1
|
Luo Y, Cao J, Wang J, Zhang Y, Teng W, Wang Y. The influence of sodium tripolyphosphate, chlorogenic acid and sodium alginate on the structure and properties of fibrin gel. Int J Biol Macromol 2025; 317:144767. [PMID: 40449779 DOI: 10.1016/j.ijbiomac.2025.144767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 05/16/2025] [Accepted: 05/27/2025] [Indexed: 06/03/2025]
Abstract
To enhance the 3D printing capabilities of fibrin gel, this study systematically investigated the effects of sodium tripolyphosphate (STPP), chlorogenic acid (CA), and sodium alginate (SA) on gel properties. All three additives improved gel performance, with CA demonstrating exceptional efficacy: it reduced gelation time by 30.78 % while increasing gel strength, hardness, chewiness, adhesiveness, and thrombin activity by 62.69 %, 19.46 %, 38.32 %, 30.76 %, and 31.10 %, respectively. Structural characterization revealed that STPP and CA promoted secondary structure transitions, yielding denser 3D networks, whereas SA exhibited no secondary structural modifications. Fluorescence spectroscopy and intermolecular force analysis further revealed that CA exhibited the strongest covalent, disulfide, hydrogen, and hydrophobic interactions among them, furthermore STPP and SA also had stronger disulfide bonding, hydrogen bonding and ionic bonding than the control. Overall, CA demonstrated the most favorable gel properties, attributed to the densest gel structures driven by the strongest intermolecular forces and enhanced thrombin activity.
Collapse
Affiliation(s)
- Yani Luo
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinpeng Wang
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yuemei Zhang
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Ying Wang
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Zuo C, Jiang X, Hu J, Bu X. Molecular interactions between fibrinogen and 6-methoxydihydrosanguinarine and their modulation of anticancer activity in melanoma A375 cells. Int J Biol Macromol 2025; 307:142170. [PMID: 40120880 DOI: 10.1016/j.ijbiomac.2025.142170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Natural benzophenanthridine alkaloids such as sanguinarine, chelerythrine, and 6-methoxydihydrosanguinarine (6-MDS) possess anticancer properties against various cancer cell types. However, the physical interactions of these compounds with blood proteins and the anticancer effects of the resulting complex remain unknown. Therefore, in this study, the interaction between 6-MDS and fibrinogen (Fb) was evaluated through experimental and theoretical studies. The binding analysis revealed that Fb's intrinsic fluorescence is quenched following a moderate interaction with 6-MDS, and a 1:1 complex predominantly forms via hydrogen bonds. Synchronous/ 8-Anilino-1-naphthalenesulfonic acid (ANS) fluorescence and circular dichroism (CD) studies, along with molecular dynamics simulation analysis, indicated that 6-MDS caused a partial rearrangement in the Fb conformation. Differential scanning calorimetry (DSC) measurements showed that upon the addition of 40 μM 6-MDS concentrations, Tm values of Fb slightly decreased, which is consistent with the UV-visible studies. Cellular data revealed IC50 concentrations of 2.85 and 2.65 μM for 6-MDS and the Fb-6-MDS complex against melanoma A375 cells, respectively. These values were significantly lower than those for normal primary human dermal fibroblast (NHDF) cells. It was then observed that the presence of Fb could enhance the anticancer effects of the 6-MDS against melanoma A375 cells via the upregulation of LDH release, ROS production, and caspase-3 activity. Finally, these findings clarify the interaction between Fb and 6-MDS, as well as the anticancer activity of the resulting complex.
Collapse
Affiliation(s)
- Chenchen Zuo
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Xulei Jiang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Juncheng Hu
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xin Bu
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
3
|
Nencini F, Giurranna E, Borghi S, Taddei N, Fiorillo C, Becatti M. Fibrinogen Oxidation and Thrombosis: Shaping Structure and Function. Antioxidants (Basel) 2025; 14:390. [PMID: 40298646 PMCID: PMC12024030 DOI: 10.3390/antiox14040390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Fibrinogen, a pivotal plasma glycoprotein, plays an essential role in hemostasis by serving as the precursor to fibrin, which forms the structural framework of blood clots. Beyond coagulation, fibrinogen influences immune responses, inflammation, and tissue repair. Oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) and antioxidants, induces fibrinogen oxidation, significantly altering its structure and function. This narrative review synthesizes findings from in vitro, ex vivo, and clinical studies, emphasizing the impact of fibrinogen oxidation on clot formation, architecture, and degradation. Oxidative modifications result in denser fibrin clots with thinner fibers, reduced permeability, and heightened resistance to fibrinolysis. These structural changes exacerbate prothrombotic conditions in cardiovascular diseases, diabetes, chronic inflammatory disorders and cancer. In contrast, "low-dose" oxidative stress may elicit protective adaptations in fibrinogen, preserving its function. The review also highlights discrepancies in experimental findings due to variability in oxidation protocols and patient conditions. Understanding the interplay between oxidation and fibrinogen function could unveil therapeutic strategies targeting oxidative stress. Antioxidant therapies or selective inhibitors of detrimental oxidation hold potential for mitigating thrombotic risks. However, further research is essential to pinpoint specific fibrinogen oxidation sites, clarify their roles in clot dynamics, and bridge the gap between basic research and clinical practice.
Collapse
|
4
|
Šunderić M, Šukalović V, Penezić A, Nikolić MR, Nedić O, Minić S, Četić D, Gligorijević N. Binding of the commonly used antioxidants (quercetin, resveratrol, and dihydrolipoic acid) to major circulating proteins - spectroscopic and in silico docking and molecular dynamic simulation studies. J Biomol Struct Dyn 2025:1-13. [PMID: 39895647 DOI: 10.1080/07391102.2025.2460087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/07/2024] [Indexed: 02/04/2025]
Abstract
Poor bioavailability and reduced stability are the main drawbacks to efficiently utilizing many naturally occurring antioxidants, so their binding to circulatory proteins is essential. This work investigated whether major human circulatory proteins, besides albumin, including transferrin, alpha-2-macroglobulin, and fibrinogen, bind widely consumed antioxidants and food supplements, including quercetin, trans-resveratrol, and dihydrolipoic acid, thus filling the gap of detailed pharmacokinetic properties of these food supplements. Detailed examination of the protein structural and functional changes that occur upon ligand binding was analyzed by spectroscopic methods and in silico docking and molecular dynamic simulation studies on the model that consists of the protein/antioxidant pair with the highest affinity constant. It was found that alpha-2-macroglobulin binds trans-resveratrol with the highest affinity (Ka of 4.5 x 104 M-1). In silico results revealed four potential binding sites between trans-resveratrol and alpha-2-macroglobulin, with hydrogen bonds being crucial for binding, while other observed interactions (primarily aromatic interactions) are of secondary importance. The binding of trans-resveratrol to alpha-2-macroglobulin leads to mutual protection of both molecules from oxidative stress and significantly increased hidrosolubility of resveratrol, both of which could serve to increase the bioavailability and bioactivity of resveratrol in circulation.
Collapse
Affiliation(s)
- Miloš Šunderić
- Department of Biochemistry, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Vladimir Šukalović
- Department of Chemistry, University of Belgrade - Institute of Chemistry, Technology, and Metallurgy, National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Ana Penezić
- Department of Biochemistry, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Milan R Nikolić
- Department of Biochemistry & Center of Excellence for Molecular Food Sciences, University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Olgica Nedić
- Department of Biochemistry, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Simeon Minić
- Department of Biochemistry & Center of Excellence for Molecular Food Sciences, University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Danilo Četić
- Department of Biochemistry, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Nikola Gligorijević
- Department of Chemistry, University of Belgrade - Institute of Chemistry, Technology, and Metallurgy, National Institute of the Republic of Serbia, Belgrade, Serbia
| |
Collapse
|
5
|
Zhu Y, Guo S, Ravichandran D, Ramanathan A, Sobczak MT, Sacco AF, Patil D, Thummalapalli SV, Pulido TV, Lancaster JN, Yi J, Cornella JL, Lott DG, Chen X, Mei X, Zhang YS, Wang L, Wang X, Zhao Y, Hassan MK, Chambers LB, Theobald TG, Yang S, Liang L, Song K. 3D-Printed Polymeric Biomaterials for Health Applications. Adv Healthc Mater 2025; 14:e2402571. [PMID: 39498750 PMCID: PMC11694096 DOI: 10.1002/adhm.202402571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Indexed: 11/07/2024]
Abstract
3D printing, also known as additive manufacturing, holds immense potential for rapid prototyping and customized production of functional health-related devices. With advancements in polymer chemistry and biomedical engineering, polymeric biomaterials have become integral to 3D-printed biomedical applications. However, there still exists a bottleneck in the compatibility of polymeric biomaterials with different 3D printing methods, as well as intrinsic challenges such as limited printing resolution and rates. Therefore, this review aims to introduce the current state-of-the-art in 3D-printed functional polymeric health-related devices. It begins with an overview of the landscape of 3D printing techniques, followed by an examination of commonly used polymeric biomaterials. Subsequently, examples of 3D-printed biomedical devices are provided and classified into categories such as biosensors, bioactuators, soft robotics, energy storage systems, self-powered devices, and data science in bioplotting. The emphasis is on exploring the current capabilities of 3D printing in manufacturing polymeric biomaterials into desired geometries that facilitate device functionality and studying the reasons for material choice. Finally, an outlook with challenges and possible improvements in the near future is presented, projecting the contribution of general 3D printing and polymeric biomaterials in the field of healthcare.
Collapse
Affiliation(s)
- Yuxiang Zhu
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Shenghan Guo
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Arunachalam Ramanathan
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - M. Taylor Sobczak
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Alaina F. Sacco
- School of Chemical, Materials and Biomedical Engineering (CMBE), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Dhanush Patil
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Sri Vaishnavi Thummalapalli
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Tiffany V. Pulido
- Department of ImmunologyMayo Clinic Arizona13400 E Shea BlvdScottsdaleAZ85259USA
| | - Jessica N. Lancaster
- Department of ImmunologyMayo Clinic Arizona13400 E Shea BlvdScottsdaleAZ85259USA
| | - Johnny Yi
- Department of Medical and Surgical GynecologyMayo Clinic Arizona5777 E Mayo BlvdPhoenixAZ85054USA
| | - Jeffrey L. Cornella
- Department of Medical and Surgical GynecologyMayo Clinic Arizona5777 E Mayo BlvdPhoenixAZ85054USA
| | - David G. Lott
- Division of Laryngology, Department of OtolaryngologyMayo Clinic ArizonaPhoenixAZUSA
| | - Xiangfan Chen
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolCambridgeMA02139USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolCambridgeMA02139USA
| | - Linbing Wang
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Xianqiao Wang
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Yiping Zhao
- Physics, Franklin College of Arts and SciencesUniversity of GeorgiaAthensGA30602USA
| | | | - Lindsay B. Chambers
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Taylor G. Theobald
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of MatterTransport and Energy (SEMTE) at Arizona State UniversityTempeAZ85287USA
| | | | - Kenan Song
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| |
Collapse
|
6
|
Nencini F, Bettiol A, Argento FR, Borghi S, Giurranna E, Emmi G, Prisco D, Taddei N, Fiorillo C, Becatti M. Post-translational modifications of fibrinogen: implications for clotting, fibrin structure and degradation. MOLECULAR BIOMEDICINE 2024; 5:45. [PMID: 39477884 PMCID: PMC11525374 DOI: 10.1186/s43556-024-00214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024] Open
Abstract
Fibrinogen, a blood plasma protein with a key role in hemostasis and thrombosis, is highly susceptible to post-translational modifications (PTMs), that significantly influence clot formation, structure, and stability. These PTMs, which include acetylation, amidation, carbamylation, citrullination, dichlorination, glycation, glycosylation, guanidinylation, hydroxylation, homocysteinylation, malonylation, methylation, nitration, oxidation, phosphorylation and sulphation, can alter fibrinogen biochemical properties and affect its functional behavior in coagulation and fibrinolysis. Oxidation and nitration are notably associated with oxidative stress, impacting fibrin fiber formation and promoting the development of more compact and resistant fibrin networks. Glycosylation and glycation contribute to altered fibrinogen structural properties, often resulting in changes in fibrin clot density and susceptibility to lysis, particularly in metabolic disorders like diabetes. Acetylation and phosphorylation, influenced by medications such as aspirin, modulate clot architecture by affecting fiber thickness and clot permeability. Citrullination and homocysteinylation, although less studied, are linked to autoimmune conditions and cardiovascular diseases, respectively, affecting fibrin formation and stability. Understanding these modifications provides insights into the pathophysiology of thrombotic disorders and highlights potential therapeutic targets. This review comprehensively examines the current literature on fibrinogen PTMs, their specific sites, biochemical pathways, and their consequences on fibrin clot architecture, clot formation and clot lysis.
Collapse
Affiliation(s)
- Francesca Nencini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Elvira Giurranna
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Giacomo Emmi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy.
| |
Collapse
|
7
|
Gligorijević N, Jovanović Z, Cvijetić I, Šunderić M, Veličković L, Katrlík J, Holazová A, Nikolić M, Minić S. Investigation of the Potential of Selected Food-Derived Antioxidants to Bind and Stabilise the Bioactive Blue Protein C-Phycocyanin from Cyanobacteria Spirulina. Int J Mol Sci 2023; 25:229. [PMID: 38203400 PMCID: PMC10779248 DOI: 10.3390/ijms25010229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Blue C-phycocyanin (C-PC), the major Spirulina protein with innumerable health-promoting benefits, is an attractive colourant and food supplement. A crucial obstacle to its more extensive use is its relatively low stability. This study aimed to screen various food-derived ligands for their ability to bind and stabilise C-PC, utilising spectroscopic techniques and molecular docking. Among twelve examined ligands, the protein fluorescence quenching revealed that only quercetin, coenzyme Q10 and resveratrol had a moderate affinity to C-PC (Ka of 2.2 to 3.7 × 105 M-1). Docking revealed these three ligands bind more strongly to the C-PC hexamer than the trimer, with the binding sites located at the interface of two (αβ)3 trimers. UV/VIS absorption spectroscopy demonstrated the changes in the C-PC absorption spectra in a complex with quercetin and resveratrol compared to the spectra of free protein and ligands. Selected ligands did not affect the secondary structure content, but they induced changes in the tertiary protein structure in the CD study. A fluorescence-based thermal stability assay demonstrated quercetin and coenzyme Q10 increased the C-PC melting point by nearly 5 °C. Our study identified food-derived ligands that interact with C-PC and improve its thermal stability, indicating their potential as stabilising agents for C-PC in the food industry.
Collapse
Affiliation(s)
- Nikola Gligorijević
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, National Institute of the Republic of Serbia, Studentski trg 12–16, 11000 Belgrade, Serbia;
| | - Zorana Jovanović
- University of Belgrade-Faculty of Chemistry, Center of Excellence for Molecular Food Sciences & Department of Biochemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (Z.J.); (L.V.)
| | - Ilija Cvijetić
- University of Belgrade-Faculty of Chemistry, Department of Analytical Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia;
| | - Miloš Šunderić
- University of Belgrade-Institute for the Application of Nuclear Energy (INEP), Banatska 31b, 11000 Belgrade, Serbia;
| | - Luka Veličković
- University of Belgrade-Faculty of Chemistry, Center of Excellence for Molecular Food Sciences & Department of Biochemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (Z.J.); (L.V.)
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 5807/9, 84538 Bratislava, Slovakia; (J.K.); (A.H.)
| | - Alena Holazová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 5807/9, 84538 Bratislava, Slovakia; (J.K.); (A.H.)
| | - Milan Nikolić
- University of Belgrade-Faculty of Chemistry, Center of Excellence for Molecular Food Sciences & Department of Biochemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (Z.J.); (L.V.)
| | - Simeon Minić
- University of Belgrade-Faculty of Chemistry, Center of Excellence for Molecular Food Sciences & Department of Biochemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (Z.J.); (L.V.)
| |
Collapse
|
8
|
Kell DB, Pretorius E. Are fibrinaloid microclots a cause of autoimmunity in Long Covid and other post-infection diseases? Biochem J 2023; 480:1217-1240. [PMID: 37584410 DOI: 10.1042/bcj20230241] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
It is now well established that the blood-clotting protein fibrinogen can polymerise into an anomalous form of fibrin that is amyloid in character; the resultant clots and microclots entrap many other molecules, stain with fluorogenic amyloid stains, are rather resistant to fibrinolysis, can block up microcapillaries, are implicated in a variety of diseases including Long COVID, and have been referred to as fibrinaloids. A necessary corollary of this anomalous polymerisation is the generation of novel epitopes in proteins that would normally be seen as 'self', and otherwise immunologically silent. The precise conformation of the resulting fibrinaloid clots (that, as with prions and classical amyloid proteins, can adopt multiple, stable conformations) must depend on the existing small molecules and metal ions that the fibrinogen may (and is some cases is known to) have bound before polymerisation. Any such novel epitopes, however, are likely to lead to the generation of autoantibodies. A convergent phenomenology, including distinct conformations and seeding of the anomalous form for initiation and propagation, is emerging to link knowledge in prions, prionoids, amyloids and now fibrinaloids. We here summarise the evidence for the above reasoning, which has substantial implications for our understanding of the genesis of autoimmunity (and the possible prevention thereof) based on the primary process of fibrinaloid formation.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
9
|
Nedić O, Penezić A, Minić S, Radomirović M, Nikolić M, Ćirković Veličković T, Gligorijević N. Food Antioxidants and Their Interaction with Human Proteins. Antioxidants (Basel) 2023; 12:antiox12040815. [PMID: 37107190 PMCID: PMC10135064 DOI: 10.3390/antiox12040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Common to all biological systems and living organisms are molecular interactions, which may lead to specific physiological events. Most often, a cascade of events occurs, establishing an equilibrium between possibly competing and/or synergistic processes. Biochemical pathways that sustain life depend on multiple intrinsic and extrinsic factors contributing to aging and/or diseases. This article deals with food antioxidants and human proteins from the circulation, their interaction, their effect on the structure, properties, and function of antioxidant-bound proteins, and the possible impact of complex formation on antioxidants. An overview of studies examining interactions between individual antioxidant compounds and major blood proteins is presented with findings. Investigating antioxidant/protein interactions at the level of the human organism and determining antioxidant distribution between proteins and involvement in the particular physiological role is a very complex and challenging task. However, by knowing the role of a particular protein in certain pathology or aging, and the effect exerted by a particular antioxidant bound to it, it is possible to recommend specific food intake or resistance to it to improve the condition or slow down the process.
Collapse
Affiliation(s)
- Olgica Nedić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
- Correspondence:
| | - Ana Penezić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Simeon Minić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Mirjana Radomirović
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Milan Nikolić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Tanja Ćirković Veličković
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Nikola Gligorijević
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| |
Collapse
|
10
|
[Experimental study of resveratrol-solid lipid nanoparticles in promotion of osteogenic differentiation of bone marrow mesenchymal stem cells]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:1155-1165. [PMID: 36111480 PMCID: PMC9626288 DOI: 10.7507/1002-1892.202205009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To investigate the effect of solid lipid nanoparticles (SLNs) on enhancing the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro by resveratrol (Res), and provide a method for the treatment of bone homeostasis disorders. METHODS Res-SLNs were prepared by high-temperature emulsification and low-temperature solidification method, and then the 2nd-3rd generation BMSCs from Sprague Dawley rat were co-cultured with different concentrations (0, 0.1, 1, 5, 10, 20 μmol/L) of Res and Res-SLNs. The effects of Res and Res-SLNs on the cell viability of BMSCs were detected by cell counting kit 8 (CCK-8) and live/dead cell staining; the effects of Res and Res-SLNs on the osteogenic differentiation of BMSCs were detected by alkaline phosphatase (ALP) staining and alizarin red S (ARS) staining after osteogenic differentiation induction, and the optimal concentration of Res-SLNs for gene detection was determined. Anti-osteocalcin (OCN) immunofluorescence staining and real-time fluorescent quantitative PCR (RT-qPCR) were used to detect the effect of Res and Res-SLNs on osteoblast-related genes (ALP and OCN) of BMSCs. RESULTS Live/dead cell staining showed that there was no significant difference in the number of dead cells between Res and Res-SLNs groups; CCK-8 detection showed that the activity of BMSCs in Res group was significantly reduced at the concentration of 20 μmol/L (P<0.05), while Res-SLNs activity was not affected by Res concentration (P>0.05). After osteogenic differentiation, the staining intensity of ALP and ARS in both groups was dose-dependent. The percentage of ALP positive staining area and the percentage of mineralized nodule area in Res group and Res-SLNs group reached the maximum at the concentrations of 10 μmol/L and 1 μmol/L, respectively (P<0.05), and then decreased gradually; the most effective concentration of Res-SLNs was 1 μmol/L. The expression of OCN and the relative expression of ALP and OCN mRNA in Res-SLNs group were significantly higher than those in Res group (P<0.05). CONCLUSION Encapsulation of SLNs can improve the effect of Res on promoting osteogenesis, and achieve the best effect of osteogenic differentiation of BMSCs at a lower concentration, which is expected to be used in the treatment of bone homeostasis imbalance diseases.
Collapse
|
11
|
Li X, Duan H, Song Z, Xu R. Comparative study on the interaction between fibrinogen and flavonoids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Olas B. The Antioxidant, Anti-Platelet and Anti-Coagulant Properties of Phenolic Compounds, Associated with Modulation of Hemostasis and Cardiovascular Disease, and Their Possible Effect on COVID-19. Nutrients 2022; 14:nu14071390. [PMID: 35406002 PMCID: PMC9003312 DOI: 10.3390/nu14071390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 01/14/2023] Open
Abstract
Patients affected by coronavirus disease 2019 (COVID-19) demonstrate a range of hemostasis dysfunctions, such as coagulation dysfunction and changes in blood platelet function, this being a major cause of death. These complications may also be associated with oxidative stress. Recently, various papers, including some reviews, have suggested that the use of dietary bioactive compounds, including phenolic compounds, may play a significant role in the treatment of COVID-19. However, while some phenolic compounds, such as curcumin, resveratrol, myricetin and scutellarian, have been found to have antiviral effects against COVID-19, recommendations regarding the use of such compounds to prevent or reduce the risk of CVDs during COVID-19 infection remain tentative. The present mini-review examines the antioxidant, anti-platelet and anticoagulant and antiviral activities of selected phenolic compounds and the possible implications for their use in treating CVDs associated with COVID-19. This review also examines whether these phenolic compounds can be promising agents in the modulation of hemostasis and CVDs during COVID-19. While their properties have been well documented in various in vitro and in vivo studies, particularly their positive role in the prophylaxis and treatment of CVDs, less is known regarding their prophylactic potential against CVDs during COVID-19, and no credible evidence exists for their efficiency in humans or animals. In such cases, no in vitro or in vivo studies are available. Therefore, it cannot be unequivocally stated whether treatment with these phenolic compounds offers benefits against CVDs in patients with COVID-19.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland
| |
Collapse
|
13
|
Gligorijević N, Stanić-Vučinić D, Radomirović M, Stojadinović M, Khulal U, Nedić O, Ćirković Veličković T. Role of Resveratrol in Prevention and Control of Cardiovascular Disorders and Cardiovascular Complications Related to COVID-19 Disease: Mode of Action and Approaches Explored to Increase Its Bioavailability. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26102834. [PMID: 34064568 PMCID: PMC8151233 DOI: 10.3390/molecules26102834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022]
Abstract
Resveratrol is a phytoalexin produced by many plants as a defense mechanism against stress-inducing conditions. The richest dietary sources of resveratrol are berries and grapes, their juices and wines. Good bioavailability of resveratrol is not reflected in its high biological activity in vivo because of resveratrol isomerization and its poor solubility in aqueous solutions. Proteins, cyclodextrins and nanomaterials have been explored as innovative delivery vehicles for resveratrol to overcome this limitation. Numerous in vitro and in vivo studies demonstrated beneficial effects of resveratrol in cardiovascular diseases (CVD). Main beneficial effects of resveratrol intake are cardioprotective, anti-hypertensive, vasodilatory, anti-diabetic, and improvement of lipid status. As resveratrol can alleviate the numerous factors associated with CVD, it has potential as a functional supplement to reduce COVID-19 illness severity in patients displaying poor prognosis due to cardio-vascular complications. Resveratrol was shown to mitigate the major pathways involved in the pathogenesis of SARS-CoV-2 including regulation of the renin-angiotensin system and expression of angiotensin-converting enzyme 2, stimulation of immune system and downregulation of pro-inflammatory cytokine release. Therefore, several studies already have anticipated potential implementation of resveratrol in COVID-19 treatment. Regular intake of a resveratrol rich diet, or resveratrol-based complementary medicaments, may contribute to a healthier cardio-vascular system, prevention and control of CVD, including COVID-19 disease related complications of CVD.
Collapse
Affiliation(s)
- Nikola Gligorijević
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (N.G.); (O.N.)
| | - Dragana Stanić-Vučinić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia; (D.S.-V.); (M.R.); (M.S.)
| | - Mirjana Radomirović
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia; (D.S.-V.); (M.R.); (M.S.)
| | - Marija Stojadinović
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia; (D.S.-V.); (M.R.); (M.S.)
| | - Urmila Khulal
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- Global Campus, Ghent University, Yeonsu-gu, Incheon 406-840, Korea
| | - Olgica Nedić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (N.G.); (O.N.)
| | - Tanja Ćirković Veličković
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia; (D.S.-V.); (M.R.); (M.S.)
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- Global Campus, Ghent University, Yeonsu-gu, Incheon 406-840, Korea
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-11-333-6608
| |
Collapse
|
14
|
Shafreen RMB, Lakshmi SA, Pandian SK, Park YS, Kim YM, Paśko P, Deutsch J, Katrich E, Gorinstein S. Unraveling the Antioxidant, Binding and Health-Protecting Properties of Phenolic Compounds of Beers with Main Human Serum Proteins: In Vitro and In Silico Approaches. Molecules 2020; 25:E4962. [PMID: 33120936 PMCID: PMC7663678 DOI: 10.3390/molecules25214962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022] Open
Abstract
Our recently published in vivo studies and growing evidence suggest that moderate consumption of beer possesses several health benefits, including antioxidant and cardiovascular effects. Although beer contains phenolic acids and flavonoids as the major composition, and upon consumption, the levels of major components increase in the blood, there is no report on how these beer components interact with main human serum proteins. Thus, to address the interaction potential between beer components and human serum proteins, the present study primarily aims to investigate the components of beer from different industrial sources as well as their mode of interaction through in silico analysis. The contents of the bioactive compounds, antioxidant capacities and their influence on binding properties of the main serum proteins in human metabolism (human serum albumin (HSA), plasma circulation fibrinogen (PCF), C-reactive protein (CRP) and glutathione peroxidase 3 (GPX3)) were studied. In vitro and in silico studies indicated that phenolic substances presented in beer interact with the key regions of the proteins to enhance their antioxidant and health properties. We hypothesize that moderate consumption of beer could be beneficial for patients suffering from coronary artery disease (CAD) and other health advantages by regulating the serum proteins.
Collapse
Affiliation(s)
- Raja Mohamed Beema Shafreen
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu 630003, India; (R.M.B.S.); (S.A.L.); (S.K.P.)
| | - Selvaraj Alagu Lakshmi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu 630003, India; (R.M.B.S.); (S.A.L.); (S.K.P.)
| | - Shunmugiah Karutha Pandian
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu 630003, India; (R.M.B.S.); (S.A.L.); (S.K.P.)
| | - Yong Seo Park
- Department of Horticultural Science, Mokpo National University, Muan, Jeonnam 534-729, Korea;
| | - Young Mo Kim
- Department of Food Nutrition, Gwangju Health University, Gwangsan-gu, Gwangju 506-723, Korea;
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Krakow 30-688, Poland;
| | - Joseph Deutsch
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (J.D.); (E.K.)
| | - Elena Katrich
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (J.D.); (E.K.)
| | - Shela Gorinstein
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (J.D.); (E.K.)
| |
Collapse
|