1
|
Deng Y, Zhou J, Wang B, Xu X, Huang T, Xu Z, Zhao C. Optimization of Different Extraction Methods for Phenolic Compound Verbascoside from Chinese Olea europaea Leaves Using Deep Eutectic Solvents: Impact on Antioxidant and Anticancer Activities. Molecules 2024; 29:4219. [PMID: 39275067 PMCID: PMC11396934 DOI: 10.3390/molecules29174219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Chinese Olea europaea leaves, rich in verbascosides, were extracted using ultrasound-assisted extraction (UAE) and wall-breaking extraction (WBE) with deep eutectic solvents (Optimal UAE: 55 min, 200 mL/g liquid-solid ratio, 20% moisture, yielding 206.23 ± 0.58 mg GAE/g total phenolic content (TPC) and 1.59 ± 0.04% verbascoside yield (VAY); Optimal WBE: 140 s, 210 mL/g, 30% moisture, giving 210.69 ± 0.97 mg GAE/g TPC and 1.33 ± 0.2% VAY). HPLC analysis showed that young leaves accumulated higher TPC and phenolic compounds. Among the five olive varieties, Koroneiki and Chemlal showed the highest TPC in UAE, while Arbosana and Chemlal excelled in WBE. WBE yielded a higher TPC and rutin, whereas UAE marginally increased other phenolics. Additionally, the DPPH• assay showed that WBE-extracted verbascoside-rich extracts (VREs) of Chemlal exhibited high antioxidant activity (EC50 of 57 mg/mL), but Koroneiki-VREs exhibited lower activity against the ABTS•+ radical (EC50 of 134 mg/mL). Remarkably, the UAE/WBE-extracted Chemlal-VREs promoted the normal esophageal Het-1A cell line at 25 μg/mL for 24 h; yet, the esophageal cancer Eca-109 cells were sensibly inhibited, especially at 50 μg/mL; and the cell viability decreased dramatically. The results confirmed WBE as a relatively efficient method, and the Chemlal variety may be an excellent source of verbascoside.
Collapse
Affiliation(s)
- Yan Deng
- College of Life Science, Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Junlin Zhou
- College of Life Science, Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Bixia Wang
- College of Life Science, Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Xiao Xu
- College of Life Science, Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Tingyu Huang
- College of Life Science, Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Zhou Xu
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615000, China
| | - Chunyan Zhao
- Sichuan Yizhang Agricultural Development Co., Ltd., Nanchong 637009, China
| |
Collapse
|
2
|
Prelac M, Major N, Cvitan D, Anđelini D, Repajić M, Ćurko J, Kovačević TK, Goreta Ban S, Užila Z, Ban D, Palčić I. Valorization of Olive Leaf Polyphenols by Green Extraction and Selective Adsorption on Biochar Derived from Grapevine Pruning Residues. Antioxidants (Basel) 2023; 13:1. [PMID: 38275621 PMCID: PMC10812658 DOI: 10.3390/antiox13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Given today's increasingly intensive agriculture, one key problem area considers the valorization and reuse of wastes from food and agricultural production with minimal impact on the environment. Due to its physicochemical characteristics, biochar (BC) derived from grapevine pruning residue has shown considerable potential for use as an adsorbent. High-value phytochemicals found in abundance in the olive leaf (OL) can be employed in many different industrial sectors. The potential application of BC in the removal of specific polyphenolic components from OL extracts has been investigated in the present study. Water, as the most available and greenest of solvents, was investigated as to its use in the extraction of polyphenols, which was carried out by comparing maceration, ultrasound-assisted extraction, and microwave-assisted extraction, considering different temperatures and solid-to-liquid (s/l) ratios. The BC adsorption capacity of selected polyphenols was fitted with both the Langmuir and Freundlich isotherm models. The Freundlich model fitted better relative to OL polyphenols adsorption. Oleuropein was the most abundant compound identified in the extracts, obtaining the highest Kf value (20.4 (mg/g) × (L/g)n) and R2 coefficient (0.9715) in the adsorption on the biochar's surface. The optimum conditions in the dosage experiment suggest the use of 0.5 g of BC using 3 g/L extracts, with an exception for oleuropein and hydroxytyrosol, for which the highest biochar dose (2.5 g) performed better. Considering the compounds' concentrations and the BC dose, BC from grapevine pruning residues demonstrated a potential use in the uptake of specific polyphenols from olive leaves, making it a promising adsorbent for such applications.
Collapse
Affiliation(s)
- Melissa Prelac
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| | - Nikola Major
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| | - Danko Cvitan
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| | - Dominik Anđelini
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| | - Maja Repajić
- Department of Food Engineering, University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (J.Ć.)
| | - Josip Ćurko
- Department of Food Engineering, University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (J.Ć.)
| | - Tvrtko Karlo Kovačević
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| | - Smiljana Goreta Ban
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| | - Zoran Užila
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| | - Dean Ban
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| | - Igor Palčić
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| |
Collapse
|
3
|
Benčić Đ, Barbarić M, Mornar A, Klarić DA, Brozovic A, Dabelić S, Fadljević M, Marković AK. Oleuropein in olive leaf, branch, and stem extracts: stability and biological activity in human cervical carcinoma and melanoma cells. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:601-616. [PMID: 38147483 DOI: 10.2478/acph-2023-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 12/28/2023]
Abstract
Olive leaves as a main byproduct of olive oil and fruit industry are a valuable source of phytochemicals such as polyphenols, with multiple biomedical effects. Apart from leaves, olive branches and stems make up a significant amount of olive waste. It is well known that the drying process and long-term storage affect the stability and concentration of polyphenols present in raw materials. For that matter, two different means of storing olive waste, at room temperature and +4 °C, were compared by determining the content of the polyphenol oleuropein (OLE) in olive leaf, branch, and stem extracts (LE, BE, and SE) by HPLC-DAD method. Total phenols (TPC), o-diphenols (o-DPC), and total flavonoids (TFC) content in extracts were assessed by UV-Vis measurements. LE prepared from leaves stored at +4 °C had the highest OLE content, 30.7 mg g-1 of dry extract (DE). SE from stems stored at +4 °C was the richest in TPC and TFC (193 mg GAE/g DE and 82.9 mg CE/g DE, respectively), due to the higher purity of the extract. The biological activity of extracts was determined on cervical cancer (HeLa), melanoma (A375), metastatic melanoma (A375M) tumor cell lines, and on spontaneously immortalized cell line of keratinocytes (HaCaT), using the MTT assay. The data show that all extracts had a similar dose-dependent effect on cell viability in HeLa cells, while the effect of LE on melanoma A375 and A375M, and HaCaT cells was cell-line dependent.
Collapse
Affiliation(s)
- Đani Benčić
- 1University of Zagreb Faculty of Agriculture, 10000 Zagreb, Croatia
| | - Monika Barbarić
- 2University of Zagreb, Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Ana Mornar
- 2University of Zagreb, Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | | | | | - Sanja Dabelić
- 2University of Zagreb, Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Mihaela Fadljević
- 2University of Zagreb, Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | | |
Collapse
|
4
|
Colzi I, Marone E, Luti S, Pazzagli L, Mancuso S, Taiti C. Metabolic Responses in Leaves of 15 Italian Olive Cultivars in Correspondence to Variable Climatic Elements. PLANTS (BASEL, SWITZERLAND) 2023; 12:1953. [PMID: 37653870 PMCID: PMC10221759 DOI: 10.3390/plants12101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 09/02/2023]
Abstract
This study aims to evaluate the metabolic changes that occurred in olive leaves as responses over time to variations in climatic elements. Rainfall, temperature, and solar radiation data were collected over 4 months (August-November) to assess the impact of different climatic trends on the metabolism of the leaves of 15 Italian olive cultivars, cultivated at the experimental farm of the University of Florence. The net photosynthetic rate (AN) and stomatal conductance (gs), measured as main indicators of primary metabolism, were mainly influenced by the "cultivar" effect compared to the "climate" effect. The lowest AN value was showed by "Bianchera", while "Ascolana" recorded the highest (8.6 and 13.6 µmol CO2 m-2s-1, respectively). On the other hand, the secondary metabolism indicators, volatile organic compound (VOC) and oleuropein (OL) content, were much more influenced by climate trends, especially rainfall. A phase of high rainfall caused a significant increase in the VOCs emission from leaves, even with different behaviors among the genotypes. The highest differences were observed between "Maiatica di Ferrandina", with the highest average values (~85,000 npcs), and "Frantoio", which showed the lowest (~22,700 npcs). The OL content underwent considerable fluctuations in relation to the rainfall but also appeared to be controlled by the genotype. "Coratina" always showed the highest OL concentration (reaching the maximum ~98 mg g-1), indicating the great potential of this cultivar for the industrial recovery of OL.
Collapse
Affiliation(s)
- Ilaria Colzi
- Department of Biology, University of Florence, Via Micheli 1, 50121 Firenze, Italy
| | - Elettra Marone
- Department of Biosciences and Technologies for Agriculture, Food and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy;
| | - Simone Luti
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, 50134 Firenze, Italy; (S.L.); (L.P.)
| | - Luigia Pazzagli
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, 50134 Firenze, Italy; (S.L.); (L.P.)
| | - Stefano Mancuso
- Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee, 50019 Sesto Fiorentino, Italy
| | - Cosimo Taiti
- Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
5
|
Hussain M, Girelli CR, Verweire D, Oehl MC, Avendaño MS, Scortichini M, Fanizzi FP. 1H-NMR Metabolomics Study after Foliar and Endo-Therapy Treatments of Xylella fastidiosa subsp. pauca Infected Olive Trees: Medium Time Monitoring of Field Experiments. PLANTS (BASEL, SWITZERLAND) 2023; 12:1946. [PMID: 37653863 PMCID: PMC10221468 DOI: 10.3390/plants12101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 09/02/2023]
Abstract
Here we report the medium-term effects of foliar spray and endo-therapy treatments with different doses of a Cu/Zn citric acid biocomplex (Dentamet®) in Xylella fastidiosa infected olive trees of Salento, Apulia region (South-east Italy). Leaf extract samples from field-treated 150 years old olive trees cvs Ogliarola salentina and Cellina di Nardò were studied by 1H NMR-based metabolomics. The result of different applications of Dentamet® endo-therapy after 60, 120 and 180 days in comparison with traditional foliar spray treatment and water injection as a control have been investigated. The metabolic profile analyses, performed by 1H NMR-based metabolomic approach, indicated plant metabolites variations connected to the disease progression such as mannitol, quinic acid, and oleuropein related compounds. The best results, in terms of discrimination of the metabolic profiles with respect to water injection, were found for monthly endo-therapy treatments. Dentamet® foliar application demonstrated more specific time related progressive effectiveness with respect to intravascular treatments. Therefore, besides a possible more effective performance of endo-therapy with respect to foliar treatments, the need of further doses/frequencies trimming to obtain long-term results was also assessed. The present field studies confirmed the indication of Dentamet® effectiveness in metabolic variation induction, potentially linked with reducing the X. fastidiosa subspecies pauca related Olive Quick Decline Syndrome (OQDS) symptoms development.
Collapse
Affiliation(s)
- Mudassar Hussain
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, 73100 Lecce, Italy;
| | - Chiara Roberta Girelli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, 73100 Lecce, Italy;
| | - Dimitri Verweire
- Invaio Sciences, Cambridge, MA 02138, USA; (D.V.); (M.C.O.); (M.S.A.)
| | - Michael C. Oehl
- Invaio Sciences, Cambridge, MA 02138, USA; (D.V.); (M.C.O.); (M.S.A.)
| | - Maier S. Avendaño
- Invaio Sciences, Cambridge, MA 02138, USA; (D.V.); (M.C.O.); (M.S.A.)
| | - Marco Scortichini
- Council for Agricultural Research and Agricultural Economic Analyses (CREA), Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello, 52, 00134 Roma, Italy;
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
6
|
Anwar S, Saleem H, Khurshid U, Ansari SY, Alghamdi S, Al-Khulaidi AWA, Malik JA, Ahemad N, Awadh Ali NA. Comparative phytochemical composition, oleuropein quantification, antioxidant and cytotoxic properties of Olea europaea L. leaves. Nat Prod Res 2023; 37:1023-1029. [PMID: 35815778 DOI: 10.1080/14786419.2022.2097230] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In the present research, oleuropein (OLE) contents from two Saudi Arabian wild olive trees (Olea europaea L.) leaves (O1 and O2), were collected from two nearby geographical sites differing in altitudes, and were determined via UHPLC-MS analysis. Moreover, total bioactive contents, antioxidant, and cytotoxicity (against MCF-7 and MDA-MB-231 cells) potential were also evaluated. The sample (O2) was found to contain significantly (p < 0.05) higher OLE content (4.13 ± 1.0 mg/g DW) compared with the sample (O1) having OLE content (3.63 ± 1.1 mg/g DW). A similar trend was observed regarding total bioactive contents and antioxidant potential. However, both samples exhibited low cytotoxicity against tested cell lines. Furthermore, with hierarchical cluster analysis that compared the results of our samples (O1 and O2) to other samples reported in the literature, it was found that the variance in OLE content and biological activities from Al Baha region leaves had a resemblance to other reported superior cultivars.
Collapse
Affiliation(s)
- Sirajudheen Anwar
- Department of Pharmaceutical Chemistry, Pharmacology Unit, Faculty of Clinical Pharmacy, Al Baha University, Al Baha, Kingdom of Saudi Arabia.,Department of Pharmacology & Toxicology, College of Pharmacy, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore, Pakistan
| | - Umair Khurshid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shabana Yasmeen Ansari
- Chemical Engineering Department, Pharmaceutical unit, University of Messina, Messina, Italy
| | - Saleh Alghamdi
- Department of Clinical Pharmacy, Faculty of Clinical Pharmacy, Al Baha University, Al Baha, Kingdom of Saudi Arabia
| | - Abdul Wali A Al-Khulaidi
- Departments of Biology, Faculty of Science and Art, Al Baha University, Baljurashi, Kingdom of Saudi Arabia.,Agricultural Research and Extension Authority, Taiz, Yemen
| | - Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Research, Guwahati, India
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway Selangor, Malaysia
| | - Nasser A Awadh Ali
- Department of Pharmacognosy and Herbal medicine, Faculty of Clinical Pharmacy, Al Baha University, Al Baha, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Kakagianni M, Tsiknia M, Feka M, Vasileiadis S, Leontidou K, Kavroulakis N, Karamanoli K, Karpouzas DG, Ehaliotis C, Papadopoulou KK. Above- and below-ground microbiome in the annual developmental cycle of two olive tree varieties. FEMS MICROBES 2023; 4:xtad001. [PMID: 37333440 PMCID: PMC10117799 DOI: 10.1093/femsmc/xtad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 10/22/2023] Open
Abstract
The olive tree is a hallmark crop in the Mediterranean region. Its cultivation is characterized by an enormous variability in existing genotypes and geographical areas. As regards the associated microbial communities of the olive tree, despite progress, we still lack comprehensive knowledge in the description of these key determinants of plant health and productivity. Here, we determined the prokaryotic, fungal and arbuscular mycorrhizal fungal (AMF) microbiome in below- (rhizospheric soil, roots) and above-ground (phyllosphere and carposphere) plant compartments of two olive varieties 'Koroneiki' and 'Chondrolia Chalkidikis' grown in Southern and Northern Greece respectively, in five developmental stages along a full fruit-bearing season. Distinct microbial communities were supported in above- and below-ground plant parts; while the former tended to be similar between the two varieties/locations, the latter were location specific. In both varieties/locations, a seasonally stable root microbiome was observed over time; in contrast the plant microbiome in the other compartments were prone to changes over time, which may be related to seasonal environmental change and/or to plant developmental stage. We noted that olive roots exhibited an AMF-specific filtering effect (not observed for bacteria and general fungi) onto the rhizosphere AMF communities of the two olive varieties/locations/, leading to the assemblage of homogenous intraradical AMF communities. Finally, shared microbiome members between the two olive varieties/locations include bacterial and fungal taxa with putative functional attributes that may contribute to olive tree tolerance to abiotic and biotic stress.
Collapse
Affiliation(s)
- Myrsini Kakagianni
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa 41500, Greece
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly, Temponera str, 43100 Karditsa, Greece
| | - Myrto Tsiknia
- Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Athens 11855, Greece
| | - Maria Feka
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Sotirios Vasileiadis
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Kleopatra Leontidou
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Nektarios Kavroulakis
- Institute for Olive Tree, Subtropical Plants and Viticulture, Hellenic Agricultural Organization “ELGO-Dimitra”, Agrokipio-Souda, 73164 Chania, Greece
| | - Katerina Karamanoli
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitrios G Karpouzas
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Constantinos Ehaliotis
- Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Athens 11855, Greece
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa 41500, Greece
| |
Collapse
|
8
|
Difonzo G, Crescenzi MA, Piacente S, Altamura G, Caponio F, Montoro P. Metabolomics Approach to Characterize Green Olive Leaf Extracts Classified Based on Variety and Season. PLANTS (BASEL, SWITZERLAND) 2022; 11:3321. [PMID: 36501360 PMCID: PMC9735528 DOI: 10.3390/plants11233321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The huge interest in the health-related properties of plant polyphenols to be applied in food and health-related sectors has brought about the development of sensitive analytical methods for metabolomic characterization. Olive leaves constitute a valuable waste rich in polyphenols with functional properties. A (HR)LC-ESI-ORBITRAP-MS analysis with a multivariate statistical analysis approach using PCA and/or PLS-DA projection methods were applied to identify polyphenols in olive leaf extracts of five varieties from the Apulia region (Italy) in two different seasonal times. A total of 26 metabolites were identified, further finding that although metabolites are common among the different cultivars, they differ in the relative intensity of each peak and within each cultivar in the two seasonal periods taken into consideration. The results of the total phenol contents showed the highest content in November for Bambina and Cima di Mola varieties (1816 and 1788 mg/100 g, respectively), followed by Coratina, Leccino, and Cima di Melfi; a similar trend was found for the antioxidant activity and RapidOxy evaluations by reaching in Bambina values of 45 mmol TE/100 g and 85 min of induction time.
Collapse
Affiliation(s)
- Graziana Difonzo
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Maria Assunta Crescenzi
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano, Italy
- PhD Program in Drug Discovery & Development, Pharmacy Department, University of the Study of Salerno, I-84135 Salerno, Italy
| | - Sonia Piacente
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano, Italy
| | - Giuseppe Altamura
- Centro di Ricerca, Sperimentazione e Formazione in Agricoltura Basile Caramia, Locorotondo, I-70010 Bari, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Paola Montoro
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano, Italy
| |
Collapse
|
9
|
Peng X, He X, Tang J, Xiang J, Deng J, Kan H, Zhang Y, Zhang G, Zhao P, Liu Y. Evaluation of the in vitro antioxidant and antitumor activity of extracts from Camellia fascicularis leaves. Front Chem 2022; 10:1035949. [PMID: 36385999 PMCID: PMC9659641 DOI: 10.3389/fchem.2022.1035949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/12/2022] [Indexed: 12/01/2023] Open
Abstract
Camellia fascicularis is a unique plant rich in bioactive components. However, the isolation of the active substances in C. fascicularis leaves via sequential extraction with solvents of different polarity and the determination of their antioxidant and antitumor activities have not been reported. In this study, the total methanol extract of C. fascicularis leaves was sequentially extracted with different polar solvents, and the corresponding petroleum ether extract (PEE), ethyl acetate extract (EAE), and water extract (WE) were analyzed for their contents in active substances such as flavonoids, polyphenols, polysaccharides, and saponins. The antioxidant ability of the polar extracts was investigated by determining their reducing power and the radical scavenging rate on 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and hydroxyl radicals, and CCK-8 and Annexin-FITC/propidium iodide staining assays were conducted to investigate their inhibitory effects on HCCLM6 and HGC27 tumor cells. The results showed that PEE had a high saponin content of 197.35 ± 16.21 mg OAE/g, while EAE and WE exhibited a relatively higher polysaccharide content of 254.37 ± 1.99 and 373.27 ± 8.67 mg GE/g, respectively. The EAE demonstrated the greatest reducing power and the strongest clearing abilities on ABTS and DPPH radicals with respective EC50 values of 343.45 ± 20.12 and 14.07 ± 0.06 μg/ml. Moreover, the antitumor ability of the different polar extracts was dose-dependent, with WE showing the most potent inhibitory ability against HCCLM6 and HGC27 cells.
Collapse
Affiliation(s)
- Xiaowei Peng
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Xuhua He
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Junrong Tang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Jianying Xiang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Jia Deng
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Huan Kan
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
- Forest Resources Exploitation and Utilization Engineering Research Center for Grand Health of Yunnan Provincial Universities, Kunming, China
| | - Yingjun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Guiliang Zhang
- Hekou Management Sub-bureau of Yunnan Daweishan National Nature Reserve Management Bureau, Honghe, China
| | - Ping Zhao
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
- Forest Resources Exploitation and Utilization Engineering Research Center for Grand Health of Yunnan Provincial Universities, Kunming, China
| | - Yun Liu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
- Forest Resources Exploitation and Utilization Engineering Research Center for Grand Health of Yunnan Provincial Universities, Kunming, China
| |
Collapse
|
10
|
Otero P, Garcia-Oliveira P, Carpena M, Barral-Martinez M, Chamorro F, Echave J, Garcia-Perez P, Cao H, Xiao J, Simal-Gandara J, Prieto M. Applications of by-products from the olive oil processing: Revalorization strategies based on target molecules and green extraction technologies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Abstract
Oleuropein, a bitter substance that exists in olive leaves, can be hydrolyzed to hydroxytyrosol. These are the main phenolic compounds, and they have beneficial properties to human bodies. In this study, we established a simple and new method to determine oleuropein and hydroxytyrosol quickly by HPLC. HPLC conditions were set as follows: water (A) acetonitrile (B) as mobile phase, gradient elution orders: 90%A–10%B for 0–10 min, 80%A–20%B for 14–30 min, and then change to 90%A–10%B for 30–33 min; detection wavelength: 280 nm. Compared with other detection methods, the method simplified the elution procedure and shortened the time. Additionally, we provided a better drying method and preservation of olive leaves in tea drinking production that were air-dried at room temperature of 25 °C.
Collapse
|
12
|
Metabolic profile of olive leaves of different cultivars and collection times. Food Chem 2020; 345:128758. [PMID: 33348131 DOI: 10.1016/j.foodchem.2020.128758] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/22/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
Due to the appreciable amounts of bioactive compounds in olive leaves and the effect of abiotic stresses on their synthesis, this study evaluated the metabolic profile of leaves of olive cultivars (Arbequina, Manzanilla and Picual) collected in four periods of the year (autumn, winter, spring and summer). The determination of the profile of bioactive compounds (phenolic compounds, flavonoids, tannins, carotenoids and chlorophylls) by spectrophotometry and the individual compounds by liquid chromatography coupled to mass spectrum, as well as antioxidant potential tests were performed. As results it was possible to observe that the leaves of the cultivar Manzanilla presented the highest levels of phenolic compounds and that the leaves collected in the summer presented a number of compounds much more relevant than the others. Thus, it was possible to conclude that the cultivar and the collection season significantly affect the bioactive content and the antioxidant potential of olive leaves.
Collapse
|
13
|
Djenane D, Aboudaou M, Djenane F, García-Gonzalo D, Pagán R. Improvement of the Shelf-Life Status of Modified Atmosphere Packaged Camel Meat Using Nisin and Olea europaea Subsp. laperrinei Leaf Extract. Foods 2020; 9:foods9091336. [PMID: 32971898 PMCID: PMC7555406 DOI: 10.3390/foods9091336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
The impact of combined biopreservation treatment with Olea europaea subsp. laperrinei leave extracts (laper.OLE) and nisin on the quality attributes of camel steaks packaged under high O2 (80%) and CO2 (20%) atmosphere was investigated during refrigerated (1 ± 1 °C) long-term storage. As measured by reversed phase HPLC/DAD analysis, oleuropein is the phenolic compound most present in the chemical composition of laper.OLE (63.03%). Camel steaks treated with laper.OLE had a lower concentration of thiobarbituric acid-reactive substances (TBA-RSs) in the course of 30 days of storage. Surface metmyoglobin (MetMb) increased at a reduced rate in laper.OLE-treated samples compared to control samples. Neither modified atmosphere packaging (MAP) nor biopreservation treatments significantly altered the tenderness of camel steaks, expressed in terms of Warner-Bratzler shear force (WBSF), as compared to control samples. After 30 days of storage, psychrotrophic bacteria and Pseudomonas spp. counts were significantly lower in camel steaks treated with a combination of laper.OLE and nisin than in untreated steaks. Moreover, samples treated with laper.OLE received higher scores on bitterness acceptability. In sum, the use of combined biopreservation methods could be a sustainable solution for the preservation and promotion of the quality characteristics of camel meat in arid regions.
Collapse
Affiliation(s)
- Djamel Djenane
- Laboratory of Food Quality and Food Safety, Department of Food Science, Mouloud MAMMERI University, P.O. Box. 17, Tizi-Ouzou RP 15000, Algeria;
- Correspondence: ; Tel.: +213-779-001-384; Fax: +213-261-861-56
| | - Malek Aboudaou
- Département Recherche & Développement, Isser Délice SARL, ISO 9 International, BP 10, 35230 Isser, Algeria;
| | - Fatiha Djenane
- Laboratory of Food Quality and Food Safety, Department of Food Science, Mouloud MAMMERI University, P.O. Box. 17, Tizi-Ouzou RP 15000, Algeria;
- Département Recherche & Développement, Isser Délice SARL, ISO 9 International, BP 10, 35230 Isser, Algeria;
| | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain; (D.G.-G.); (R.P.)
| | - Rafael Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain; (D.G.-G.); (R.P.)
| |
Collapse
|
14
|
Abstract
The agricultural and processing activities of olive crops generate a substantial amount of food by-products, particularly olive leaves, which are mostly underexploited, representing a significant threat to the environment. Olive leaves are endowed with endogenous bioactive compounds. Their beneficial/health-promoting potential, together with environmental protection and circular economy, merit their exploitation to recover and reuse natural components that are potentially safer alternatives to synthetic counterparts. These biomass residues have great potential for extended industrial applications in food/dietary systems but have had limited commercial uses so far. In this regard, many researchers have endeavoured to determine a green/sustainable means to replace the conventional/inefficient methods currently used. This is not an easy task as a sustainable bio-processing approach entails careful designing to maximise the liberation of compounds with minimum use of (i) processing time, (ii) toxic solvent (iii) fossil fuel energy, and (iv) overall cost. Thus, it is necessary to device viable strategies to (i) optimise the extraction of valuable biomolecules from olive leaves and enable their conversion into high added-value products, and (ii) minimise generation of agro-industrial waste streams. This review provides an insight to the principal bioactive components naturally present in olive leaves, and an overview of the existing/proposed methods associated with their analysis, extraction, applications, and stability.
Collapse
|
15
|
Tanoh EA, Boué GB, Nea F, Genva M, Wognin EL, Ledoux A, Martin H, Tonzibo ZF, Frederich M, Fauconnier ML. Seasonal Effect on the Chemical Composition, Insecticidal Properties and Other Biological Activities of Zanthoxylum leprieurii Guill. & Perr. Essential oils. Foods 2020; 9:foods9050550. [PMID: 32369948 PMCID: PMC7278710 DOI: 10.3390/foods9050550] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022] Open
Abstract
This study focused, for the first time, on the evaluation of the seasonal effect on the chemical composition and biological activities of essential oils hydrodistillated from leaves, trunk bark and fruits of Zanthoxylum leprieurii (Z. leprieurii), a traditional medicinal wild plant growing in Côte d'Ivoire. The essential oils were obtained by hydrodistillation from fresh organs of Z. leprieurii growing on the same site over several months using a Clevenger-type apparatus and analyzed by gas chromatography-mass spectrometry (GC/MS). Leaf essential oils were dominated by tridecan-2-one (9.00 ± 0.02-36.80 ± 0.06%), (E)-β-ocimene (1.30 ± 0.50-23.57 ± 0.47%), β-caryophyllene (7.00 ± 1.02-19.85 ± 0.48%), dendrolasin (1.79 ± 0.08-16.40 ± 0.85%) and undecan-2-one (1.20 ± 0.03-8.51 ± 0.35%). Fruit essential oils were rich in β-myrcene (16.40 ± 0.91-48.27 ± 0.26%), citronellol (1.90 ± 0.02-28.24 ± 0.10%) and geranial (5.30 ± 0.53-12.50 ± 0.47%). Tridecan-2-one (45.26 ± 0.96-78.80 ± 0.55%), β-caryophyllene (1.80 ± 0.23-13.20 ± 0.33%), ?-humulene (4.30 ±1.09-12.73 ± 1.41%) and tridecan-2-ol (2.23 ± 0.17-10.10 ± 0.61%) were identified as major components of trunk bark oils. Statistical analyses of essential oil compositions showed that the variability mainly comes from the organs. Indeed, principal component analysis (PCA) and hierarchical cluster analysis (HCA) allowed us to cluster the samples into three groups, each one consisting of one different Z. leprieurii organ, showing that essential oils hydrodistillated from the different organs do not display the same chemical composition. However, significant differences in essential oil compositions for the same organ were highlighted during the studied period, showing the impact of the seasonal effect on essential oil compositions. Biological activities of the produced essential oils were also investigated. Essential oils exhibited high insecticidal activities against Sitophilus granarius, as well as antioxidant, anti-inflammatory and moderate anti-plasmodial properties.
Collapse
Affiliation(s)
- Evelyne Amenan Tanoh
- Laboratory of Biological Organic Chemistry, UFR-SSMT, University Felix Houphouet-Boigny, 01 BP 582 Abidjan 01, Ivory Coast; (G.B.B.); (F.N.); (Z.F.T.)
- Laboratory of Chemistry of Natural Molecules, University of Liège, Gembloux Agro-Bio Tech, 2, Passage des Déportés, 5030 Gembloux, Belgium; (M.G.); (H.M.); (M.-L.F.)
- Correspondence: ; Tel.: +32-(0)4-6566-3587
| | - Guy Blanchard Boué
- Laboratory of Biological Organic Chemistry, UFR-SSMT, University Felix Houphouet-Boigny, 01 BP 582 Abidjan 01, Ivory Coast; (G.B.B.); (F.N.); (Z.F.T.)
| | - Fatimata Nea
- Laboratory of Biological Organic Chemistry, UFR-SSMT, University Felix Houphouet-Boigny, 01 BP 582 Abidjan 01, Ivory Coast; (G.B.B.); (F.N.); (Z.F.T.)
- Laboratory of Chemistry of Natural Molecules, University of Liège, Gembloux Agro-Bio Tech, 2, Passage des Déportés, 5030 Gembloux, Belgium; (M.G.); (H.M.); (M.-L.F.)
| | - Manon Genva
- Laboratory of Chemistry of Natural Molecules, University of Liège, Gembloux Agro-Bio Tech, 2, Passage des Déportés, 5030 Gembloux, Belgium; (M.G.); (H.M.); (M.-L.F.)
| | - Esse Leon Wognin
- Laboratory of Instrumentation Image and Spectroscopy, National Polytechnic Institute Felix Houphouët-Boigny, BP 1093 Yamoussoukro, Ivory Coast;
| | - Allison Ledoux
- Laboratory of Pharmacognosy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium; (A.L.); (M.F.)
| | - Henri Martin
- Laboratory of Chemistry of Natural Molecules, University of Liège, Gembloux Agro-Bio Tech, 2, Passage des Déportés, 5030 Gembloux, Belgium; (M.G.); (H.M.); (M.-L.F.)
| | - Zanahi Felix Tonzibo
- Laboratory of Biological Organic Chemistry, UFR-SSMT, University Felix Houphouet-Boigny, 01 BP 582 Abidjan 01, Ivory Coast; (G.B.B.); (F.N.); (Z.F.T.)
| | - Michel Frederich
- Laboratory of Pharmacognosy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium; (A.L.); (M.F.)
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, University of Liège, Gembloux Agro-Bio Tech, 2, Passage des Déportés, 5030 Gembloux, Belgium; (M.G.); (H.M.); (M.-L.F.)
| |
Collapse
|