1
|
Bi Y, Liang L, Qiao K, Luo J, Liu X, Sun B, Zhang Y. A comprehensive review of plant-derived salt substitutes: Classification, mechanism, and application. Food Res Int 2024; 194:114880. [PMID: 39232518 DOI: 10.1016/j.foodres.2024.114880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
The diseases caused by excessive sodium intake derived from NaCl consumption have attracted widespread attention worldwide, and many researchers are committed to finding suitable ways to reduce sodium intake during the dietary process. Salt substitute is considered an effective way to reduce sodium intake by replacing all/part of NaCl in food without reducing the saltiness while minimizing the impact on the taste and acceptability of the food. Plant-derived natural ingredients are generally considered safe and reliable, and extensive research has shown that certain plant extracts or specific components are effective salt substitutes, which can also give food additional health benefits. However, these plant-derived salt substitutes (PSS) have not been systematically recognized by the public and have not been well adopted in the food industry. Therefore, a comprehensive review of PSS, including its material basis, flavor characteristics, and taste mechanism is helpful for a deeper understanding of PSS, accelerating its research and development, and promoting its application.
Collapse
Affiliation(s)
- Yongzhao Bi
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Kaina Qiao
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Jin Luo
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xialei Liu
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Mastinu M, Püschner A, Gerlach S, Hummel T. Test-retest reliability and normative data for "Seven-iTT", a test for the assessment of taste and oral trigeminal function. J Neurosci Methods 2024; 410:110244. [PMID: 39117155 DOI: 10.1016/j.jneumeth.2024.110244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Assessment of taste and somatosensory perception in clinical practice lacks fast tests that are validated and reliable. Recently, a 12-item identification test for taste and oral trigeminal perception, and its shorter version, the Seven-iTT, was developed. The objectives of this study were to evaluate its test-retest reliability and establish normative data. NEW METHOD Two-hundred participants (120 women, 80 men) with a good sense of taste performed a whole-mouth identification test using 12 filter-paper strips impregnated with low and high concentrations of sweet, sour, salty, bitter, astringency, and spiciness. Fifty of them repeated the task, with a median interval of 122 days from the first visit. Test-retest reliability was determined using Spearman correlation and the Bland-Altman plot method. RESULTS There was a significant correlation in identification score between the first and the second session for both versions of the test (r ≥ 0.28; p ≤ 0.048). The Bland-Altman plot reflected a good congruence between the results of the two sessions. Additionally, frequencies of correct identification were consistent between sessions, with women outperforming men (p = 0.005). Hypogeusia was established at Seven-iTT score of 3 of less. COMPARISON WITH EXISTING METHODS The identification test combines taste and somatosensory perception, thus creating a more detailed diagnosis tool. Scores were correlated with self-rated taste perception. CONCLUSION The present results confirmed the applicability of Seven-iTT for a reliable, fast evaluation of taste and somatosensory perception in the general population, that can be extended to clinical practice.
Collapse
Affiliation(s)
- Mariano Mastinu
- Smell & Taste Clinic, Department of Otorhinolaryngology, ''Technische Universität Dresden'', Dresden, Germany.
| | - Andreas Püschner
- Smell & Taste Clinic, Department of Otorhinolaryngology, ''Technische Universität Dresden'', Dresden, Germany
| | - Saskia Gerlach
- Smell & Taste Clinic, Department of Otorhinolaryngology, ''Technische Universität Dresden'', Dresden, Germany
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, ''Technische Universität Dresden'', Dresden, Germany
| |
Collapse
|
3
|
Hu B, Wang H, Liang H, Ma N, Wu D, Zhao R, Lv H, Xiao Z. Multiple effects of spicy flavors on neurological diseases through the intervention of TRPV1: a critical review. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 39041177 DOI: 10.1080/10408398.2024.2381689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The spicy properties of foods are contributed by various spicy flavor substances (SFs) such as capsaicin, piperine, and allicin. Beyond their distinctive sensory characteristics, SFs also influence health conditions and numerous studies have associated spicy flavors with disease treatment. In this review, we enumerate different types of SFs and describe their role in food processing, with a specific emphasis on critically examining their influence on human wellness. Particularly, detailed insights into the mechanisms through which SFs enhance physiological balance and alleviate neurological diseases are provided, and a systematic analysis of the significance of transient receptor potential vanilloid type-1 (TRPV1) in regulating metabolism and nervous system homeostasis is presented. Moreover, enhancing the accessibility and utilization of SFs can potentially amplify the physiological effects. This review aims to provide compelling evidence for the integration of food flavor and human health.
Collapse
Affiliation(s)
- Boyong Hu
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Heng Wang
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Liang
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ning Ma
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Diyi Wu
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruotong Zhao
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Haoming Lv
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zuobing Xiao
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Liu S, Gu Y, Zheng R, Sun B, Zhang L, Zhang Y. Progress in Multisensory Synergistic Salt Reduction. Foods 2024; 13:1659. [PMID: 38890890 PMCID: PMC11171538 DOI: 10.3390/foods13111659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Excessive salt intake, primarily from sodium chloride prevalent in modern food processing, poses a significant public health risk associated with hypertension, cardiovascular diseases and stroke. Researchers worldwide are exploring approaches to reduce salt consumption without compromising food flavor. One promising method is to enhance salty taste perception using multisensory synergies, leveraging gustatory, olfactory, auditory, visual, tactile and trigeminal senses to decrease salt intake while preserving food taste. This review provides a comprehensive overview of salt usage in foods, mechanisms of salty taste perception and evaluation methods for saltiness. Various strategies for reducing salt consumption while maintaining food flavor are examined, with existing salt reduction methods' advantages and limitations being critically analyzed. A particular emphasis is placed on exploring the mechanisms and potential of multisensory synergy in salt reduction. Taste interactions, olfactory cues, auditory stimulation, visual appearance and tactile sensations in enhancing saltiness perception are discussed, offering insights into developing nutritious, appealing low-sodium foods. Furthermore, challenges in current research are highlighted, and future directions for effective salt reduction strategies to promote public health are proposed. This review aims to establish a scientific foundation for creating healthier, flavorful low-sodium food options that meet consumer preferences and wellness needs.
Collapse
Affiliation(s)
- Shujing Liu
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; (S.L.); (Y.G.); (R.Z.); (L.Z.)
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China;
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuxiang Gu
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; (S.L.); (Y.G.); (R.Z.); (L.Z.)
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China;
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Ruiyi Zheng
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; (S.L.); (Y.G.); (R.Z.); (L.Z.)
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China;
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China;
| | - Lili Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; (S.L.); (Y.G.); (R.Z.); (L.Z.)
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China;
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; (S.L.); (Y.G.); (R.Z.); (L.Z.)
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China;
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
5
|
Ahmed S, Ansari A, Bishwanathan S, Siddiqui MA, Tailor S, Gupta PK, Negi DS, Ranjan P. Electronic Tongue Based on ZnO/ITO@glass for Electrochemical Monitoring of Spiciness Levels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4434-4446. [PMID: 38345916 DOI: 10.1021/acs.langmuir.3c03763] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Capsaicin, a chemical compound present in chili peppers, is widely acknowledged as the main contributor to the spicy and hot sensations encountered during consumption. Elevated levels of capsaicin can result in meals being excessively spicy, potentially leading to health issues, such as skin burning, irritation, increased heart rate and circulation, and discomfort in the gastrointestinal system and even inducing nausea or diarrhea. The level of spiciness that individuals can tolerate may vary, so what may be considered incredibly hot for one person could be mild for another. To ensure food safety, human healthcare, regulatory compliance, and quality control in spicy food products, capsaicin levels must be measured. For these purposes, a reliable and stable sensor is required to quantify the capsaicin level. To leverage the effect of zinc oxide (ZnO), herein, we demonstrated the one-step fabrication process of an electronic tongue (E-Tongue) based on an electrochemical biosensor for the determination of capsaicin. ZnO was electrodeposited on the indium tin oxide (ITO) surface. The biosensor demonstrated the two notable linear ranges from 0.01 to 50 μM and from 50 to 500 μM with a limit of detection (LOD) of 2.1 nM. The present study also included the analysis of real samples, such as green chilis, red chili powder, and dried red chilis, to evaluate their spiciness levels. Furthermore, the E-Tongue exhibited notable degrees of sensitivity, selectivity, and long-term stability for a duration of more than a month. The development of an E-Tongue for capsaicin real-time monitoring as a point-of-care (POC) device has the potential to impact various industries and improve safety, product quality, and healthcare outcomes.
Collapse
Affiliation(s)
- Shahzad Ahmed
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan342030, India
- The Institute for Lasers, Photonics, and Biophotonics/Chemistry, The State University of New York at Buffalo, 458 NSC Building Buffalo, Buffalo, New York 14260, United States
| | - Arshiya Ansari
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan342030, India
| | - Shashwat Bishwanathan
- Department of Chemical Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan342030, India
| | - Moin Ali Siddiqui
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan342030, India
| | - Satish Tailor
- Metallizing Equipment Co. Pvt. Ltd. (MECPL), Jodhpur 342012, Rajasthan, India
| | - Prashant Kumar Gupta
- Department of Chemical Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan342030, India
| | - Devendra Singh Negi
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan342030, India
| | - Pranay Ranjan
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan342030, India
| |
Collapse
|