1
|
Yu F, Shen Y, Pang Y, Fan H, Liu M, Liu X. Effects of branched-chain amino acids on surfactin structure and antibacterial activity in Bacillus velezensis YA215. World J Microbiol Biotechnol 2024; 40:281. [PMID: 39060617 DOI: 10.1007/s11274-024-04088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Antibiotics are essential for combating pathogens; however, their misuse has led to increased resistance, necessitating the search for effective, low-toxicity alternatives. Surfactin, a cyclic lipopeptide with a C12-C17 β-hydroxy fatty acid chain, exhibits significant antibacterial activity and resists resistance, making it a research focus. Nonetheless, the effects of branched-chain amino acids (BCAAs) on surfactin's structure and activity are not well understood. This study examines the influence of BCAAs (L-valine, L-leucine, and L-isoleucine) on the lipopeptide (surfactin) produced by Bacillus velezensis YA215. Process optimization shows that adding 1 g/L of L-Leu and L-Ile, and 0.5 g/L of L-Val, maximized surfactin production to 18.59%, 19.23%, and 20.64%, respectively. Surfactin content peaked at 36 h with L-Val and L-Ile, yielding 19.72% and 11.37%. In contrast, L-Leu addition peaked at 24 h, yielding 11.33%. Notably, L-Val supplementation resulted in the highest relative surfactin content. Antimicrobial testing demonstrated that BCAAs significantly enhance the antibacterial effects of lipopeptides against Escherichia coli and Staphylococcus aureus, with Val showing the most pronounced effect. The addition of BCAAs notably altered the composition of surfactin fatty acid chains. Specifically, Val increased the proportions of iso C14 and iso C16 β-hydroxy fatty acids from 13.3% and 4.216-23.803% and 8.31%, respectively. Additionally, the amino acid composition at the 7th position of the peptide chain changed significantly, especially with Val addition, which increased the proportion of C14 [Val 7] surfactin by 3.29 times. These structural changes are likely associated with the enhanced antibacterial activity of surfactin. These findings provide valuable insights into the roles of BCAAs in microbial fermentation, underscoring their importance in metabolic engineering to enhance the production of bioactive compounds.
Collapse
Affiliation(s)
- Futian Yu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yuanyuan Shen
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yiyang Pang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Heliang Fan
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Mingyuan Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Xiaoling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China.
| |
Collapse
|
2
|
Karamanis P, Muldoon J, Murphy CD, Rubini M. Total synthesis of antifungal lipopeptide iturin A analogues and evaluation of their bioactivity against F. graminearum. J Pept Sci 2024; 30:e3569. [PMID: 38301277 DOI: 10.1002/psc.3569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
The pursuit of novel antifungal agents is imperative to tackle the threat of antifungal resistance, which poses major risks to both human health and to food security. Iturin A is a cyclic lipopeptide, produced by Bacillus sp., with pronounced antifungal properties against several pathogens. Its challenging synthesis, mainly due to the laborious synthesis of the β-amino fatty acid present in its structure, has hindered the study of its mode of action and the development of more potent analogues. In this work, a facile synthesis of bioactive iturin A analogues containing an alkylated cysteine residue is presented. Two analogues with opposite configurations of the alkylated cysteine residue were synthesized, to evaluate the role of the stereochemistry of the newly introduced amino acid on the bioactivity. Antifungal assays, conducted against F. graminearum, showed that the novel analogues are bioactive and can be used as a synthetic model for the design of new analogues and in structure-activity relationship studies. The assays also highlight the importance of the β-amino acid in the natural structure and the role of the stereochemistry of the amino fatty acid, as the analogue with the D configuration showed stronger antifungal properties than the one with the L configuration.
Collapse
Affiliation(s)
- Periklis Karamanis
- UCD School of Chemistry, University College Dublin, Dublin, Ireland
- BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland
| | - Jimmy Muldoon
- UCD School of Chemistry, University College Dublin, Dublin, Ireland
| | - Cormac D Murphy
- BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Marina Rubini
- UCD School of Chemistry, University College Dublin, Dublin, Ireland
- BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Deng YJ, Chen Z, Chen YP, Wang JP, Xiao RF, Wang X, Liu B, Chen MC, He J. Lipopeptide C 17 Fengycin B Exhibits a Novel Antifungal Mechanism by Triggering Metacaspase-Dependent Apoptosis in Fusarium oxysporum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7943-7953. [PMID: 38529919 DOI: 10.1021/acs.jafc.4c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Fusarium wilt is a worldwide soil-borne fungal disease caused by Fusarium oxysporum that causes serious damage to agricultural products. Therefore, preventing and treating fusarium wilt is of great significance. In this study, we purified ten single lipopeptide fengycin components from Bacillus subtilis FAJT-4 and found that C17 fengycin B inhibited the growth of F. oxysporum FJAT-31362. We observed early apoptosis hallmarks, including reactive oxygen species accumulation, mitochondrial dysfunction, and phosphatidylserine externalization in C17 fengycin B-treated F. oxysporum cells. Further data showed that C17 fengycin B induces cell apoptosis in a metacaspase-dependent manner. Importantly, we found that the expression of autophagy-related genes in the TOR signaling pathway was significantly upregulated; simultaneously, the accumulation of acidic autophagy vacuoles in F. oxysporum cell indicated that the autophagy pathway was activated during apoptosis induced by C17 fengycin B. Therefore, this study provides new insights into the antifungal mechanism of fengycin.
Collapse
Affiliation(s)
- Ying-Jie Deng
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430000, China
| | - Zheng Chen
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Yan-Ping Chen
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Jie-Ping Wang
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Rong-Feng Xiao
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Xun Wang
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430000, China
| | - Bo Liu
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Mei-Chun Chen
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Jin He
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430000, China
| |
Collapse
|
4
|
Shi Y, Wang R, Li Y, Cui Y, He Y, Wang H, Liu Y, Zhang M, Chen Y, Jia M, Chen K, Ruan X, Tian J, Ma T, Chen J. Involvement of TLRs/NF-κB/ESE-1 signaling pathway in T-2 toxin-induced cartilage matrix degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123114. [PMID: 38081376 DOI: 10.1016/j.envpol.2023.123114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
T-2 toxin, a highly toxic type A monotrichothecene mycotoxin, has been found in many different types of cereals and is considered to be one of the most dangerous naturally occurring forms of food contamination. Globally, consuming grain-based food tainted with T-2 toxin poses significant risks to animal and human health. Prior research has indicated that the presence of T-2 toxin may lead to the demise of chondrocytes and the deterioration of the extracellular matrix of cartilage in degenerative bone and joint conditions, such as Kashin-Beck disease. However, the mechanisms by which T-2 toxin exerts its biological toxicity on the degradation of the extracellular matrix in cartilage are not well understood. In the current study, we found original results that demonstrate an upregulation of Toll-Like Receptors (TLR-2, TLR-4) and ESE-1 expression levels in the articular cartilage of a rat model subjected to T-2 toxin exposure. Furthermore, it was revealed that the exposure to T-2 toxin resulted in an increase in the expression of TLR-2, TLR-4, and ESE-1 in human C28/I2 chondrocytes. The findings of this study indicate that the increased expression of TLR-2, TLR-4, and ESE-1 may contribute to the development of degenerative osteoarthritic disease caused by T-2 toxin. Consistent with our hypotheses, we discovered that T-2 toxin increased the expression of MMP-1 and MMP-13 in human C28/I2 chondrocytes. We used a luciferase reporter gene assay to measure the activity of the ESE-1 promoter and transfected cells with plasmids encoding TLR-2 and TLR-4 to investigate their effects on this activity. TLR-2 and TLR-4 can activate ESE-1 transcriptional gene expression, and this expression is mediated through the NF-κB pathway, additional evidence is provided for the participation of the TLRs/NF-κB/ESE-1 signaling pathway in T-2 toxin-induced cartilage matrix degradation. Together, the findings indicated that the TLRs/NF-κB/ESE-1 signaling pathway played an essential part in T-2 toxin-induced cartilage matrix degradation.
Collapse
Affiliation(s)
- Yawen Shi
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Rui Wang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China; Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, China
| | - Yanan Li
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China; School of Energy and Power Engineering, Xi'an Jiaotong University, Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi'an, Shaanxi, 710049, China
| | - Yixin Cui
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Ying He
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Hui Wang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Yinan Liu
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Meng Zhang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Yonghui Chen
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Mingzhao Jia
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Kunpan Chen
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Xingran Ruan
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Jing Tian
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Tianyou Ma
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Jinghong Chen
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
5
|
Sun Y, Geng C, Liu W, Liu Y, Ding L, Wang P. Investigating the Impact of Disrupting the Glutamine Metabolism Pathway on Ammonia Excretion in Crucian Carp ( Carassius auratus) under Carbonate Alkaline Stress Using Metabolomics Techniques. Antioxidants (Basel) 2024; 13:170. [PMID: 38397768 PMCID: PMC10885916 DOI: 10.3390/antiox13020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
With the gradual decline in freshwater resources, the space available for freshwater aquaculture is diminishing and the need to maximize saline water for aquaculture is increasing. This study aimed to elucidate the impact mechanisms of the disruption of the glutamate pathway on serum metabolism and ammonia excretion in crucian carp (Carassius auratus) under carbonate alkaline stress. A freshwater control group (C group), a 20 mmol/L NaHCO3 stress group (L group), and a 40 mmol/L NaHCO3 stress group (H group) were established. After 30 days of exposure, methionine sulfoximine (MSO) was injected to block the glutamate pathway metabolism, and the groups post-blocking were labeled as MC, ML, and MH. Ultra-high-performance liquid chromatography coupled with the quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) metabolomics technique was employed to detect changes in the composition and content of crucian carp serum metabolites. Significant differential metabolites were identified, and related metabolic pathways were analyzed. The results revealed that, following the glutamate pathway blockade, a total of 228 differential metabolites (DMs) were identified in the three treatment groups. An enrichment analysis indicated significant involvement in glycerophospholipid metabolism, arachidonic acid metabolism, sphingolipid metabolism, purine metabolism, arginine and proline biosynthesis, pantothenate and CoA biosynthesis, glutathione metabolism, and fatty acid degradation, among other metabolic pathways. The results showed that ROS imbalances and L-arginine accumulation in crucian carp after the glutamate pathway blockade led to an increase in oxidative stress and inflammatory responses in vivo, which may cause damage to the structure and function of cell membranes. Crucian carp improves the body's antioxidant capacity and regulates cellular homeostasis by activating glutathione metabolism and increasing the concentration of phosphatidylcholine (PC) analogs. Additionally, challenges such as aggravated ammonia excretion obstruction and disrupted energy metabolism were observed in crucian carp, with the upregulation of purine metabolism alleviating ammonia toxicity and maintaining energy homeostasis through pantothenate and CoA biosynthesis as well as fatty acid degradation. This study elucidated the metabolic changes in crucian carp under carbonate alkaline stress after a glutamate pathway blockade at the cellular metabolism level and screened out the key metabolic pathways, which provide a scientific basis for further in-depth studies on the ammonia excretion of freshwater scleractinian fishes under saline and alkaline habitats at a later stage.
Collapse
Affiliation(s)
- Yanchun Sun
- Department of Food Science and Engineering, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.G.); (W.L.); (Y.L.); (L.D.)
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Areas, Harbin 150070, China;
| | - Chuanye Geng
- Department of Food Science and Engineering, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.G.); (W.L.); (Y.L.); (L.D.)
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Areas, Harbin 150070, China;
| | - Wenzhi Liu
- Department of Food Science and Engineering, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.G.); (W.L.); (Y.L.); (L.D.)
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Areas, Harbin 150070, China;
| | - Yingjie Liu
- Department of Food Science and Engineering, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.G.); (W.L.); (Y.L.); (L.D.)
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Areas, Harbin 150070, China;
| | - Lu Ding
- Department of Food Science and Engineering, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.G.); (W.L.); (Y.L.); (L.D.)
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Areas, Harbin 150070, China;
| | - Peng Wang
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Areas, Harbin 150070, China;
| |
Collapse
|
6
|
Han D, Ji Y, Yang S, Song P, Shi Y, Shao D, Chen X, Shang L, Shi J, Jiang C. Therapeutic effect of iturin A on Candida albicans oral infection and its pathogenic factors. Antimicrob Agents Chemother 2024; 68:e0094823. [PMID: 38051047 PMCID: PMC10777857 DOI: 10.1128/aac.00948-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023] Open
Abstract
Candida albicans is responsible for conditions ranging from superficial infections such as oral or vaginal candidiasis to potentially fatal systemic infections. It produces pathogenic factors contributing to its virulence. Iturin A, a lipopeptide derived from Bacillus sp., exhibits a significant inhibitory effect against C. albicans. However, its exact mechanism in mitigating the pathogenic factors of C. albicans remains to be elucidated. This study aimed to explore the influence of iturin A on several pathogenic attributes of C. albicans, including hypha formation, cell membrane permeability, cell adhesion, biofilm formation, and therapeutic efficacy in an oral C. albicans infection model in mice. The minimal inhibitory concentration of iturin A against C. albicans was determined to be 25 µg/mL in both YEPD and RPMI-1640 media. Iturin A effectively inhibited C. albicans hyphal formation, decreased cell viability within biofilms, enhanced cell membrane permeability, and disrupted cell adhesion in vitro. Nonetheless, iturin A did not significantly affect the phospholipase activity or hydrophobicity of C. albicans. A comparative study with nystatin demonstrated the superior therapeutic efficacy of iturin A in a mouse model of oral C. albicans infection, significantly decreasing C. albicans count and inhibiting both fungal hypha formation and tongue surface adhesion. High-dose iturin A treatment (25 µg/mL) in mice had no significant effects on blood indices, tongue condition, or body weight, indicating the potential for iturin A in managing oral infections. This study confirmed the therapeutic potential of iturin A and provided valuable insights for developing effective antifungal therapies targeting C. albicans pathogenic factors.
Collapse
Affiliation(s)
- Di Han
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Yulan Ji
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Saixue Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Pei Song
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Yihong Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Dongyan Shao
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Xianqing Chen
- School of Medicine, Xi’an International University, Xi’an, China
| | - Li Shang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Junling Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Chunmei Jiang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| |
Collapse
|