sources of health-promoting nutrients and bioactive compounds with a full spectrum of activities and beneficial effects on health [...].
Collapse
Affiliation(s)
- Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia
| | - Vida Šimat
- Department of Marine Studies, University of Split, R. Boškovića 37, 21000 Split, Croatia;
| |
Collapse
|
5
|
Sadeghi A, Rajabiyan A, Nabizade N, Meygoli Nezhad N, Zarei-Ahmady A. Seaweed-derived phenolic compounds as diverse bioactive molecules: A review on identification, application, extraction and purification strategies. Int J Biol Macromol 2024; 266:131147. [PMID: 38537857 DOI: 10.1016/j.ijbiomac.2024.131147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
Seaweed, a diverse group of marine macroalgae, has emerged as a rich source of bioactive compounds with numerous health-promoting properties. Among these, phenolic compounds have garnered significant attention for their diverse therapeutic applications. This review examines the methodologies employed in the extraction and purification of phenolic compounds from seaweed, emphasizing their importance in unlocking the full potential of these oceanic treasures. The article provides a comprehensive overview of the structural diversity and biological activities of seaweed-derived phenolics, elucidating their antioxidant, anti-inflammatory, and anticancer properties. Furthermore, it explores the impact of extraction techniques, including conventional methods and modern green technologies, on the yield and quality of phenolic extracts. The purification strategies for isolating specific phenolic compounds are also discussed, shedding light on the challenges and advancements in this field. Additionally, the review highlights the potential applications of seaweed-derived phenolics in various industries, such as pharmaceuticals, cosmetics, and functional foods, underscoring the economic value of these compounds. Finally, future perspectives and research directions are proposed to encourage continued exploration of seaweed phenolics, fostering a deeper understanding of their therapeutic potential and promoting sustainable practices in the extraction and purification processes. This comprehensive review serves as a valuable resource for researchers, industry professionals, and policymakers interested in harnessing the untapped potential of phenolic compounds from seaweed for the betterment of human health and environmental sustainability.
Collapse
Affiliation(s)
- Abbas Sadeghi
- Department of Basic Science, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Ali Rajabiyan
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Nafise Nabizade
- Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Najme Meygoli Nezhad
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Amanollah Zarei-Ahmady
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
6
|
Cotas J, Lomartire S, Pereira L, Valado A, Marques JC, Gonçalves AMM. Seaweeds as Nutraceutical Elements and Drugs for Diabetes Mellitus: Future Perspectives. Mar Drugs 2024; 22:168. [PMID: 38667785 PMCID: PMC11051413 DOI: 10.3390/md22040168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetes mellitus is a chronic metabolic condition marked by high blood glucose levels caused by inadequate insulin synthesis or poor insulin use. This condition affects millions of individuals worldwide and is linked to a variety of consequences, including cardiovascular disease, neuropathy, nephropathy, and retinopathy. Diabetes therapy now focuses on controlling blood glucose levels through lifestyle changes, oral medicines, and insulin injections. However, these therapies have limits and may not successfully prevent or treat diabetic problems. Several marine-derived chemicals have previously demonstrated promising findings as possible antidiabetic medicines in preclinical investigations. Peptides, polyphenols, and polysaccharides extracted from seaweeds, sponges, and other marine species are among them. As a result, marine natural products have the potential to be a rich source of innovative multitargeted medications for diabetes prevention and treatment, as well as associated complications. Future research should focus on the chemical variety of marine creatures as well as the mechanisms of action of marine-derived chemicals in order to find new antidiabetic medicines and maximize their therapeutic potential. Based on preclinical investigations, this review focuses on the next step for seaweed applications as potential multitargeted medicines for diabetes, highlighting the bioactivities of seaweeds in the prevention and treatment of this illness.
Collapse
Affiliation(s)
- João Cotas
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (L.P.)
| | - Silvia Lomartire
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (L.P.)
| | - Leonel Pereira
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (L.P.)
| | - Ana Valado
- Polytechnic Institute of Coimbra, Coimbra Health School, Biomedical Laboratory Sciences, Rua 5 de Outubro—SM Bispo, Apartado 7006, 3046-854 Coimbra, Portugal;
- Research Centre for Natural Resources, Environment and Society—CERNAS, Escola Superior Agrária de Coimbra Bencanta, 3045-601 Coimbra, Portugal
| | - João Carlos Marques
- MARE—Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Ana M. M. Gonçalves
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (L.P.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Sahu S, Sharma S, Kaur A, Singh G, Khatri M, Arya SK. Algal carbohydrate polymers: Catalytic innovations for sustainable development. Carbohydr Polym 2024; 327:121691. [PMID: 38171696 DOI: 10.1016/j.carbpol.2023.121691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Algal polysaccharides, harnessed for their catalytic potential, embody a compelling narrative in sustainable chemistry. This review explores the complex domains of algal carbohydrate-based catalysis, revealing its diverse trajectory. Starting with algal polysaccharide synthesis and characterization methods as catalysts, the investigation includes sophisticated techniques like NMR spectroscopy that provide deep insights into the structural variety of these materials. Algal polysaccharides undergo various preparation and modification techniques to enhance their catalytic activity such as immobilization. Homogeneous catalysis, revealing its significance in practical applications like crafting organic compounds and facilitating chemical transformations. Recent studies showcase how algal-derived catalysts prove to be remarkably versatile, showcasing their ability to customise reactions for specific substances. Heterogeneous catalysis, it highlights the significance of immobilization techniques, playing a central role in ensuring stability and the ability to reuse catalysts. The practical applications of heterogeneous algal catalysts in converting biomass and breaking down contaminants, supported by real-life case studies, emphasize their effectiveness. In sustainable chemistry, algal polysaccharides emerge as compelling catalysts, offering a unique intersection of eco-friendliness, structural diversity, and versatile catalytic properties. Tackling challenges such as dealing with complex structural variations, ensuring the stability of the catalyst, and addressing economic considerations calls for out-of-the-box and inventive solutions. Embracing the circular economy mindset not only assures sustainable catalyst design but also promotes efficient recycling practices. The use of algal carbohydrates in catalysis stands out as a source of optimism, paving the way for a future where chemistry aligns seamlessly with nature, guiding us toward a sustainable, eco-friendly, and thriving tomorrow. This review encapsulates-structural insights, catalytic applications, challenges, and future perspectives-invoking a call for collective commitment to catalyze a sustainable scientific revolution.
Collapse
Affiliation(s)
- Sudarshan Sahu
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Shalini Sharma
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Anupreet Kaur
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Madhu Khatri
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Shailendra Kumar Arya
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
8
|
Fu Y, Jiao H, Sun J, Okoye CO, Zhang H, Li Y, Lu X, Wang Q, Liu J. Structure-activity relationships of bioactive polysaccharides extracted from macroalgae towards biomedical application: A review. Carbohydr Polym 2024; 324:121533. [PMID: 37985107 DOI: 10.1016/j.carbpol.2023.121533] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Macroalgae are valuable and structurally diverse sources of bioactive compounds among marine resources. The cell walls of macroalgae are rich in polysaccharides which exhibit a wide range of biological activities, such as anticoagulant, antioxidant, antiviral, anti-inflammatory, immunomodulatory, and antitumor activities. Macroalgae polysaccharides (MPs) have been recognized as one of the most promising candidates in the biomedical field. However, the structure-activity relationships of bioactive polysaccharides extracted from macroalgae are complex and influenced by various factors. A clear understanding of these relationships is indeed critical in developing effective biomedical applications with MPs. In line with these challenges and knowledge gaps, this paper summarized the structural characteristics of marine MPs from different sources and relevant functional and bioactive properties and particularly highlighted those essential effects of the structure-bioactivity relationships presented in biomedical applications. This review not only focused on elucidating a particular action mechanism of MPs, but also intended to identify a novel or potential application of these valued compounds in the biomedical field in terms of their structural characteristics. In the last, the challenges and prospects of MPs in structure-bioactivity elucidation were further discussed and predicted, where they were emphasized on exploring modern biotechnology approaches potentially applied to expand their promising biomedical applications.
Collapse
Affiliation(s)
- Yinyi Fu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; School of Water, Energy, Environment and Agrifood, Cranfield University, Cranfield MK43 0AL, UK
| | - Haixin Jiao
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongxing Zhang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yan Li
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuechu Lu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jun Liu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
9
|
Cotas J, Lomartire S, Gonçalves AMM, Pereira L. From Ocean to Medicine: Harnessing Seaweed's Potential for Drug Development. Int J Mol Sci 2024; 25:797. [PMID: 38255871 PMCID: PMC10815561 DOI: 10.3390/ijms25020797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Seaweed, a miscellaneous group of marine algae, has long been recognized for its rich nutritional composition and bioactive compounds, being considered nutraceutical ingredient. This revision delves into the promising role of seaweed-derived nutrients as a beneficial resource for drug discovery and innovative product development. Seaweeds are abundant sources of essential vitamins, minerals, polysaccharides, polyphenols, and unique secondary metabolites, which reveal a wide range of biological activities. These bioactive compounds possess potential therapeutic properties, making them intriguing candidates for drug leads in various medical applications and pharmaceutical drug development. It explores their pharmacological properties, including antioxidant, anti-inflammatory, antimicrobial, and anticancer activities, shedding light on their potential as therapeutic agents. Moreover, the manuscript provides insights into the development of formulation strategies and delivery systems to enhance the bioavailability and stability of seaweed-derived compounds. The manuscript also discusses the challenges and opportunities associated with the integration of seaweed-based nutrients into the pharmaceutical and nutraceutical industries. Regulatory considerations, sustainability, and scalability of sustainable seaweed sourcing and cultivation methods are addressed, emphasizing the need for a holistic approach in harnessing seaweed's potential. This revision underscores the immense potential of seaweed-derived compounds as a valuable reservoir for drug leads and product development. By bridging the gap between marine biology, pharmacology, and product formulation, this research contributes to the critical advancement of sustainable and innovative solutions in the pharmaceutical and nutraceutical sectors.
Collapse
Affiliation(s)
- João Cotas
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
| | - Silvia Lomartire
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
| | - Ana M. M. Gonçalves
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leonel Pereira
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
| |
Collapse
|
10
|
Rogel-Castillo C, Latorre-Castañeda M, Muñoz-Muñoz C, Agurto-Muñoz C. Seaweeds in Food: Current Trends. PLANTS (BASEL, SWITZERLAND) 2023; 12:2287. [PMID: 37375912 DOI: 10.3390/plants12122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Edible seaweeds are an excellent source of macronutrients, micronutrients, and bioactive compounds, and they can be consumed raw or used as ingredients in food products. However, seaweeds may also bioaccumulate potentially hazardous compounds for human health and animals, namely, heavy metals. Hence, the purpose of this review is to analyze the recent trends of edible seaweeds research: (i) nutritional composition and bioactive compounds, (ii) the use and acceptability of seaweeds in foodstuffs, (iii) the bioaccumulation of heavy metals and microbial pathogens, and (iv) current trends in Chile for using seaweeds in food. In summary, while it is evident that seaweeds are consumed widely worldwide, more research is needed to characterize new types of edible seaweeds as well as their use as ingredients in the development of new food products. Additionally, more research is needed to maintain control of the presence of heavy metals to assure a safe product for consumers. Finally, the need to keep promoting the benefits of seaweed consumption is emphasized, adding value in the algae-based production chain, and promoting a social algal culture.
Collapse
Affiliation(s)
- Cristian Rogel-Castillo
- Department of Food Science and Technology, School of Pharmacy, University of Concepcion, Barrio Universitario S/N, Concepción 4070386, Chile
| | - Monica Latorre-Castañeda
- Interdisciplinary Marine Biotechnology Group (GIBMAR), Biotechnology Center, University of Concepcion, Barrio Universitario S/N, Concepción 4070386, Chile
| | - Camila Muñoz-Muñoz
- Interdisciplinary Marine Biotechnology Group (GIBMAR), Biotechnology Center, University of Concepcion, Barrio Universitario S/N, Concepción 4070386, Chile
| | - Cristian Agurto-Muñoz
- Department of Food Science and Technology, School of Pharmacy, University of Concepcion, Barrio Universitario S/N, Concepción 4070386, Chile
- Interdisciplinary Marine Biotechnology Group (GIBMAR), Biotechnology Center, University of Concepcion, Barrio Universitario S/N, Concepción 4070386, Chile
| |
Collapse
|
11
|
Yu S, Sun J, Wang Q, Wu J, Liu J. Extraction of bioactive polysaccharide from Ulva prolifera biomass waste toward potential biomedical application. Int J Biol Macromol 2023; 235:123852. [PMID: 36870648 DOI: 10.1016/j.ijbiomac.2023.123852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
Ulva prolifera macroalgae blooming caused by water eutrophication seriously affects the marine ecological environment. Exploring an efficient approach to turning algae biomass waste into high-value-added products is significant. The present work aimed to demonstrate the feasibility of the bioactive polysaccharide extraction from Ulva prolifera and to evaluate its potential biomedical application. A short autoclave process was proposed and optimized using the response surface methodology to extract Ulva polysaccharides (UP) with high molar mass. Our results indicated that UP with high molar mass (9.17 × 105 g/mol) and competitive radical scavenging activity (up to 53.4 %) could be effectively extracted with the assistance of Na2CO3 (1.3 %, wt.) at a solid-liquid ratio of 1/10 in 26 min. The obtained UP mainly composes of galactose (9.4 %), glucose (73.1 %), xylose (9.6 %), and mannose (4.7 %). The biocompatibility of the UP and its potential application as a bioactive ingredient in 3D cell culture has been evaluated and confirmed by confocal laser scanning microscopy and fluorescence microscope imaging inspection. This work demonstrated the feasibility of extracting bioactive sulfated polysaccharides with potential applications in biomedicine from biomass waste. Meanwhile, this work also provided an alternative solution to deal with the environmental challenges incurred by algae blooming worldwide.
Collapse
Affiliation(s)
- Sujie Yu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Qianqian Wang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jian Wu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jun Liu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China; Kingdecor (Zhejiang) Co., Ltd., 20 South Tianhu road, 324022 Quzhou, Zhejiang, China.
| |
Collapse
|
12
|
Design and Characterization of a Cheese Spread Incorporating Osmundea pinnatifida Extract. Foods 2023; 12:foods12030611. [PMID: 36766140 PMCID: PMC9914413 DOI: 10.3390/foods12030611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Marine algae have been emerging as natural sources of bioactive compounds, such as soluble dietary fibers and peptides, presenting special interest as ingredients for functional foods. This study developed a cheese spread incorporating red seaweed Osmundea pinnatifida extract and subsequently characterized it in terms of nutritional, pH, and microbiological parameters and bioactivities including prebiotic, antidiabetic, antihypertensive, and antioxidant activities. This food was produced through incorporation of O. pinnatifida extract (3%), obtained via enzymatic extraction Viscozyme L in a matrix containing whey cheese (75%) and Greek-type yoghurt (22%). The product was then subjected to thermal processing and subsequently stored for 21 days at 4 °C. During storage, this food showed a high pH stability (variations lower than 0.2 units), the absence of microbial contamination and all tested bioactivities at the sampling timepoints 0 and 21 days. Indeed, it exerted prebiotic effects under Lactobacillus acidophilus LA-5® and Bifidobacterium animalis subsp. lactis BB-12®, increasing their viability to around 4 and 0.5 log CFU/g, respectively. In addition, it displayed antidiabetic (α-glucosidase inhibition: 5-9%), antihypertensive (ACE inhibition: 50-57%), and antioxidant (ABTS: 13-15%; DPPH: 3-5%; hydroxyl radical: 60-76%) activities. In summary, the cheese spread produced may be considered an innovative food with high potential to contribute toward healthier status and well-being of populations.
Collapse
|
13
|
Mu J, Guo Z, Wang X, Wang X, Fu Y, Li X, Zhu F, Hu G, Ma X. Seaweed polysaccharide relieves hexavalent chromium-induced gut microbial homeostasis. Front Microbiol 2023; 13:1100988. [PMID: 36726569 PMCID: PMC9884827 DOI: 10.3389/fmicb.2022.1100988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
Heavy metals released in the environment pose a huge threat to soil and water quality, food safety and public health. Additionally, humans and other mammals may also be directly exposed to heavy metals or exposed to heavy metals through the food chain, which seriously threatens the health of animals and humans. Chromium, especially hexavalent chromium [Cr (VI)], as a common heavy metal, has been shown to cause serious environmental pollution as well as intestinal damage. Thus, increasing research is devoted to finding drugs to mitigate the negative health effects of hexavalent chromium exposure. Seaweed polysaccharides have been demonstrated to have many pharmacological effects, but whether it can alleviate gut microbial dysbiosis caused by hexavalent chromium exposure has not been well characterized. Here, we hypothesized that seaweed polysaccharides could alleviate hexavalent chromium exposure-induced poor health in mice. Mice in Cr and seaweed polysaccharide treatment group was compulsively receive K2Cr2O7. At the end of the experiment, all mice were euthanized, and colon contents were collected for DNA sequencing analysis. Results showed that seaweed polysaccharide administration can restore the gut microbial dysbiosis and the reduction of gut microbial diversity caused by hexavalent chromium exposure in mice. Hexavalent chromium exposure also caused significant changes in the gut microbial composition of mice, including an increase in some pathogenic bacteria and a decrease in beneficial bacteria. However, seaweed polysaccharides administration could ameliorate the composition of gut microbiota. In conclusion, this study showed that seaweed polysaccharides can restore the negative effects of hexavalent chromium exposure in mice, including gut microbial dysbiosis. Meanwhile, this research also lays the foundation for the application of seaweed polysaccharides.
Collapse
Affiliation(s)
- Jinghao Mu
- Department of Urology, Chinese PLA General Hospital, Beijing, China,Department of Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhenhuan Guo
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China,*Correspondence: Zhenhuan Guo, ✉
| | - Xiujun Wang
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xuefei Wang
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Yunxing Fu
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xianghui Li
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Fuli Zhu
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Guangyuan Hu
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xia Ma
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China,Xia Ma, ✉
| |
Collapse
|
14
|
Arias A, Feijoo G, Moreira MT. Macroalgae biorefineries as a sustainable resource in the extraction of value-added compounds. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Popov S, Smirnov V, Paderin N, Khramova D, Chistiakova E, Vityazev F, Golovchenko V. Enrichment of Agar Gel with Antioxidant Pectin from Fireweed: Mechanical and Rheological Properties, Simulated Digestibility, and Oral Processing. Gels 2022; 8:gels8110708. [PMID: 36354617 PMCID: PMC9689380 DOI: 10.3390/gels8110708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The aims of the study were to evaluate the influence of pectin isolated from fireweed (FP) on the mechanical and rheological properties of agar (A) gel, to investigate the release of phenolic compounds (PCs) and pectin from A-FP gels at simulated digestion in vitro, and to evaluate the oral processing and sensory properties of A-FP gels. The hardness of A-FP gels decreased gradually with the increase in the concentration of FP added (0.1, 0.4, and 1.6%). The hardness of A-FP1.6 gel was 41% lower than A gel. Rheological tests found A gel was a strong physical gel (storage modulus (G′) >>loss modulus (G″)), and the addition of FP up to 1.6% did not significantly change its G’. The G″ value decreased in A-FP gels compared to A gel. The release of galacturonic acid (GalA) was 3.4 ± 0.5, 0.5 ± 0.2, 2.4 ± 1.0, and 2.2 ± 0.7 mg/mL after digestion of A-FP1.6 gel in the oral in vivo phase (OP) and subsequent incubation in simulated gastric (SGF), intestinal (SIF), and colonic (SCF) fluids in vitro. The incubation medium after OP, SGF, and SIF digestion of A-FP1.6 contained 24−64 μg GAE/mL of PCs, while SCF contained 144 μg GAE/mL, supposing a predominant release of antioxidant activity from the gel in the colon. Chewing to readiness for swallowing A-FP gel required less time and fewer chews with less activity of the masseter and temporalis muscles. A-FP1.6 gel had a lower likeness score for taste and consistency and a similar score for appearance and aroma when compared with A gel. Thus, A-FP gels were weakened compared to A gel and required less time and muscle activity for oral processing. A-FP gel had antioxidant activity due to the PCs associated with pectin, while A gel had no antioxidant activity.
Collapse
|
16
|
Study of the Polysaccharide Production by the Microalga Vischeria punctata in Relation to Cultivation Conditions. Life (Basel) 2022; 12:life12101614. [PMID: 36295049 PMCID: PMC9604657 DOI: 10.3390/life12101614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
Vischeria punctata is a unicellular microalga that has industrial potential, as it can produce substances with beneficial properties. Among them, endopolysaccharides (accumulated in cells) and exopolysaccharides (released by cells into the culture medium) are of particular interest. This study aimed to investigate the effect of nutrient medium composition on the growth of V. punctata biomass and the synthesis of polysaccharides by microalgae. The effect of modifying a standard nutrient medium and varying cultivation parameters (temperature, time, and extractant type) on the yield of exopolysaccharides produced by the microalgae V. punctate was investigated. The methods of spectrophotometry, ultrasonic extraction, and alcohol precipitation were used in the study. It was found that after 61 days of cultivation, the concentration of polysaccharides in the culture medium was statistically significantly higher (p <0.05) when using a Prat nutrient medium (984.9 mg/g d.w.) than BBM 3N (63.0 mg/g d.w.). It was found that the increase in the V. punctata biomass when cultivated on different nutrient media did not differ significantly. The maximum biomass values on Prat and BBM 3N media were 1.101 mg/g d.w. and 1.120 mg/g d.w., respectively. Neutral sugars and uronic acids were found in the culture media. It follows on from the obtained data that the modified PratM medium was more efficient for extracting polysaccharides from V. punctata. The potential of microalgae as new sources of valuable chemicals (polysaccharides), which can be widely used in technologies for developing novel functional foods, biologically active food supplements, and pharmaceutical substances, was studied.
Collapse
|