1
|
Ed-Dra A, Abdallah EM, Sulieman AME, Anarghou H. Harnessing medicinal plant compounds for the control of Campylobacter in foods: a comprehensive review. Vet Res Commun 2024; 48:2877-2900. [PMID: 38954256 DOI: 10.1007/s11259-024-10455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Campylobacter is a major foodborne and zoonotic pathogen, causing severe human infections and imposing a substantial economic burden on global public health. The ongoing spread and emergence of multidrug-resistant (MDR) strains across various fields exacerbate therapeutic challenges, raising the incidence of diseases and fatalities. Medicinal plants, renowned for their abundance in secondary metabolites, exhibit proven efficacy in inhibiting various foodborne and zoonotic pathogens, presenting sustainable alternatives to ensure food safety. This review aims to synthesize recent insights from peer-reviewed journals on the epidemiology and antimicrobial resistance of Campylobacter species, elucidate the in vitro antibacterial activity of medicinal plant compounds against Campylobacter by delineating underlying mechanisms, and explore the application of these compounds in controlling Campylobacter in food. Additionally, we discuss recent advancements and future prospects of employing medicinal plant compounds in food products to mitigate foodborne pathogens, particularly Campylobacter. In conclusion, we argue that medicinal plant compounds can be used as effective and sustainable sources for developing new antimicrobial alternatives to counteract the dissemination of MDR Campylobacter strains.
Collapse
Affiliation(s)
- Abdelaziz Ed-Dra
- Laboratory of Engineering and Applied Technologies, Higher School of Technology, M'ghila Campus, Sultan Moulay Slimane University, Beni Mellal, 23000, Morocco.
- Team of Microbiology and Health, Laboratory of Chemistry-Biology Applied to the Environment, Faculty of Science, Moulay Ismail University, Zitoune, Meknes, 50000, Morocco.
| | - Emad M Abdallah
- Department of Biology, College of Science, Qassim University, Qassim, 51452, Saudi Arabia
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai, Negeri Sembilan, 71800, Malaysia
| | | | - Hammou Anarghou
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, 23000, Morocco
- High Institute of Nursing Professions and Health Techniques Dakhla Annex, Dakhla, Morocco
| |
Collapse
|
2
|
Kim JS, Kim TY, Lim MC, Khan MSI. Campylobacter control strategies at postharvest level. Food Sci Biotechnol 2024; 33:2919-2936. [PMID: 39220305 PMCID: PMC11364751 DOI: 10.1007/s10068-024-01644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024] Open
Abstract
Campylobacter is highly associated with poultry and frequently causes foodborne illness worldwide. Thus, effective control measures are necessary to reduce or prevent human infections. In this review, Campylobacter control methods applicable at postharvest level for poultry meat during production, storage, and preparation are discussed. Drying and temperature are discussed as general strategies. Traditional strategies such as steaming, freezing, sanitizing, organic acid treatment, and ultraviolet light treatment are also discussed. Recent advances in nanotechnology using antibacterial nanoparticles and natural antimicrobial agents from plants and food byproducts are also discussed. Although advances have been made and there are various methods for preventing Campylobacter contamination, it is still challenging to prevent Campylobacter contamination in raw poultry meats with current methods. In addition, some studies have shown that large strain-to-strain variation in susceptibility to these methods exists. Therefore, more effective methods or approaches need to be developed to substantially reduce human infections caused by Campylobacter.
Collapse
Affiliation(s)
- Joo-Sung Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113 Republic of Korea
| | - Tai-Yong Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
| | - Min-Cheol Lim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113 Republic of Korea
| | | |
Collapse
|
3
|
Lin Y, Liang S, Zhang Y, Yu Y. The antibacterial mechanism of (-)-epigallocatechin-3-gallate (EGCG) against Campylobacter jejuni through transcriptome profiling. J Food Sci 2024; 89:2384-2396. [PMID: 38389445 DOI: 10.1111/1750-3841.16966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) has been shown antibacterial activity against Campylobacter jejuni; however, the relevant antibacterial mechanism is unknown. In this study, phenotypic experiments and RNA sequencing were used to explore the antibacterial mechanism. The minimum inhibitory concentration of EGCG on C. jejuni was 32 µg/mL. EGCG-treated was able to increase intracellular reactive oxygen species levels and decline bacterial motility. The morphology and cell membrane of C. jejuni after EGCG treatment were observed collapsed, broken, and agglomerated by field emission scanning electron microscopy and fluorescent microscopy. The RNA-seq analysis presents that there are 36 and 72 differential expressed genes after C. jejuni was treated by EGCG with the concentration of 16 and 32 µg/mL, respectively. EGCG-treated increased the thioredoxin expression, which was a critical protein to resist oxidative stress. Moreover, downregulation of the flgH and flgM gene in flagellin biosynthesis of C. jejuni was able to impair the flagella, reducing cell motility and virulence. The primary antibacterial mechanism revealed by RNA-seq is that EGCG with iron-chelating activity competes with C. jejuni for iron, causing iron deficiency in C. jejuni, which potentially impacts the survival and virulence of C. jejuni. The results suggested a new direction for exploring the activity of EGCG against C. jejuni in the food industry. PRACTICAL APPLICATION: A deeper understanding of the antibacterial mechanism of EGCG against C. jejuni was more beneficial in improving the food safety, eliminating concerns about human health caused by C. jejuni in future food, and promoting the natural antibacterial agent EGCG application in the food industry.
Collapse
Affiliation(s)
- Yilin Lin
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Siwei Liang
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Yehui Zhang
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Yigang Yu
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
4
|
Tryptanthrin Reduces Campylobacter jejuni Colonization in the Chicken Gut by a Bactericidal Mechanism. Appl Environ Microbiol 2023; 89:e0170122. [PMID: 36651742 PMCID: PMC9973028 DOI: 10.1128/aem.01701-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Campylobacter jejuni is a leading cause of foodborne bacterial gastroenteritis worldwide, and raw or undercooked chicken meat is considered the major source of human campylobacteriosis. In this study, we identified 36 compounds that showed inhibitory effects on C. jejuni growth at low concentrations by screening a chemical compound library. Three of the 36 compounds were herbal compounds, including tryptanthrin (TRP), an indoloquinazoline alkaloid. TRP has been reported to have a variety of biological properties, such as antimicrobial, anti-inflammatory, and antitumor activities, but there was previously no information about its anti-C. jejuni activity. We further conducted in vitro and in vivo experiments to evaluate the potential of TRP for the control of C. jejuni in chicken farms. The MIC of TRP for C. jejuni was much lower than that of 13 other herbal compounds that were previously reported to have anti-C. jejuni activities. Time-kill assays under growing and nongrowing conditions demonstrated that TRP has bactericidal activity against C. jejuni. In addition, TRP showed a narrow-spectrum antimicrobial effect against C. jejuni, and there was little potential for the development of TRP-resistant C. jejuni during serially passaged culture. In chick infection experiments, the administration of TRP in drinking water significantly reduced the cecal colonization of C. jejuni when TRP was used either before or after C. jejuni infection. These data suggest that TRP is effective for the control of C. jejuni in chicken farms. IMPORTANCE Campylobacter is a widespread pathogen in the food chain of chickens. Once chickens become infected, large numbers of Campylobacter cells are excreted in their feces. The development of an effective material for reducing the amount of Campylobacter in the chicken intestinal tract will make it possible to reduce the contamination of the food chain with Campylobacter and to produce safe and secure chicken meat. In the present study, in vivo experiments revealed that the use of an herbal compound, tryptanthrin, significantly reduced the number of Campylobacter cells in the chicken gut by a bactericidal mechanism. Furthermore, our in vitro experiments demonstrated that, compared with the other herbal compounds, tryptanthrin achieved antimicrobial activity against C. jejuni at the lowest concentration. The use of tryptanthrin may lead to the development of a novel control measure for reducing the colonization of C. jejuni in the food chain.
Collapse
|
5
|
Gopčević K, Grujić S, Arsenijević J, Džamić A, Veličković I, Izrael-Živković L, Medić A, Mudrić J, Soković M, Đurić A. Bioactivity and phenolics profile of aqueous and ethyl acetate extracts of Satureja kitaibelii Wierzb. ex Heuff. obtained by ultrasound-assisted extraction. Sci Rep 2022; 12:21221. [PMID: 36481842 PMCID: PMC9731972 DOI: 10.1038/s41598-022-25668-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The aim of the study was to investigate the biological activity and chemical composition of Satureja kitaibelii Wierzb. ex Heuff. LC-PDA/MS analyses for the aqueous extracts (A1-stem, leaves and flowers, A2-leaves and flowers) and ethyl-acetate extracts (E1-stem, leaves and flowers, E2-leaves and flowers) obtained by ultrasound-assisted extraction enabled the identification of thirty-four compounds. Quantitative analysis revealed that the aqueous extract obtained from leaves and flowers was the richest in total phenolic acids (65.36 mg/g) and flavonoids (21.17 mg/g). The total polyphenol content was the highest in the aqueous extract obtained from leaves and flowers (274 ± 2.4 mg Gallic Acid equivalents/g). The best antioxidant activity was observed for the same extract using the DPPH (SC50 20 ± 10 µg/mL), ABTS (2.834 ± 0.02 mg Ascorbic Acid/g), FRAP (1.922 ± 0.03 mmol Fe2+/mg), and total reducing power tests (16.4 ± 1.0 mg Ascorbic Acid/g). Both ethyl acetate extracts were the most active against strains of Bacillus cereus and Micrococcus flavus (MIC 1.70-1.99 mg/mL and 1.99-3.41 mg/mL, respectively). They were more efficient against Aspergillus ochraceus (MFC 0.86 mg/mL) and towards HeLa cell lines. All the obtained results implied the good potential of the investigated extracts to be used as effective preservatives and functional ingredients in food products and dietary supplements.
Collapse
Affiliation(s)
- Kristina Gopčević
- grid.7149.b0000 0001 2166 9385Institute of Chemistry in Medicine “Prof. Dr. Petar Matavuljˮ, Faculty of Medicine, University of Belgrade, Višegradska 26, Belgrade, 11000 Serbia
| | - Slavica Grujić
- grid.7149.b0000 0001 2166 9385Institute of Botany and Botanical Garden Jevremovac, Faculty of Biology, University of Belgrade, Studentski Trg 16, Takovska 43, Belgrade, 11000 Serbia
| | - Jelena Arsenijević
- grid.7149.b0000 0001 2166 9385Department for Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11000 Serbia
| | - Ana Džamić
- grid.7149.b0000 0001 2166 9385Institute of Botany and Botanical Garden Jevremovac, Faculty of Biology, University of Belgrade, Studentski Trg 16, Takovska 43, Belgrade, 11000 Serbia
| | - Ivona Veličković
- grid.7149.b0000 0001 2166 9385Institute of Botany and Botanical Garden Jevremovac, Faculty of Biology, University of Belgrade, Studentski Trg 16, Takovska 43, Belgrade, 11000 Serbia
| | - Lidija Izrael-Živković
- grid.7149.b0000 0001 2166 9385Institute of Chemistry in Medicine “Prof. Dr. Petar Matavuljˮ, Faculty of Medicine, University of Belgrade, Višegradska 26, Belgrade, 11000 Serbia
| | - Ana Medić
- grid.7149.b0000 0001 2166 9385Institute of Chemistry in Medicine “Prof. Dr. Petar Matavuljˮ, Faculty of Medicine, University of Belgrade, Višegradska 26, Belgrade, 11000 Serbia
| | - Jelena Mudrić
- Institute for Medicinal Plant Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, Belgrade, 11000 Serbia
| | - Marina Soković
- grid.7149.b0000 0001 2166 9385Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, Belgrade, 11000 Serbia
| | - Ana Đurić
- grid.418584.40000 0004 0367 1010Institute of Oncology and Radiology of Serbia, Pasterova 11, Belgrade, Serbia
| |
Collapse
|
6
|
Rout S, Tambe S, Deshmukh RK, Mali S, Cruz J, Srivastav PP, Amin PD, Gaikwad KK, Andrade EHDA, Oliveira MSD. Recent trends in the application of essential oils: The next generation of food preservation and food packaging. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Ravbar M, Kunčič A, Matoh L, Smole Možina S, Šala M, Šuligoj A. Controlled growth of ZnO nanoparticles using ethanolic root extract of Japanese knotweed: photocatalytic and antimicrobial properties. RSC Adv 2022; 12:31235-31245. [PMID: 36349039 PMCID: PMC9623611 DOI: 10.1039/d2ra04202a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022] Open
Abstract
Synthesis of zinc oxide (ZnO) nanoparticles (NPs) was mediated by plant extracts to assist in the reduction of zinc atoms during the synthesis and act as a capping agent during annealing. The preparation used ethanolic extracts from the roots of Japanese knotweed (Fallopia japonica). Two major outcomes could be made. (i) A synergistic effect of multiple polyphenolic components in the extract is needed to achieve the capping effect of crystallite growth during thermal annealing at 450 °C characterized by an exponential growth factor (n) of 4.4 compared to n = 3 for bare ZnO. (ii) Synergism between the ZnO NPs and plant extracts resulted in superior antimicrobial activity against both Gram-positive bacteria, e.g., Staphylococcus aureus, and Gram-negative bacteria, e.g., Escherichia coli and Campylobacter jejuni. The materials were also tested for their antimicrobial activity against S. aureus under ultraviolet (UV) illumination. Also here, the photocatalyst prepared with plant extracts was found to be superior. The residues of the plant extract molecules on the surface of the catalyst were identified as the main cause of the observed differences, as proved by thermal gravimetry. Such a preparation using ethanolic extract of Fallopia japonica could serve as a more controlled synthesis of ZnO and potentially other metal oxides, with low environmental impact and high abundance in nature.
Collapse
Affiliation(s)
- Miha Ravbar
- University of Ljubljana, Faculty of Chemistry and Chemical TechnologyLjubljanaSlovenia
| | - Ajda Kunčič
- University of Ljubljana, Biotechnical FacultyLjubljanaSlovenia
| | - Lev Matoh
- University of Ljubljana, Faculty of Chemistry and Chemical TechnologyLjubljanaSlovenia
| | | | - Martin Šala
- National Institute of ChemistryLjubljanaSlovenia
| | - Andraž Šuligoj
- University of Ljubljana, Faculty of Chemistry and Chemical TechnologyLjubljanaSlovenia,National Institute of ChemistryLjubljanaSlovenia
| |
Collapse
|
8
|
Uddin Mahamud AGMS, Nahar S, Ashrafudoulla M, Park SH, Ha SD. Insights into antibiofilm mechanisms of phytochemicals: Prospects in the food industry. Crit Rev Food Sci Nutr 2022; 64:1736-1763. [PMID: 36066482 DOI: 10.1080/10408398.2022.2119201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The recalcitrance of microbial aggregation or biofilm in the food industry underpins the emerging antimicrobial resistance among foodborne pathogens, exacerbating the phenomena of food spoilage, processing and safety management failure, and the prevalence of foodborne illnesses. The challenges of growing tolerance to current chemical and disinfectant-based antibiofilm strategies have driven the urgency in finding a less vulnerable to bacterial resistance, effective alternative antibiofilm agent. To address these issues, various novel strategies are suggested in current days to combat bacterial biofilm. Among the innovative approaches, phytochemicals have already demonstrated their excellent performance in preventing biofilm formation and bactericidal actions against resident bacteria within biofilms. However, the diverse group of phytochemicals and their different modes of action become a barrier to applying them against specific pathogenic biofilm-formers. This phenomenon mandates the need to elucidate the multi-mechanistic actions of phytochemicals to design an effective novel antibiofilm strategy. Therefore, this review critically illustrates the structure - activity relationship, functional sites of actions, and target molecules of diverse phytochemicals regarding multiple major antibiofilm mechanisms and reversal mechanisms of antimicrobial resistance. The implementation of the in-depth knowledge will hopefully aid future studies for developing phytochemical-based next-generation antimicrobials.
Collapse
Affiliation(s)
- A G M Sofi Uddin Mahamud
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Shamsun Nahar
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Md Ashrafudoulla
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
9
|
Elgamoudi BA, Korolik V. Campylobacter Biofilms: Potential of Natural Compounds to Disrupt Campylobacter jejuni Transmission. Int J Mol Sci 2021; 22:12159. [PMID: 34830039 PMCID: PMC8617744 DOI: 10.3390/ijms222212159] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
Microbial biofilms occur naturally in many environmental niches and can be a significant reservoir of infectious microbes in zoonotically transmitted diseases such as that caused by Campylobacter jejuni, the leading cause of acute human bacterial gastroenteritis world-wide. The greatest challenge in reducing the disease caused by this organism is reducing transmission of C. jejuni to humans from poultry via the food chain. Biofilms enhance the stress tolerance and antimicrobial resistance of the microorganisms they harbor and are considered to play a crucial role for Campylobacter spp. survival and transmission to humans. Unconventional approaches to control biofilms and to improve the efficacy of currently used antibiotics are urgently needed. This review summarizes the use plant- and microorganism-derived antimicrobial and antibiofilm compounds such as essential oils, antimicrobial peptides (AMPs), polyphenolic extracts, algae extracts, probiotic-derived factors, d-amino acids (DAs) and glycolipid biosurfactants with potential to control biofilms formed by Campylobacter, and the suggested mechanisms of their action. Further investigation and use of such natural compounds could improve preventative and remedial strategies aimed to limit the transmission of campylobacters and other human pathogens via the food chain.
Collapse
Affiliation(s)
- Bassam A. Elgamoudi
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia;
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
10
|
Šimunović K, Solnier J, Alperth F, Kunert O, Možina SS, Bucar F. Efflux Pump Inhibition and Resistance Modulation in Mycobacterium smegmatis by Peucedanum ostruthium and Its Coumarins. Antibiotics (Basel) 2021; 10:antibiotics10091075. [PMID: 34572657 PMCID: PMC8472667 DOI: 10.3390/antibiotics10091075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance is a growing problem and may become the next major global health crisis if no timely actions are taken. Mycobacterial infections are widespread and, due to antibiotic resistance, also hard to treat and a major cause of mortality. Natural compounds have the potential to increase antibiotic effectiveness due to their resistance modulatory and antimicrobial effects. In this study, Peucedanum ostruthium extracts, fractions, and isolated compounds were investigated regarding their antimicrobial and resistance-modulatory effects as well as efflux pump inhibition in Mycobacterium smegmatis. P. ostruthium extracts were found to have anti-mycobacterial potential and resistance modulating effects on ethidium bromide activity. The major antibacterial effect was attributed to ostruthin, and we found that the more lipophilic the substrate, the greater the antimicrobial effect. Imperatorin caused potent modulatory effects by interfering with the action of the major LfrA efflux pump in M. smegmatis. The plant P. ostruthuim has a complex effect on M. smegmatis, including antibacterial, efflux pump inhibition, resistance modulation, and membrane permeabilization, and its major constituents, ostruthin and imperatorin, have a distinct role in these effects. This makes P. ostruthium and its coumarins promising therapeutics to consider in the fight against drug-resistant mycobacteria.
Collapse
Affiliation(s)
- Katarina Šimunović
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Beethovenstraße 8, 8010 Graz, Austria; (K.Š.); (J.S.); (F.A.)
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| | - Julia Solnier
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Beethovenstraße 8, 8010 Graz, Austria; (K.Š.); (J.S.); (F.A.)
| | - Fabian Alperth
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Beethovenstraße 8, 8010 Graz, Austria; (K.Š.); (J.S.); (F.A.)
| | - Olaf Kunert
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Beethovenstraße 8, 8010 Graz, Austria;
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| | - Franz Bucar
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Beethovenstraße 8, 8010 Graz, Austria; (K.Š.); (J.S.); (F.A.)
- Correspondence: ; Tel.: +43-316-380-5531
| |
Collapse
|
11
|
Milutinović M, Dimitrijević-Branković S, Rajilić-Stojanović M. Plant Extracts Rich in Polyphenols as Potent Modulators in the Growth of Probiotic and Pathogenic Intestinal Microorganisms. Front Nutr 2021; 8:688843. [PMID: 34409062 PMCID: PMC8366775 DOI: 10.3389/fnut.2021.688843] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/06/2021] [Indexed: 01/23/2023] Open
Abstract
Medicinal plants and their extracts contain substantial quantities of polyphenols. As metabolically active plant metabolites, polyphenols are food components with a wide range of biological activities. Given their poor absorbability in the digestive tract their activity toward the human host is typically mediated through interaction with intestinal microbes. As a result, polyphenols comprise a novel group of prebiotics. In this study, we tested the effect of five polyphenol-rich extracts from four medicinal herbs on the growth of probiotic and pathogenic microbes. The studied medicinal herbs were Gentiana asclepiadea L. (willow gentian), Hypericum perforatum L. (St. John's wort), Satureja montana L. (winter savory), and Achillea millefolium L. (yarrow). All these plants are traditionally used for the treatment of digestive problems. Extracts were prepared using safe solvent combinations. We tested the impact of addition of plant extracts on the growth of three probiotic lactobacilli and probiotic yeast Saccharomyces boulardii. The effect of addition of plant extracts to liquid media (concentration range 0.25–10 mg/mL) on the growth of probiotics, was tested in vitro. The antimicrobial activity of the extracts was tested against several opportunistic bacteria and yeast. St. John's wort, winter savory, and willow gentian extracts showed a stimulative effect on probiotic yeast growth, while the highest growth-stimulating effect was achieved when microwave-assisted yarrow extract was used in the concentration of 0.5 mg/mL. Under these conditions growth of S. boulardii was increased 130-fold. In addition, the yarrow extract stimulated the growth of Lactiplantibacillus plantarum 299v. The growth of two Lacticasibacillus rhamnosus strains was not stimulated by the addition of any extracts. Our results show that plant polyphenol-rich extracts can influence the growth of microorganisms that are typical members of the intestinal microbiota. For the first time we demonstrate that probiotic yeast growth can be stimulated by extracts of medicinal herbs, which when accompanied by suppression of Candida yeasts suggests a potential benefit of the treatment in diseases that are associated with fungal dysbiosis.
Collapse
Affiliation(s)
- Milica Milutinović
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Suzana Dimitrijević-Branković
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Mirjana Rajilić-Stojanović
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
12
|
Ji J, Shankar S, Royon F, Salmieri S, Lacroix M. Essential oils as natural antimicrobials applied in meat and meat products-a review. Crit Rev Food Sci Nutr 2021; 63:993-1009. [PMID: 34309444 DOI: 10.1080/10408398.2021.1957766] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Meat and meat products are highly susceptible to the growth of micro-organism and foodborne pathogens that leads to severe economic loss and health hazards. High consumption and a considerable waste of meat and meat products result in the demand for safe and efficient preservation methods. Instead of synthetic additives, the use of natural preservative materials represents an interest. Essential oils (EOs), as the all-natural and green-label trend attributing to remarkable biological potency, have been adopted for controlling the safety and quality of meat products. Some EOs, such as thyme, cinnamon, rosemary, and garlic, showed a strong antimicrobial activity individually and in combination. To eliminate or reduce the organoleptic defects of EOs in practical application, EOs encapsulation in wall materials can improve the stability and antimicrobial ability of EOs in meat products. In this review, meat deteriorations, antimicrobial capacity (components, effectiveness, and interactions), and mechanisms of EOs are reviewed, as well as the demonstration of using encapsulation for masking intense aroma and conducting control release is presented. The use of EOs individually or in combination and encapsulated applications of EOs in meat and meat products are also discussed.
Collapse
Affiliation(s)
- Jiali Ji
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Center, INRS Armand-Frappier, Health and Biotechnology Centre, Institute of Nutraceutical and Functional, Laval, Quebec, Canada
| | - Shiv Shankar
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Center, INRS Armand-Frappier, Health and Biotechnology Centre, Institute of Nutraceutical and Functional, Laval, Quebec, Canada
| | - Fiona Royon
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Center, INRS Armand-Frappier, Health and Biotechnology Centre, Institute of Nutraceutical and Functional, Laval, Quebec, Canada
| | - Stéphane Salmieri
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Center, INRS Armand-Frappier, Health and Biotechnology Centre, Institute of Nutraceutical and Functional, Laval, Quebec, Canada
| | - Monique Lacroix
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Center, INRS Armand-Frappier, Health and Biotechnology Centre, Institute of Nutraceutical and Functional, Laval, Quebec, Canada
| |
Collapse
|
13
|
Effects of Labrador Tea, Peppermint, and Winter Savory Essential Oils on Fusobacterium nucleatum. Antibiotics (Basel) 2020; 9:antibiotics9110794. [PMID: 33182686 PMCID: PMC7697736 DOI: 10.3390/antibiotics9110794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 01/10/2023] Open
Abstract
Bad breath or halitosis is an oral condition caused by volatile sulfur compounds (VSC) produced by bacteria found in the dental and tongue biofilms. Fusobacterium nucleatum is a Gram-negative anaerobic bacterium that has been strongly associated with halitosis. In this study, essential oils (EO) from three plants, Labrador tea (Rhododendron groenlandicum [Oeder] Kron & Judd), peppermint (Mentha x piperita L.), and winter savory (Satureja montana L.), were investigated for their effects on growth, biofilm formation and killing, and VSC production by F. nucleatum. Moreover, their biocompatibility with oral keratinocytes was investigated. Using a broth microdilution assay, winter savory EO and to a lesser extent Labrador tea and peppermint EO showed antibacterial activity against F. nucleatum. A treatment of pre-formed biofilms of F. nucleatum with EO also significantly decreased bacterial viability as determined by a luminescence assay monitoring adenosine triphosphate production. The EO were found to permeabilize the bacterial cell membrane, suggesting that it represents the target of the tested EO. The three EO under investigation were able to dose-dependently reduce VSC production by F. nucleatum. Lastly, no significant loss of cell viability was observed when oral keratinocytes were treated with the EO at concentrations effective against F. nucleatum. This study supports the potential of Labrador tea, peppermint, and winter savory EO as promising agents to control halitosis and promote oral health.
Collapse
|
14
|
Chen KL, Wang Y, Lin ZP, Li HX. The protective effect of rosmarinic acid on myotube formation during myoblast differentiation under heat stress. In Vitro Cell Dev Biol Anim 2020; 56:635-641. [PMID: 32901428 DOI: 10.1007/s11626-020-00498-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/13/2020] [Indexed: 12/29/2022]
Abstract
High ambient temperature is one of the most important environmental factors that caused the reduction of livestock productivity and the increase of mortality. It has been shown that heat stress could affect the meat quality characteristics by physiological and metabolic perturbations in live livestock. Rosmarinic acid (RA) is a natural polyphenolic phytochemical compound that has many important biological activities, such as antioxidant, antimutagenic, and antitumor. The purpose of this study was to investigate the possible function and mechanism of RA on myoblast proliferation and differentiation under heat stress condition. The results showed that heat stress reduced the viability of myoblast and increased the percentage of apoptotic cells, and it also disrupted myotube formation by altering the expression of myogenic regulatory factors MyoD, myogenin, and MyHC. However, pretreatment of RA can protect C2C12 cells from heat stress-induced apoptosis, and it also increased the expression level of MyoD, myogenin, and MyHC under heat stress, which indicated that RA have protective effect on heat stress-caused failure of myotube formation during myoblast differentiation. Above all, our finding demonstrated that RA can promote the differentiation of C2C12 myoblast and maintain the formation of myotubes even under heat stress condition.
Collapse
Affiliation(s)
- Kun-Lin Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Ping Lin
- Youyuan Research Institute of Dairy Industry Co., Ltd, Nanjing, 211100, China
| | - Hui-Xia Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
15
|
Faleiro ML, Miguel G. Antimicrobial and Antioxidant Activities of Natural Compounds: Enhance the Safety and Quality of Food. Foods 2020; 9:foods9091145. [PMID: 32825221 PMCID: PMC7555647 DOI: 10.3390/foods9091145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Maria Leonor Faleiro
- Algarve Biomedical Center, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Correspondence:
| | - Graça Miguel
- Mediterranean Institute for Agriculture, Environment and Development, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| |
Collapse
|