1
|
Ying X, Li X, Deng S, Zhang B, Xiao G, Xu Y, Brennan C, Benjakul S, Ma L. How lipids, as important endogenous nutrient components, affect the quality of aquatic products: An overview of lipid peroxidation and the interaction with proteins. Compr Rev Food Sci Food Saf 2025; 24:e70096. [PMID: 39812142 DOI: 10.1111/1541-4337.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
As the global population continues to grow and the pressure on livestock and poultry supply increases, the oceans have become an increasingly important source of quality food for future generations. However, nutrient-rich aquatic product is susceptible to lipid oxidation during storage and transport, reducing its nutritional value and increasing safety risks. Therefore, identifying the specific effects of lipid oxidation on aquatic products has become particularly critical. At the same time, some lipid oxidation products have been found to interact with aquatic product proteins in various ways, posing a safety risk. This paper provides an in-depth exploration of the pathways, specific effects, and hazards of lipid oxidation in aquatic products, with a particular focus on the interaction of lipid oxidation products with proteins. Additionally, it discusses the impact of non-thermal treatment techniques on lipids in aquatic products and examines the application of natural antioxidants in aquatic products. Future research endeavors should delve into the interactions between lipids and proteins in these products and their specific effects to mitigate the impact of non-thermal treatment techniques on lipids, thereby enhancing the safety of aquatic products and ensuring food safety for future generations.
Collapse
Affiliation(s)
- Xiaoguo Ying
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xinyang Li
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Shanggui Deng
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Bin Zhang
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Gengsheng Xiao
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering/Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Yujuan Xu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Charles Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Australia
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand
| | - Lukai Ma
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering/Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
2
|
Liang Z, Yu Y, Zou B, Fu M, Hu T, Yin X, Wang J, Xu Y, Cheng L. The effect of structural changes on the activity of peroxidase with different initial state under high-pressure freezing. Food Chem 2024; 459:140314. [PMID: 39024881 DOI: 10.1016/j.foodchem.2024.140314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
The combined impact of initial state, pressure, and freezing on peroxidase denaturation during high-pressure freezing (HPF) processing of enzyme-containing foods remains unclear. This study investigated solid-liquid (initial low/high concentration) biphasic peroxidase using spectroscopic and computer simulation techniques to analyze structural changes affecting peroxidase (POD) activity under HPF. The results indicate that the primary factors determining POD activity during HPF treatment can be ranked as follows: concentration > physical state > pressure > freezing. Higher initial concentrations strengthen protein interactions, leading to a 1% increase in the molecular diameter and a 34% increase in molecular height of HL-POD, thereby increasing aggregation likelihood during crystallization and facilitating structural changes that activate enzymes by 6-17%. The amide I peak proves to be a reliable indicator for monitoring both POD activity and structural alterations. This study offers valuable insights for optimizing HPF technology in food processing.
Collapse
Affiliation(s)
- Zhanhong Liang
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street, Dongguanzhuang road, Tianhe District, Guangzhou 510610, China; School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528400, China
| | - Yuanshan Yu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street, Dongguanzhuang road, Tianhe District, Guangzhou 510610, China
| | - Bo Zou
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street, Dongguanzhuang road, Tianhe District, Guangzhou 510610, China
| | - Manqin Fu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street, Dongguanzhuang road, Tianhe District, Guangzhou 510610, China
| | - Tenggen Hu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street, Dongguanzhuang road, Tianhe District, Guangzhou 510610, China
| | - Xiaomeng Yin
- Guangzhou Conghua District Agriculture and rural Bureau, Guangzhou 510610, China
| | - Jin Wang
- Guangzhou Conghua District Agriculture and rural Bureau, Guangzhou 510610, China
| | - Yujuan Xu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street, Dongguanzhuang road, Tianhe District, Guangzhou 510610, China.
| | - Lina Cheng
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street, Dongguanzhuang road, Tianhe District, Guangzhou 510610, China.
| |
Collapse
|
3
|
Yu T, Ohno T, Iwahashi H. Application of High-pressure Carbon Dioxide in Japanese Anchovy Waste Recycling by Enzymatic Hydrolysis. ENVIRONMENTAL MANAGEMENT 2024:10.1007/s00267-024-02091-0. [PMID: 39578282 DOI: 10.1007/s00267-024-02091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Anchovy waste, a protein resource with high nutritional value and potential for recycling with a relatively high economic effect, is essential for the Sustainable Development Goals of the United Nations. Preventing microbial contamination during the recycling process, through enzymatic hydrolysis, ensures the safety of recycled products. High-pressure carbon dioxide is a novel non-thermal decontamination technology, which inactivates cells by breaking their membranes. Here, we selected 40 °C_5.0 MPa and 50 °C_1.0 MPa treatment conditions for effectively decontaminating anchovy samples during the hydrolysis process. Next Generation Sequencing and real-time PCR experiments showed that a microbial growth promotion stage existed at the beginning of 40 °C_5.0 MPa, which may threaten hydrolysates, as some microbial genera were detected from the metabolites produced. Treatment at 50 °C_1.0 MPa ensured a high safety level for hydrolysates but this is limiting for various enzymatic hydrolysis processes. Orientaaze OP was selected as an additional enzyme with the highest hydrolysis efficiency under 40 and 50 °C among 10 different industrial proteases. Compared with control samples without high-pressure carbon dioxide treatment, 40 °C_5.0 MPa and 50 °C_1.0 MPa treated samples presented higher total amino acid concentrations by ultra-high-performance liquid chromatography. Hence, there was an increased enzyme activity by 40 °C_5.0 MPa and 50 °C_1.0 MPa treatments in endogenous or additional proteases hydrolytic processes. Despite the need for more future studies to be conducted, this research still provides essential information and instruction for industrial enzymatic hydrolysis applications on anchovy waste recycling.
Collapse
Affiliation(s)
- Tonghuan Yu
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, School of Environment, Henan Normal University, Xinxiang, China.
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.
| | - Tomoki Ohno
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, Japan
| | - Hitoshi Iwahashi
- Faculty of Applied Biological Science, Gifu University, Gifu, Japan
- The Open University of Japan, Chiba, Japan
| |
Collapse
|
4
|
Abril AG, Calo-Mata P, Villa TG, Böhme K, Barros-Velázquez J, Sánchez-Pérez Á, Pazos M, Carrera M. Comprehensive shotgun proteomic characterization and virulence factors of seafood spoilage bacteria. Food Chem 2024; 448:139045. [PMID: 38537549 DOI: 10.1016/j.foodchem.2024.139045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/01/2024] [Accepted: 03/13/2024] [Indexed: 04/24/2024]
Abstract
This article summarizes the characterization, by shotgun proteomics, of 11 bacterial strains identified as responsible for seafood spoilage. A total of 4455 peptide spectrum matches, corresponding to 4299 peptides and 3817 proteins were identified. Analyses of data determined the functional pathways they are involved in. The proteins identified were integrated into a protein-protein network that involves 371 nodes and 3016 edges. Those proteins are implicated in energy pathways, peptidoglycan biosynthesis, spermidine/putrescine metabolism. An additional 773 peptides were characterized as virulence factors, that participates in bacterial pathogenesis; while 14 peptides were defined as biomarkers, as they can be used to differentiate the bacterial species present. This report represents the most extensive proteomic repository available in the field of seafood spoilage bacteria; the data substantially advances the understanding of seafood decay, as well as provides fundamental bases for the recognition of the bacteria existent in seafood that cause spoilage during food processing/storage.
Collapse
Affiliation(s)
- Ana G Abril
- Institute of Marine Research (IIM-CSIC), Department of Food Technology, Spanish National Research Council (CSIC), 36208 Vigo, Spain; Faculty of Pharmacy, University of Santiago de Compostela, Department of Microbiology and Parasitology, 15898 Santiago de Compostela, Spain.
| | - Pilar Calo-Mata
- School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, 27002 Lugo, Spain.
| | - Tomás G Villa
- Faculty of Pharmacy, University of Santiago de Compostela, Department of Microbiology and Parasitology, 15898 Santiago de Compostela, Spain.
| | - Karola Böhme
- School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, 27002 Lugo, Spain.
| | - Jorge Barros-Velázquez
- School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, 27002 Lugo, Spain.
| | - Ángeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia.
| | - Manuel Pazos
- Institute of Marine Research (IIM-CSIC), Department of Food Technology, Spanish National Research Council (CSIC), 36208 Vigo, Spain.
| | - Mónica Carrera
- Institute of Marine Research (IIM-CSIC), Department of Food Technology, Spanish National Research Council (CSIC), 36208 Vigo, Spain.
| |
Collapse
|
5
|
Li B, Liu S, Chen X, Su Y, Pan N, Liao D, Qiao K, Chen Y, Liu Z. Dynamic Changes in the Microbial Composition and Spoilage Characteristics of Refrigerated Large Yellow Croaker ( Larimichthys crocea) during Storage. Foods 2023; 12:3994. [PMID: 37959111 PMCID: PMC10649330 DOI: 10.3390/foods12213994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The quality changes, dynamic changes in microbial composition, and diversity changes in large yellow croaker (Larimichthys crocea) during 4 °C refrigeration were studied using 16S rDNA high-throughput sequencing technology, and the total viable count (TVC), total volatile basic nitrogen (TVB-N), and thiobarbituric acid-reactive substances (TBARS) were determined. The results revealed a consistent increase in TVC, TVB-N, and TBARS levels over time. On the 9th day, TVC reached 7.43 lg/(CFU/g), while on the 15th day, TVB-N exceeded the upper limit for acceptable quality, reaching 42.56 mg/100 g. Based on the 16S rDNA sequencing results, we categorized the storage period into three phases: early storage (0th and 3rd days), middle storage (6th day), and late storage (9th, 12th, and 15th days). As the storage time increased, both the species richness and diversity exhibited a declining trend. The dominant genus identified among the spoilage bacteria in refrigerated large yellow croaker was Pseudomonas, accounting for a high relative abundance of 82.33%. A comparison was carried out of the spoilage-causing ability of three strains of Pseudomonas screened and isolated from the fish at the end of storage, and they were ranked as follows, from strongest to weakest: P. fluorescen, P. lundensis, and P. psychrophila. This study will provide a theoretical basis for extending the shelf life of large yellow croaker.
Collapse
Affiliation(s)
- Binbin Li
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Fisheries Research Institute of Fujian, Xiamen 361013, China; (X.C.); (Y.S.); (N.P.); (D.L.); (K.Q.); (Z.L.)
| | - Shuji Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Fisheries Research Institute of Fujian, Xiamen 361013, China; (X.C.); (Y.S.); (N.P.); (D.L.); (K.Q.); (Z.L.)
| | - Xiaoting Chen
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Fisheries Research Institute of Fujian, Xiamen 361013, China; (X.C.); (Y.S.); (N.P.); (D.L.); (K.Q.); (Z.L.)
| | - Yongchang Su
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Fisheries Research Institute of Fujian, Xiamen 361013, China; (X.C.); (Y.S.); (N.P.); (D.L.); (K.Q.); (Z.L.)
| | - Nan Pan
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Fisheries Research Institute of Fujian, Xiamen 361013, China; (X.C.); (Y.S.); (N.P.); (D.L.); (K.Q.); (Z.L.)
| | - Dengyuan Liao
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Fisheries Research Institute of Fujian, Xiamen 361013, China; (X.C.); (Y.S.); (N.P.); (D.L.); (K.Q.); (Z.L.)
| | - Kun Qiao
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Fisheries Research Institute of Fujian, Xiamen 361013, China; (X.C.); (Y.S.); (N.P.); (D.L.); (K.Q.); (Z.L.)
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Fisheries Research Institute of Fujian, Xiamen 361013, China; (X.C.); (Y.S.); (N.P.); (D.L.); (K.Q.); (Z.L.)
| |
Collapse
|
6
|
Liu J, Yuan S, Han D, Liu J, Zhao L, Wu J. Effects of CO2-assisted high-pressure processing on microbiological and physicochemical properties of Chinese spiced beef. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Effects of Modified Atmosphere Packaging with Varied CO 2 and O 2 Concentrations on the Texture, Protein, and Odor Characteristics of Salmon during Cold Storage. Foods 2022; 11:foods11223560. [PMID: 36429151 PMCID: PMC9689085 DOI: 10.3390/foods11223560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
The effect of gas ratio on the growth of bacteria has been well demonstrated, but some adverse effects of modified atmosphere packaging (MAP) on seafoods have also been found. To provide a better understanding of the effects of CO2 and O2 concentrations (CO2 from 40% to 100% and O2 from 0% to 30%) in MAP on the texture and protein contents and odor characteristics of salmon during cold storage, the physiochemical, microbial, and odor indicators were compared with those without treatment (CK). Generally, MAP treatments hindered the increase of microbial counts, total volatile basic nitrogen, and TCA-soluble peptides, and decreased the water-holding capacity, hardness, springiness, and sarcoplasmic and myofibrillar protein contents. The results also indicated that 60%CO2/10%O2/30%N2 was optimal and decreased the total mesophilic bacterial counts by 2.8 log cfu/g in comparison with CK on day 12. In agreement, the concentration of CO2 of 60% showed the lowest myofibrillar protein degradation, and less subsequent loss of hardness. The electronic nose characteristics analysis indicated that 60%CO2/20%O2/20%N2 and 60%CO2/10%O2/30%N2 had the best effect to maintain the original odor profiles of salmon. The correlation analysis demonstrated that microbial growth had a strong relationship with myofibrillar and sarcoplasmic protein content. It can be concluded that 60%CO2/10%O2/30%N2 displayed the best effect to achieve the goal of preventing protein degradation and odor changes in salmon fillets.
Collapse
|
8
|
Combined PEF, CO2 and HP application to chilled coho salmon and its effects on quality attributes under different rigor conditions. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Rathod NB, Kulawik P, Ozogul Y, Ozogul F, Bekhit AEA. Recent developments in non‐thermal processing for seafood and seafood products: cold plasma, pulsed electric field and high hydrostatic pressure. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nikheel Bhojraj Rathod
- Department of Post Harvest management of Meat, Poultry and Fish Post Graduate Institute of Post‐Harvest Management Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth Roha, Raigad Maharashtra State 402116 India
| | - Piotr Kulawik
- Department of Animal Products Technology Faculty of Food Technology University of Agriculture Karakow Poland
| | - Yesim Ozogul
- Department of Seafood Processing Technology Faculty of Fisheries Cukurova University Adana 01330 Turkey
| | - Fatih Ozogul
- Department of Seafood Processing Technology Faculty of Fisheries Cukurova University Adana 01330 Turkey
| | | |
Collapse
|
10
|
Zhang B, Pérez‐Won M, Tabilo‐Munizaga G, Aubourg SP. Inhibition of lipid damage in refrigerated salmon (
Oncorhynchus kisutch
) by a combined treatment of CO
2
packaging and high‐pressure processing. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province College of Food Science and Pharmacy Zhejiang Ocean University Zhoushan China
| | - Mario Pérez‐Won
- Department of Food Engineering University of Bío‐Bío Chillán Chile
| | | | - Santiago P. Aubourg
- Department of Food Technology Marine Research Institute (CSIC) c/ E. Cabello, 6 Vigo 36208 Spain
| |
Collapse
|
11
|
Yu T, Kuwahara S, Ohno T, Iwahashi H. Recycling salmon meat by decontamination under mild conditions using high-pressure carbon dioxide. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 124:102-109. [PMID: 33611154 DOI: 10.1016/j.wasman.2021.01.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
The 2011-2016 reports from the Food and Agriculture Organization of the United Nations has stated that annual food loss and waste occurs on a massive scale in fisheries and aquaculture. This study aimed to explore advanced technologies to recycle wasted salmon as an industrial resource with high commercial value by applying enzymatic hydrolysis under HPCD. Our results showed that HPCD treatment at 50 °C and 1 MPa for 16 h effectively prevents salmon from microbial contamination. Real-time PCR analysis demonstrated that HPCD was also able to inhibit an increase in bacteria at moderate temperatures. Based on NGS analysis, there was a very low abundance of Bacillus and some histamine producers, such as Pseudomonas, Acinetobacter, Enterobacter, and Klebsiella, detected in samples treated using HPCD at 50 °C and 1 MPa for 16 h. Hydrolysate analysis showed that HPCD treatment at 1 MPa did not affect the hydrolysates from salmon. It is anticipated that the results from this study will support the application of HPCD in industrial enzymatic hydrolysis and increase the sustainability of bio-based materials.
Collapse
Affiliation(s)
- Tonghuan Yu
- The United Graduate School of Agricultural Science, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.
| | - Shinichi Kuwahara
- Faculty of Applied Biological Science, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.
| | - Tomoki Ohno
- Faculty of Applied Biological Science, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.
| | - Hitoshi Iwahashi
- Faculty of Applied Biological Science, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.
| |
Collapse
|
12
|
Non-Thermal Methods for Ensuring the Microbiological Quality and Safety of Seafood. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020833] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A literature search and systematic review were conducted to present and discuss the most recent research studies for the past twenty years on the application of non-thermal methods for ensuring the microbiological safety and quality of fish and seafood. This review presents the principles and reveals the potential benefits of high hydrostatic pressure processing (HHP), ultrasounds (US), non-thermal atmospheric plasma (NTAP), pulsed electric fields (PEF), and electrolyzed water (EW) as alternative methods to conventional heat treatments. Some of these methods have already been adopted by the seafood industry, while others show promising results in inactivating microbial contaminants or spoilage bacteria from solid or liquid seafood products without affecting the biochemical or sensory quality. The main applications and mechanisms of action for each emerging technology are being discussed. Each of these technologies has a specific mode of microbial inactivation and a specific range of use. Thus, their knowledge is important to design a practical application plan focusing on producing safer, qualitative seafood products with added value following today’s consumers’ needs.
Collapse
|
13
|
Food By-Products to Extend Shelf Life: The Case of Cod Sticks Breaded with Dried Olive Paste. Foods 2020; 9:foods9121902. [PMID: 33352666 PMCID: PMC7765858 DOI: 10.3390/foods9121902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/12/2023] Open
Abstract
Recently, the interest in recovery bioactive compounds from food industrial by-products is growing abundantly. Olive oil by-products are a source of valuable bioactive compounds with antioxidant and antimicrobial properties. One of the most interesting by-products of olive oil obtained by a two-phase decanter is the olive paste, a wet homogeneous pulp free from residuals of the kernel. To valorize the olive paste, ready-to-cook cod sticks breaded with dried olive oil by-products were developed. Shelf-life tests were carried out on breaded cod sticks and during 15 days of storage at 4 °C pH evolution, microbiological aspects, and sensory properties were also monitored. In addition, the chemical quality of both control and active samples was assessed in terms of total phenols, flavonoids, and antioxidant activity. The enrichment with olive paste increased the total phenols, the flavonoids, and the antioxidant activity of the breaded fish samples compared to the control. Furthermore, the bioactive compounds acted as antimicrobial agents, without compromising the sensory parameters. Therefore, the new products recorded a longer shelf life (12 days) than the control fish sample that remained acceptable for nine days.
Collapse
|
14
|
Abstract
The demand for safe, high-quality food has greatly increased, in recent times. As traditional thermal pasteurization can significantly impact the nutritional value and the color of fresh food, an increasing number of nonthermal pasteurization technologies have attracted attention. The bactericidal effect of high-pressure carbon dioxide has been known for many years, and its effect on food-related enzymes has been studied. This novel technology has many merits, owing to its use of relatively low pressures and temperatures, which make it a potentially valuable future method for nonthermal pasteurization. For example, the inactivation of polyphenol oxidase can be achieved with relatively low temperature and pressure, and this can contribute to food quality and better preserve nutrients, such as vitamin C. However, this novel technology has yet to be developed on an industrial scale due to insufficient test data. In order to support the further development of this application, on an industrial scale, we have reviewed the existing information on high-pressure carbon dioxide pasteurization technology. We include its bactericidal effects and its influence on food quality. We also pave the way for future studies, by highlighting key areas.
Collapse
|