1
|
Canan C, Kalschne DL, Corso MP, Cursino ACT, Drunkler DA, Cardoso FAR, Bittencourt PRS, Ida EI. Use of phytic acid from rice bran combined with sodium erythorbate as antioxidants in chicken mortadella. Food Chem 2024; 456:139957. [PMID: 38870808 DOI: 10.1016/j.foodchem.2024.139957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/14/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
The antioxidant effect of purified phytic acid (PPA) from rice bran (rice polishing by-product) combined with sodium erythorbate (SE) was evaluated for the first time in mortadella (added with 60% mechanically separated meat), a cured product with high-fat content and highly prone to oxidation, characteristic in Brazil. PPA proved effective compared to standard analytical grade phytic acid (SPA). Two central composite rotational designs (CCRD) (A and B) were employed to investigate the influence of PPA and SE, and SPA and SE, respectively, on mortadella lipid oxidation evaluated by TBARS after 30 days at 30 °C. Due to the high phytic acid's potent antioxidant capacity, the combination of PPA and SE synergistically reduced mortadella lipid oxidation. Furthermore, PPA from rice bran effectively controlled lipid oxidation in mortadella when combined with SE in the range of 5.0 to 9.0 mmol/kg of SPA and 25.0 to 50.0 mmol/kg of SE.
Collapse
Affiliation(s)
- Cristiane Canan
- Departamento Acadêmico de Alimentos, Universidade Tecnológica Federal do Paraná, Medianeira, Paraná, Brazil; Centro de Ciências Agrárias, Universidade Estadual de Londrina, Londrina, Brazil.
| | - Daneysa Lahis Kalschne
- Departamento Acadêmico de Alimentos, Universidade Tecnológica Federal do Paraná, Medianeira, Paraná, Brazil
| | - Marines Paula Corso
- Departamento Acadêmico de Alimentos, Universidade Tecnológica Federal do Paraná, Medianeira, Paraná, Brazil.
| | | | - Deisy Alessandra Drunkler
- Departamento Acadêmico de Alimentos, Universidade Tecnológica Federal do Paraná, Medianeira, Paraná, Brazil.
| | | | | | - Elza Iouko Ida
- Centro de Ciências Agrárias, Universidade Estadual de Londrina, Londrina, Brazil.
| |
Collapse
|
2
|
Bhat ZF, Bhat HF, Manzoor M, Abdi G, Aadil RM, Hassoun A, Aït-Kaddour A. Enhancing the lipid stability of foods of animal origin using edible packaging systems. Food Chem X 2024; 21:101185. [PMID: 38384687 PMCID: PMC10879673 DOI: 10.1016/j.fochx.2024.101185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/28/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024] Open
Abstract
Foods of animal origin are prone to oxidation due to their high lipid content and fatty acid profile. Edible packaging systems have evolved as a new way of preserving animal-derived foods and have been reported to retard lipid oxidation using antioxidant molecules from side-streams, waste, and agricultural by-products. Studies have evaluated previously undocumented film materials and novel bioactive molecules as additives for edible packaging for animal-derived foods. However, none of the studies is specifically focused on evaluating the packaging systems available for enhancing lipid stability. This paper thoroughly examines and discusses the application of edible packaging containing novel antioxidant molecules for controlling the lipid oxidation of animal-derived foods. The paper analyses and interprets the main findings of the recently published research papers. The materials and active principles used for enhancing lipid stability have been summarised and the underlying mechanisms discussed in detail. Studies should aim at using cheaper and readily available natural ingredients in future for the production of affordable packaging systems.
Collapse
Affiliation(s)
| | - Hina F. Bhat
- Division of Animal Biotechnology, SKUAST-K, Srinagar, India
| | - Mehnaza Manzoor
- Fermentation and Microbial Biotechnology Division, CSIR-IIIM, India
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, 75169, Iran
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abdo Hassoun
- Univ. Littoral Côte d’Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
| | | |
Collapse
|
3
|
Rosseto M, Rigueto CVT, Alessandretti I, de Oliveira R, Raber Wohlmuth DA, Loss RA, Dettmer A, Richards NSPDS. Whey-based polymeric films for food packaging applications: a review of recent trends. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3217-3229. [PMID: 36329662 DOI: 10.1002/jsfa.12310] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The food industry is always looking for new strategies to extend the shelf life of food. In recent years, the focus has been on edible films and coatings. These play an essential role in the quality, safety, transport, storage, and display of a wide variety of fresh and processed foods and contribute to environmental sustainability. In this sense, this study aimed to carry out a bibliometric analysis and literature review on the production of whey-based films for application in food packaging. Whey-based films have different characteristics when compared to other biopolymers, such as antimicrobial and immunomodulatory capacity. A wide variety of compounds were found that can be incorporated into whey films, aiming to overcome their limitations related to high solubility and low mechanical properties. These compounds range from plasticizing agents, secondary biomacromolecules added to balance the polymer matrix (gelatin, starch, chitosan), and bioactive agents (essential oils, pigments extracted from plants, and other antimicrobial agents). The most cited foods as application matrix were meat (fish, chicken, ham, and beef), in addition to different types of cheese. Edible and biodegradable films have the potential to replace synthetic polymers, combining social, environmental, and economic aspects. The biggest challenge on a large scale is the stability of physical, chemical, and biological properties during application. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marieli Rosseto
- Federal University of Santa Maria (UFSM), Rural Science Center, Postgraduate Program in Food Science and Technology (PPGCTA), Santa Maria, Brazil
| | - Cesar Vinicius Toniciolli Rigueto
- Federal University of Santa Maria (UFSM), Rural Science Center, Postgraduate Program in Food Science and Technology (PPGCTA), Santa Maria, Brazil
| | - Ingridy Alessandretti
- Faculty of Agronomy and Veterinary Medicine (FAMV), University of Passo Fundo (UPF), Postgraduate Program in Food Science and Technology (PPGCTA), Passo Fundo, Brazil
| | - Rafaela de Oliveira
- Faculty of Engineering and Architecture (FEAR), Chemical Engineering Course, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Daniela Alexia Raber Wohlmuth
- Faculty of Engineering and Architecture (FEAR), Chemical Engineering Course, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Raquel Aparecida Loss
- Food Engineering Department, Faculty of Architecture and Engineering (FAE), Mato Grosso State University (UNEMAT), Barra do Bugres, Brazil
| | - Aline Dettmer
- Faculty of Agronomy and Veterinary Medicine (FAMV), University of Passo Fundo (UPF), Postgraduate Program in Food Science and Technology (PPGCTA), Passo Fundo, Brazil
- Faculty of Engineering and Architecture (FEAR), Chemical Engineering Course, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | | |
Collapse
|
4
|
Andrade MA, Barbosa CH, Cerqueira MA, Azevedo AG, Barros C, Machado AV, Coelho A, Furtado R, Correia CB, Saraiva M, Vilarinho F, Silva AS, Ramos F. PLA films loaded with green tea and rosemary polyphenolic extracts as an active packaging for almond and beef. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Efficacy of Whey Protein Film Incorporated with Portuguese Green Tea (Camellia sinensis L.) Extract for the Preservation of Latin-Style Fresh Cheese. Foods 2022; 11:foods11081158. [PMID: 35454745 PMCID: PMC9032714 DOI: 10.3390/foods11081158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022] Open
Abstract
Fresh cheese composition favors the growth of microorganisms and lipid oxidation, leading to a short shelf life. Whey protein concentrates can be used to produce active films in which green tea (Camellia sinensis L.) extract, rich in bioactive compounds, namely catechins, can be incorporated. Thus, the main objective of this study was to evaluate the efficacy of an edible active film, incorporated with green tea extract, to preserve goat and mixture (goat and sheep) fresh cheeses. Our results demonstrated that Portuguese green teas (antioxidant activity coefficient—AAC = 746.7) had superior antioxidant capacity to that of the evaluated Asian green tea (AAC = 650). Furthermore, green tea produced from the leaves of the new Portuguese Chá Camélia tea plantation had the highest potential to retain the antioxidant capacity (97.3%). Additionally, solid–liquid extractions led to extracts with higher antioxidant activity (AAC = 1500), but Soxhlet extractions presented higher yield (43%). Furthermore, the active film incorporated with Portuguese green tea extract exhibited a high antioxidant capacity (AAC ≈ 595.4). In addition, the active film effectively delayed the lipid oxidation of the evaluated fresh cheeses (3.2 mg MDA Eq/kg) when compared with the control (4.2 mg MDA Eq/kg). Moreover, the active films effectively inhibited the growth of microorganisms, especially E. coli (1.5 × 10 CFU/g), when compared with the blank (2.2 × 102 CFU/g). This study suggests that the new whey protein film incorporated with Portuguese green tea extract has the potential to be used to extend fresh cheese shelf life.
Collapse
|
6
|
Xiang J, Liu F, Wang B, Chen L, Liu W, Tan S. A Literature Review on Maillard Reaction Based on Milk Proteins and Carbohydrates in Food and Pharmaceutical Products: Advantages, Disadvantages, and Avoidance Strategies. Foods 2021; 10:foods10091998. [PMID: 34574107 PMCID: PMC8472807 DOI: 10.3390/foods10091998] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 01/13/2023] Open
Abstract
Milk has two main components that have high nutritional value—milk protein (casein and whey protein), and lactose. These components are extensively used in various areas, especially in food, i.e., as sweeteners, stabilizers, functional food ingredients, nutritional fortifiers, etc. Non-enzymatic browning refers to a series of chemical reactions between sugars and proteins that make food more appetizing. Non-enzymatic browning reactions include degradation of ascorbic acid, lipid peroxidation, caramel reaction, and the Maillard reaction (MR). The MR, as one of the four non-enzymatic browning reactions, has been well studied and utilized in food fields. Milk protein and lactose, as two main components of milk, have high chemical activities; they are used as reactants to participate in the MR, generating Maillard reaction products (MRPs). The MR involves a condensation reaction between carbonyl groups of various sugars and amino groups of amino acids/proteins. These MRPs have different applications in various areas, including food flavor, food oxidation resistance, drug carriers, etc. This work presents the positive and negative effects of the MR, based on the two main components of milk, used in food and medicine, as well as avoidance approaches to prevent the occurrence of negative effects.
Collapse
|
7
|
Novel Active Food Packaging Films Based on Whey Protein Incorporated with Seaweed Extract: Development, Characterization, and Application in Fresh Poultry Meat. COATINGS 2021. [DOI: 10.3390/coatings11020229] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Algae and seaweeds are used in cookery since the beginnings of human civilization, particularly in several Asian cultures. Phenolic compounds are secondary metabolites produced by aquatic and terrestrial plants for their natural defense against external stimuli, which possess powerful antimicrobial and antioxidant properties that can be very important for the food industry. The main objective of this study was to develop a whey protein concentrate active coating, incorporated with a Fucus vesiculosus extract in order to delay the lipid oxidation of chicken breasts. Ten hydroethanolic extracts from F. vesiculosus were obtained and their antioxidant capacity was evaluated through two antioxidant activity assays: the DPPH radical scavenging activity and β-carotene bleaching assay. The total content in phenolics compounds was also determined by Folin-Ciocalteu method. The chosen extract was the one obtained from the freeze-dried F. vesiculosus using 75% (v/v) ethanol as extraction solvent. The extract was successfully incorporated into a whey protein film and successfully strengthened the thickness, tensile strength, and elastic modulus. The active film also was able to inhibit the chicken breasts lipid oxidation for 25 days of storage.
Collapse
|
8
|
Morcuende D, Vallejo-Torres C, Ventanas S, Martínez SL, Ruiz SC, Estévez M. Effectiveness of Sprayed Bioactive Fruit Extracts in Counteracting Protein Oxidation in Lamb Cutlets Subjected to a High-Oxygen MAP. Foods 2020; 9:E1715. [PMID: 33266450 PMCID: PMC7700604 DOI: 10.3390/foods9111715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
High-oxygen packaging atmosphere (High-Ox-MAP) promotes meat protein oxidation and leads to texture deterioration. This study was conceived to assess the extent to which sprayed fruit extracts could inhibit the oxidative damage to proteins in lamb cutlets subjected to High-Ox-MAP (10 days/4 °C) and subsequent roasting (10 min/180 °C). Extracts from oaknut (Quercus ilex subsp. ballota; QI), rose hips (Rosa canina L.; RC), common hawthorn (Crataegus monogyna Jacq.; CM) and strawberry tree (Arbutus unedo L.; AU) were characterized for bioactive compounds (phenolic subclasses, tocopherols and ascorbic acid) and in vitro bioactivities. While the four fruits showed relevant antioxidant potential, CM had the highest phenolics and tocopherol content and that was reflected in efficient antiradical activity. The in vitro activity of this fruit to inhibit meat protein oxidation was, however, lower than that displayed by the other fruits. Taking the results altogether, CM was also found to be most efficient in protecting lamb cutlets from lipid oxidation. All fruits were able to inhibit thiols oxidation except RC, which seemed to reduce protein thiols. Among fruits, QI was the most efficient in protecting lamb cutlets against protein carbonylation as a plausible involvement of ellagitannins. The inhibition of protein oxidation by QI was reflected in significantly lower instrumental hardness in cooked lamb cutlets. Spraying lamb cutlets with extracts from QI, RC and CM improved consumers' purchase intention after chilled storage. This antioxidant strategy seems to be a feasible and efficient solution to the pro-oxidative effects caused by High-Ox-MAP in red meat.
Collapse
Affiliation(s)
- D. Morcuende
- IPROCAR Research Institute, Food Technology, University of Extremadura, 10003 Cáceres, Spain; (D.M.); (S.V.)
| | - C. Vallejo-Torres
- Food Engineering School, Technical State University of Quevedo, 120305 Quevedo, Ecuador;
| | - S. Ventanas
- IPROCAR Research Institute, Food Technology, University of Extremadura, 10003 Cáceres, Spain; (D.M.); (S.V.)
| | - S. L. Martínez
- Meat Quality Laboratory, Santiago del Estero National University, G4200 Santiago del Estero, Argentina;
| | - S. C. Ruiz
- National Institute of Agricultural Technology (INTA), 16003 Santiago del Estero, Argentina;
| | - M. Estévez
- IPROCAR Research Institute, Food Technology, University of Extremadura, 10003 Cáceres, Spain; (D.M.); (S.V.)
| |
Collapse
|
9
|
Formation and Inhibition of Lipid Alkyl Radicals in Roasted Meat. Foods 2020; 9:foods9050572. [PMID: 32375314 PMCID: PMC7278865 DOI: 10.3390/foods9050572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Free radicals are ubiquitous in roasted foods. In this work, lipid-derived carbon-centered alkyl radical formation was first studied in roasted meat by electron spin resonance (ESR). The influence of antioxidants on the inhibition of free radicals was investigated. The results showed that the high temperature, high heat transfer rate, and high polyunsaturated fatty acid (PUFA) content resulted in high radical content in roasted meat, while the high water content in meat retarded radical formation. The 0.03% addition of tea polyphenols (TPP) significantly reduced radical formation during roasting (p < 0.05), whereas the 0.03% rosemary extract (RE) had no significant inhibitory effect (p > 0.05). These results suggested that water retention and the addition of TPP would decrease radical generation during the roasting of meat.
Collapse
|
10
|
A New Insight on Cardoon : Exploring New Uses besides Cheese Making with a View to Zero Waste. Foods 2020; 9:foods9050564. [PMID: 32370268 PMCID: PMC7278730 DOI: 10.3390/foods9050564] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/16/2022] Open
Abstract
Cardoon, Cynara cardunculus L., is a perennial plant whose flowers are used as vegetal rennet in cheese making. Cardoon is native from the Mediterranean area and is commonly used in the preparation of salads and soup dishes. Nowadays, cardoon is also being exploited for the production of energy, generating large amount of wastes, mainly leaves. These wastes are rich in bioactive compounds with important health benefits. The aim of this review is to highlight the main properties of cardoon leaves according to the current research and to explore its potential uses in different sectors, namely the food industry. Cardoon leaves are recognized to have potential health benefits. In fact, some studies indicated that cardoon leaves could have diuretic, hepato-protective, choleretic, hypocholesterolemic, anti-carcinogenic, and antibacterial properties. Most of these properties are due to excellent polyphenol profiles, with interesting antioxidant and antimicrobial activities. These findings indicate that cardoon leaves can have new potential uses in different sectors, such as cosmetics and the food industry; in particular, they can be used for the preparation of extracts to incorporate into active food packaging. In the future, these new uses of cardoon leaves will allow for zero waste of this crop.
Collapse
|
11
|
Application of nano/microencapsulated phenolic compounds against cancer. Adv Colloid Interface Sci 2020; 279:102153. [PMID: 32289738 DOI: 10.1016/j.cis.2020.102153] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
Nowadays, polyphenols as bioactive compounds are being used in producing anti-cancer drugs. Low stability against harsh environmental conditions, untargeted release, low solubility, and low absorption of pure phenolic molecules are significant barriers, which decrease the functions of polyphenols. Recently, the nanoencapsulation processes have been applied to overcome these restrictions, in which the anti-cancer activity of polyphenols has been noticeably increased. This review will focus on the anti-cancer activity of polyphenols, and the effect of loading polyphenolics into various micro/nanoencapsulation systems on their anti-cancer activity. Different encapsulation systems such as lipid and polymer based nanoparticles, and solid form of encapsulated phenolic molecules by nano-spray dryer and electrospinnig have been used for loading of polyphenols. Incorporation of phenolic molecules into various carriers inevitably increases their anti-cancer activity. Because, in this way, encapsulated cargos can provide a targeted release, which will increase the bioavailability of phenolic molecules and their functions such as absorption into cancer cell.
Collapse
|