1
|
Calderón N, White BL, Seo HS. Measuring palatability of pet food products: Sensory components, evaluations, challenges, and opportunities. J Food Sci 2024. [PMID: 39468886 DOI: 10.1111/1750-3841.17511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
The pet food industry is a growing business launching a variety of new products in the market. The acceptability or preference of pet food samples has traditionally been measured using either one-bowl or two-bowl tests. Academic researchers and professionals in the pet food industry have explored other methods, including the cognitive palatability assessment protocols and the ranking test, to evaluate more than two samples. A variety of approaches and perspectives were also utilized to predict palatability and key sensory attributes of pet foods, including descriptive sensory analysis by human-trained panelists and pet food caregivers' perceptions of pet food. This review article examined a range of testing methods for evaluating the palatability of pet foods, specifically targeting products for dogs and/or cats. It outlined the advantages and disadvantages of each method. Additionally, the review provided in-depth insights into the key sensory attributes of pet foods and the methodologies for assessing palatability. It also explored pets' behavioral responses and facial expressions in relation to different pet foods. Furthermore, this review discussed current challenges and future opportunities in pet food development, including the use of instrumental analyses and artificial intelligence-based approaches.
Collapse
Affiliation(s)
- Natalia Calderón
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA
| | | | - Han-Seok Seo
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
2
|
Chen X, Luo N, Guo C, Luo J, Wei J, Zhang N, Yin X, Feng X, Wang X, Cao J. Current trends and perspectives on salty and salt taste-enhancing peptides: A focus on preparation, evaluation and perception mechanisms of salt taste. Food Res Int 2024; 190:114593. [PMID: 38945609 DOI: 10.1016/j.foodres.2024.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/15/2024] [Accepted: 06/01/2024] [Indexed: 07/02/2024]
Abstract
Long-term excessive intake of sodium negatively impacts human health. Effective strategies to reduce sodium content in foods include the use of salty and salt taste-enhancing peptides, which can reduce sodium intake without compromising the flavor or salt taste. Salty and salt taste-enhancing peptides naturally exist in various foods and predominantly manifest as short-chain peptides consisting of < 10 amino acids. These peptides are primarily produced through chemical or enzymatic hydrolysis methods, purified, and identified using ultrafiltration + gel filtration chromatography + liquid chromatography-tandem mass spectrometry. This study reviews the latest developments in these purification and identification technologies, and discusses methods to evaluate their effectiveness in saltiness perception. Additionally, the study explores four biological channels potentially involved in saltiness perception (epithelial sodium channel, transient receptor potential vanilloid 1, calcium-sensing receptor (CaSR), and transmembrane channel-like 4 (TMC4)), with the latter three primarily functioning under high sodium levels. Among the channels, salty taste-enhancing peptides, such as γ-glutamyl peptides, may co-activate the CaSR channel with calcium ions to participate in saltiness perception. Salty taste-enhancing peptides with negatively charged amino acid side chains or terminal groups may replace chloride ions and activate the TMC4 channel, contributing to saltiness perception. Finally, the study discusses the feasibility of using these peptides from the perspectives of food material constraints, processing adaptability, multifunctional application, and cross-modal interaction while emphasizing the importance of utilizing computational technology. This review provides a reference for advancing the development and application of salty and salt-enhancing peptides as sodium substitutes in low-sodium food formulations.
Collapse
Affiliation(s)
- Xin Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; Yunnan International Joint Laboratory of Green Food Processing, Kunming, Yunnan 650500, PR China
| | - Na Luo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; Yunnan International Joint Laboratory of Green Food Processing, Kunming, Yunnan 650500, PR China
| | - Chaofan Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; Yunnan International Joint Laboratory of Green Food Processing, Kunming, Yunnan 650500, PR China
| | - Junhua Luo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; Yunnan International Joint Laboratory of Green Food Processing, Kunming, Yunnan 650500, PR China
| | - Jianping Wei
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710000, PR China
| | - Nianwen Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; Yunnan International Joint Laboratory of Green Food Processing, Kunming, Yunnan 650500, PR China
| | - Xiaoyu Yin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; Yunnan International Joint Laboratory of Green Food Processing, Kunming, Yunnan 650500, PR China
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Xuejiao Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; Yunnan International Joint Laboratory of Green Food Processing, Kunming, Yunnan 650500, PR China.
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; Yunnan International Joint Laboratory of Green Food Processing, Kunming, Yunnan 650500, PR China.
| |
Collapse
|
3
|
Sarkar A. Oral Astringency in Plant Proteins: An Underestimated Issue in Formulating Next-Generation Plant-Based Foods. Annu Rev Food Sci Technol 2024; 15:103-123. [PMID: 38316152 DOI: 10.1146/annurev-food-072023-034510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Ensuring the supply of affordable, palatable, healthy, and sustainable nutrients to feed the growing population without transgressing the planetary boundaries remains a key challenge in the food science community. A dietary transition toward low-emission, plant-based foods, with less reliance on animal agriculture, is advocated for sustainability, health, and ethical reasons. A major hurdle for mainstream adoption of plant-based foods is their poor sensorial performance, such as nonjuicy and astringent textures as well as various off-flavors. This review presents the current understanding of astringency and oral friction of plant-based foods. It focuses on plant proteins and their application in plant-based meat and dairy analogs. In addition, the latest advances in the quantitative characterization of astringency using tribology, electrochemistry, and cellular tools are covered. Finally, we examine factors influencing astringency and propose easy-to-implement colloidal strategies that may mitigate astringency issues, thereby underpinning the design of the next generation of sustainable and pleasurable plant-based foods.
Collapse
Affiliation(s)
- Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom;
| |
Collapse
|
4
|
George GS, Fleming CJ, Upadhyay R. Perspective on oral processing of plant-based beverages. J Texture Stud 2024; 55:e12846. [PMID: 38899530 DOI: 10.1111/jtxs.12846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024]
Abstract
Around the world, the market for plant-derived beverages is one of the fastest-expanding segments in the functional and specialty beverage areas of newer food product development. Consumers are increasingly likely to choose alternatives to bovine beverages due to factors including lactose intolerance, hypercholesterolemia prevalence, allergies to bovine beverages, and preference for vegan diets that contain functionally active ingredients with health-promoting characteristics. Due to health, ecological, and ethical concerns, many customers are interested in reducing their usage of animal products like bovine milk. A variety of plant-based beverage substitutes are being created by the food sector as a result. To create viable alternatives, it is first necessary to provide an overview of the chemical composition, structure, features, and nutritional attributes of ordinary bovine milk. Sensory acceptability in the case of substitutes for beverages made from legumes is a significant barrier to their widespread acceptance, and thus saliva acts as a sophisticated fluid that serves a variety of purposes in the cavity of the mouth. Designing and producing next-generation plant-based beverages that mimic the physicochemical and functional qualities of conventional bovine-based beverages is gaining popularity, and many of these products can be thought of as colloidal materials that contain the particles or polymers that give them their unique qualities NG-PB foods can have a wide range of rheological qualities, such as fluids with low viscosity (such as plant-based beverages), high-viscosity liquids (like creams), soft liquids (like yogurt), as well as hard solids (such as some cheeses).
Collapse
Affiliation(s)
- Gintu Sara George
- Division of Food Processing Technology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Craig J Fleming
- Giraffe Foods a Symrise Group Company, Mississauga, Ontario, Canada
| | - Rituja Upadhyay
- Division of Food Processing Technology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| |
Collapse
|
5
|
Zhang D, Jiang K, Luo H, Zhao X, Yu P, Gan Y. Replacing animal proteins with plant proteins: Is this a way to improve quality and functional properties of hybrid cheeses and cheese analogs? Compr Rev Food Sci Food Saf 2024; 23:e13262. [PMID: 38284577 DOI: 10.1111/1541-4337.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/27/2023] [Accepted: 10/14/2023] [Indexed: 01/30/2024]
Abstract
The growing emphasis on dietary health has facilitated the development of plant-based foods. Plant proteins have excellent functional attributes and health-enhancing effects and are also environmentally conscientious and animal-friendly protein sources on a global scale. The addition of plant proteins (including soy protein, pea protein, zein, nut protein, and gluten protein) to diverse cheese varieties and cheese analogs holds the promise of manufacturing symbiotic products that not only have reduced fat content but also exhibit improved protein diversity and overall quality. In this review, we summarized the utilization and importance of various plant proteins in the production of hybrid cheeses and cheese analogs. Meanwhile, classification and processing methods related to these cheese products were reviewed. Furthermore, the impact of different plant proteins on the microstructure, textural properties, physicochemical attributes, rheological behavior, functional aspects, microbiological aspects, and sensory characteristics of both hybrid cheeses and cheese analogs were discussed and compared. Our study explores the potential for the development of cheeses made from full/semi-plant protein ingredients with greater sustainability and health benefits. Additionally, it further emphasizes the substantial chances for scholars and developers to investigate the optimal processing methods and applications of plant proteins in cheeses, thereby improving the market penetration of plant protein hybrid cheeses and cheese analogs.
Collapse
Affiliation(s)
- Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kai Jiang
- School of Resources and Civil Engineering, No, rtheastern University, Shenyang, Liaoning, China
| | - Hui Luo
- Laboratory of Oncology, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaorui Zhao
- Differentiated & Biofunctional Food, Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Peng Yu
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiming Gan
- Plant Sciences, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
6
|
Visalli M, Galmarini MV. Multi-attribute temporal descriptive methods in sensory analysis applied in food science: A systematic scoping review. Compr Rev Food Sci Food Saf 2024; 23:e13294. [PMID: 38284596 DOI: 10.1111/1541-4337.13294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/07/2023] [Accepted: 12/16/2023] [Indexed: 01/30/2024]
Abstract
Among descriptive sensory evaluation methods, temporal methods have a wide audience in food science because they make it possible to follow perception as close as possible to the moment when sensations are perceived. The aim of this work was to describe 30 years of research involving temporal methods by mapping the scientific literature using a systematic scoping review. Thus, 363 research articles found from a search in Scopus and Web of Science from 1991 to 2022 were included. The extracted data included information on the implementation of studies referring to the use of temporal methods (details related to subjects, products, descriptors, research design, data analysis, etc.), reasons why they were used and the conclusions they allowed to be drawn. Metadata analysis and critical appraisal were also carried out. A quantitative and qualitative synthesis of the results allowed the identification of trends in the way in which the methods were developed, refined, and disseminated. Overall, a large heterogeneity was noted in the way in which the temporal measurements were carried out and the results presented. Some critical research gaps in establishing the validity and reliability of temporal methods have also been identified. They were mostly related to the details of implementation of the methods (e.g., almost no justification for the number of consumers included in the studies, absence of report on panel repeatability) and data analysis (e.g., prevalence of use of exploratory data analysis, only 20% of studies using confirmatory analyses considering the dynamic nature of the data). These results suggest the need for general guidelines on how to implement the method, analyze and interpret data, and report the results. Thus, a template and checklist for reporting data and results were proposed to help increase the quality of future research.
Collapse
Affiliation(s)
- Michel Visalli
- Centre des Sciences du Goût et de l'Alimentation, Institut Agro Dijon, CNRS, INRAE, Université Bourgogne, Dijon, France
- INRAE, PROBE Research Infrastructure, ChemoSens Facility, Dijon, France
| | - Mara Virginia Galmarini
- CONICET, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Santa Fe, Argentina
- Facultad de Ingeniería y Ciencias Agrarias, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| |
Collapse
|
7
|
Amyoony J, Dabas T, Gorman M, Moss R, McSweeney MB. Sensory properties of thickened tomato soup enhanced with different sources of protein (whey, soy, hemp, and pea). J Texture Stud 2023. [PMID: 37859519 DOI: 10.1111/jtxs.12807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
Thickened soup formulations were created with different proteins (hemp, soy, pea, and whey) to improve protein and fluid intake. The formulations consisted of a control soup, and soups with 6% whey protein, 6% hemp protein, 6% pea protein, and 6% soy protein by volume. The suitability of the samples for those living with dysphagia was evaluated using the international dysphagia diet standardization initiative (IDDSI) spoon tilt test and a sensory trial (51 older adults and 51 younger adults). The sensory trial used nine-point hedonic scales and check-all-that-apply to evaluate the different formulations. The sample with the whey addition was not significantly different than the control in terms of liking of flavor and texture, but it decreased the participants' overall liking. The hemp, pea, and soy decreased overall liking as well as liking of flavor and texture. They were associated with off-flavors, aftertaste, and astringency. The responses from the older and younger adults were compared and significant differences were found in their liking of the texture, with the older adults finding the formulations' texture significantly more acceptable. Overall, the study identified that hemp, pea, and soy did not create acceptable thickened soup formulations and the hemp and pea formulations did not achieve a consistency level that is acceptable for those living with dysphagia.
Collapse
Affiliation(s)
- Jamal Amyoony
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Tanvi Dabas
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Mackenzie Gorman
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Rachael Moss
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Matthew B McSweeney
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| |
Collapse
|
8
|
Assad-Bustillos M, Cázares-Godoy A, Devezeaux de Lavergne M, Schmitt C, Hartmann C, Windhab E. Assessment of the interactions between pea and salivary proteins in aqueous dispersions. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
9
|
Karolkowski A, Martin C, Bouzidi E, Albouy JF, Levavasseur L, Briand L, Salles C. Heat Treatment, Cultivar and Formulation Modify the Sensory Properties and Consumer Acceptability of Gels Containing Faba Bean ( Vicia faba L. minor) Protein Concentrates. Foods 2022; 11:3018. [PMID: 36230094 PMCID: PMC9562209 DOI: 10.3390/foods11193018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Faba bean (Vicia faba L. minor) is an emerging plant-based ingredient due to its environmental, nutritional and functional benefits. However, like other pulses, it exhibits many off-flavours that limit its consumption. Little is known about the flavour of faba beans, and previous studies have focused on volatile compounds and the overall flavour. In the present study, xanthan gum gels were formulated with crude or heated protein concentrates from three faba bean cultivars and with the addition of oil and/or salt. A trained panel analysed the sensory properties of these gels, and a consumer test was carried out to assess their acceptability. The gels formulated with crude protein concentrates exhibited bitterness and green, metallic and rancid notes that decreased consumer appreciation. The heat treatment promoted pleasant notes such as potato, cereal and haricot bean notes and attenuated the most penalising descriptors associated with off-flavours. Cultivar 2 was characterised by fewer off-flavours and should be preferred over the other cultivars for the formulation of faba bean products. This work provides information on the sensory properties of different cultivars of faba bean concentrates and information likely to help improve their acceptability in the context of the formulation of food intended for humans.
Collapse
Affiliation(s)
- Adeline Karolkowski
- CSGA (Centre des Sciences du Goût et de l’Alimentation), CNRS, INRAE, Institut Agro, Université de Bourgogne-Franche Comté, 21000 Dijon, France
- Groupe Soufflet (Ets J. Soufflet), 10400 Nogent-sur-Seine, France
| | - Christophe Martin
- CSGA (Centre des Sciences du Goût et de l’Alimentation), CNRS, INRAE, Institut Agro, Université de Bourgogne-Franche Comté, 21000 Dijon, France
- Groupe Soufflet (Ets J. Soufflet), 10400 Nogent-sur-Seine, France
| | - Emilie Bouzidi
- Groupe Soufflet (Ets J. Soufflet), 10400 Nogent-sur-Seine, France
| | | | - Loïc Levavasseur
- Groupe Soufflet (Ets J. Soufflet), 10400 Nogent-sur-Seine, France
| | - Loïc Briand
- CSGA (Centre des Sciences du Goût et de l’Alimentation), CNRS, INRAE, Institut Agro, Université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Christian Salles
- CSGA (Centre des Sciences du Goût et de l’Alimentation), CNRS, INRAE, Institut Agro, Université de Bourgogne-Franche Comté, 21000 Dijon, France
| |
Collapse
|
10
|
Sharan S, Zanghelini G, Pernin A, Descharles N, Zotzel J, Bonerz D, Aschoff J, Maillard MN, Saint-Eve A. Flavor of fava bean (Vicia faba L.) ingredients: Effect of processing and application conditions on odor-perception and headspace volatile chemistry. Food Res Int 2022; 159:111582. [DOI: 10.1016/j.foodres.2022.111582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 11/04/2022]
|
11
|
Knaapila A. Sensory and Consumer Research Has a Role in Supporting Sustainability of the Food System. Foods 2022; 11:foods11131958. [PMID: 35804773 PMCID: PMC9266232 DOI: 10.3390/foods11131958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
How can sensory and consumer research contribute to the sustainability of a food system [...]
Collapse
Affiliation(s)
- Antti Knaapila
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
12
|
A TCATA by modality approach to study the multisensory temporal profile of hop bitter and flavour products applied in lager. Food Qual Prefer 2022. [DOI: 10.1016/j.foodqual.2021.104470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Chigwedere CM, Wanasundara JPD, Shand PJ. Sensory descriptors for pulses and pulse-derived ingredients: Toward a standardized lexicon and sensory wheel. Compr Rev Food Sci Food Saf 2022; 21:999-1023. [PMID: 35122393 DOI: 10.1111/1541-4337.12893] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
The organoleptic quality of pulses and their derived ingredients is fundamental in human utilization and evolution of food. However, the widespread use of pulses is hindered by their inherent sensorial aspects, which are regarded as atypical by the consumers who are unfamiliar to them. In most studies involving sensory assessment of pulses and pulse-ingredients using classical descriptive analysis methods, assessors establish their own lexica. This review is a synthesis of descriptive terms by which sensations emanating from pea, chickpea, lentil, faba bean, dry bean, bambara groundnut, lupin, pigeon pea and cowpea, and their derived ingredients have been described in the literature. Studies involving sensory assessment of processed whole seeds, slurries of raw flour, slurries of protein extracted from raw flour, and food products containing components of pulses were considered. The terms are categorized into those denoting basic taste, aroma, flavor, and trigeminal sensations. Bitterness is the most widely perceived basic taste. Beany, which is broad and complex with subcharacter notes, is predominantly used to describe aroma and flavor. The frequency of use of the collated terms in the reviewed studies was used to establish a sensory wheel. Inconsistency in the use of descriptive terms in the literature necessitates establishment of a standard lexicon that can be applied in both classical and increasingly popular rapid descriptive methods (e.g., check-all-that-apply) throughout the pulse value chain. This review is timely considering the dominance of pulses in plant-based foods and their increasing appeal to the food industry.
Collapse
Affiliation(s)
- Claire M Chigwedere
- Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Canada
| | - Janitha P D Wanasundara
- Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Canada.,Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Canada
| | - Phyllis J Shand
- Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
14
|
Rodríguez-Noriega S, Buenrostro-Figueroa JJ, Rebolloso-Padilla ON, Corona-Flores J, Camposeco-Montejo N, Flores-Naveda A, Ruelas-Chacón X. Developing a Descriptive Sensory Characterization of Flour Tortilla Applying Flash Profile. Foods 2021; 10:foods10071473. [PMID: 34202068 PMCID: PMC8303454 DOI: 10.3390/foods10071473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 12/02/2022] Open
Abstract
For any food, it is important to know consumption, preference, and the characteristics as quality parameters that are important to consumers of a product. The descriptive methodologies are an important tool to know the quality attributes of the products. Within these methodologies is the flash profile (FP), which is based on the generation of the distinctive attributes of the products without any expensive and time-consuming training sessions. The aim of this research was to study the consumption and preference of flour tortillas by consumers and to develop the descriptive characterization of the tortillas by using the flash profile method. The wheat flour tortillas used were two commercial and two handcrafted samples. Ten experienced panelists participated as the FP panel. The panelists generated 22 descriptors, six for texture, seven for appearance, five for odor, and four for flavor. These descriptors differentiate the samples of the flour tortillas. The panelists’ performance was assessed using the consensus index (Rc = 0.508). The first two dimensions of the Generalized Procrustes Analysis represent 83.78% of the data variability. Flash profile proved to be an easy and rapid technique that allowed the distinctive attributes of flour tortillas to be obtained.
Collapse
Affiliation(s)
- Sanjuana Rodríguez-Noriega
- Department of Food Science and Technology, Autonomous Agrarian University Antonio Narro, Calzada Antonio Narro 1923, Saltillo 25315, Mexico;
| | | | - Oscar Noé Rebolloso-Padilla
- Department of Animal Production, Autonomous Agrarian University Antonio Narro, Calzada Antonio Narro 1923, Saltillo 25315, Mexico;
| | - José Corona-Flores
- Department of Planning, Autonomous Agrarian University Antonio Narro, Calzada Antonio Narro 1923, Saltillo 25315, Mexico;
| | - Neymar Camposeco-Montejo
- Seed Technology Training and Development Center, Department of Plant Breeding, Autonomous Agrarian University Antonio Narro, Calzada Antonio Narro 1923, Saltillo 25315, Mexico; (N.C.-M.); (A.F.-N.)
| | - Antonio Flores-Naveda
- Seed Technology Training and Development Center, Department of Plant Breeding, Autonomous Agrarian University Antonio Narro, Calzada Antonio Narro 1923, Saltillo 25315, Mexico; (N.C.-M.); (A.F.-N.)
| | - Xochitl Ruelas-Chacón
- Department of Food Science and Technology, Autonomous Agrarian University Antonio Narro, Calzada Antonio Narro 1923, Saltillo 25315, Mexico;
- Correspondence: or
| |
Collapse
|
15
|
Norton V, Lignou S, Methven L. Influence of Age and Individual Differences on Mouthfeel Perception of Whey Protein-Fortified Products: A Review. Foods 2021; 10:433. [PMID: 33669435 PMCID: PMC7920461 DOI: 10.3390/foods10020433] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022] Open
Abstract
Protein needs are considered to increase with age, with protein consumption being associated with many positive outcomes. Protein-fortified products are often used to improve nutritional status and prevent age-related muscle mass loss in older adults. Accordingly, older adults are commonly provided with products fortified with whey protein; however, such products can cause mouthdrying, limiting consumption and product enjoyment. Currently, the extent to which age and individual differences (e.g., saliva, oral health, food oral processing) influence the perception of whey protein-derived mouthdrying is relatively unclear. Previous research in this area has mainly focused on investigating mouthdrying, without taking into account individual differences that could influence this perception within the target population. Therefore, the main focus of this review is to provide an overview of the relevant individual differences likely to influence mouthfeel perception (specifically mouthdrying) from whey protein-fortified products, thereby enabling the future design of such products to incorporate better the needs of older adults and improve their nutritional status. This review concludes that age and individual differences are likely to influence mouthdrying sensations from whey protein-fortified products. Future research should focus more on the target population and individual differences to maximise the benefits from whey protein fortification.
Collapse
Affiliation(s)
| | | | - Lisa Methven
- Department of Food and Nutritional Sciences, Harry Nursten Building, University of Reading, Whiteknights, Reading RG6 6DZ, UK; (V.N.); (S.L.)
| |
Collapse
|
16
|
Ramirez JL, Du X, Wallace RW. Investigating sensory properties of seven watermelon varieties and factors impacting refreshing perception using quantitative descriptive analysis. Food Res Int 2020; 138:109681. [PMID: 33292957 DOI: 10.1016/j.foodres.2020.109681] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/27/2020] [Accepted: 09/06/2020] [Indexed: 12/16/2022]
Abstract
Watermelon (Citrullus lanatus) is known for its refreshing quality, though its sensory attributes have never been related to its perceived refreshment. Modified quantitative descriptive analysis by a trained panel was used to examine the sensory profile of seven watermelon varieties. Eleven attributes including perceived refreshing intensity were measured on a 0-10 line scale using chemical references. Watermelon samples were evaluated with and without nose clips to control orthonasal and retronasal aroma and temperature was included as a variable to observe their effects on perceived refreshment. The dominant watermelon attributes were wateriness, refreshing, crispness, sweet, mealiness, fresh, ripe, and melon. The varieties were best differentiated by refreshing (p < 0.001), crispness (p = 0.002), sweet (p < 0.001), mealiness (p = 0.016), green (p = 0.007), and sour perception (p < 0.001). Captivation and Excursion were the most refreshing varieties. Captivation, Excursion, and Seedless varieties were less refreshing when flavor perception was inhibited; ratings ranged from 6.8 to 7.2 without nose clips and 5.9-6.0 with nose clips (p = 0.002). Refreshing was most positively driven by wateriness, followed by crispness, fresh, melon, and sweet, and negatively driven by mealiness, as indicated by partial least square regression. Samples served cold were more refreshing (ratings of 7.1 without and 6.0 with nose clips) than those served at room temperature (ratings of 4.9 without and 3.5 with nose clips), p < 0.001. This study defined the sensory profile of seven watermelon varieties and showed that flavor, texture, and temperature were responsible for the refreshing perception of watermelon for the first time.
Collapse
Affiliation(s)
- Jessica L Ramirez
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA.
| | - Xiaofen Du
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA.
| | - Russell W Wallace
- Horticultural Sciences, Texas A&M AgriLife Research & Extension Center, Lubbock, TX, USA.
| |
Collapse
|