1
|
Nam M, Lee JW, Cha GD. Biomedical Application of Enzymatically Crosslinked Injectable Hydrogels. Gels 2024; 10:640. [PMID: 39451293 PMCID: PMC11507637 DOI: 10.3390/gels10100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Hydrogels have garnered significant interest in the biomedical field owing to their tissue-like properties and capability to incorporate various fillers. Among these, injectable hydrogels have been highlighted for their unique advantages, especially their minimally invasive administration mode for implantable use. These injectable hydrogels can be utilized in their pristine forms or as composites by integrating them with therapeutic filler materials. Given their primary application in implantable platforms, enzymatically crosslinked injectable hydrogels have been actively explored due to their excellent biocompatibility and easily controllable mechanical properties for the desired use. This review introduces the crosslinking mechanisms of such hydrogels, focusing on those mediated by horseradish peroxidase (HRP), transglutaminase (TG), and tyrosinase. Furthermore, several parameters and their relationships with the intrinsic properties of hydrogels are investigated. Subsequently, the representative biomedical applications of enzymatically crosslinked-injectable hydrogels are presented, including those for wound healing, preventing post-operative adhesion (POA), and hemostasis. Furthermore, hydrogel composites containing filler materials, such as therapeutic cells, proteins, and drugs, are analyzed. In conclusion, we examine the scientific challenges and directions for future developments in the field of enzymatically crosslinked-injectable hydrogels, focusing on material selection, intrinsic properties, and filler integration.
Collapse
Affiliation(s)
| | | | - Gi Doo Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea; (M.N.); (J.W.L.)
| |
Collapse
|
2
|
McClements DJ. Composite hydrogels assembled from food-grade biopolymers: Fabrication, properties, and applications. Adv Colloid Interface Sci 2024; 332:103278. [PMID: 39153416 DOI: 10.1016/j.cis.2024.103278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Biopolymer hydrogels have a broad range of applications as soft materials in a variety of commercial products, including foods, cosmetics, agrochemicals, personal care products, pharmaceuticals, and biomedical products. They consist of a network of entangled or crosslinked biopolymer molecules that traps relatively large quantities of water and provides semi-solid properties, like viscoelasticity or plasticity. Composite biopolymer hydrogels contain inclusions (fillers) to enhance their functional properties, including solid particles, liquid droplets, gas bubbles, nanofibers, or biological cells. These fillers vary in their composition, size, shape, rheology, and surface properties, which influences their impact on the rheological properties of the biopolymer hydrogels. In this article, the various types of biopolymers used to fabricate composite hydrogels are reviewed, with an emphasis on edible proteins and polysaccharides from sustainable sources, such as plants, algae, or microbial fermentation. The different kinds of gelling mechanism exhibited by these biopolymers are then discussed, including heat-, cold-, ion-, pH-, enzyme-, and pressure-set mechanisms. The different ways that biopolymer molecules can organize themselves in single and mixed biopolymer hydrogels are then highlighted, including polymeric, particulate, interpenetrating, phase-separated, and co-gelling systems. The impacts of incorporating fillers on the rheological properties of composite biopolymer hydrogels are then discussed, including mathematical models that have been developed to describe these effects. Finally, potential applications of composite biopolymer hydrogels are presented, including as delivery systems, packaging materials, artificial tissues, wound healing materials, meat analogs, filters, and adsorbents. The information provided in this article is intended to stimulate further research into the development and application of composite biopolymer hydrogels.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China; Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
3
|
Alshangiti DM, El-Damhougy TK, Zaher A, Madani M, Mohamady Ghobashy M. Revolutionizing biomedicine: advancements, applications, and prospects of nanocomposite macromolecular carbohydrate-based hydrogel biomaterials: a review. RSC Adv 2023; 13:35251-35291. [PMID: 38053691 PMCID: PMC10694639 DOI: 10.1039/d3ra07391b] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
Nanocomposite hydrogel biomaterials represent an exciting Frontier in biomedicine, offering solutions to longstanding challenges. These hydrogels are derived from various biopolymers, including fibrin, silk fibroin, collagen, keratin, gelatin, chitosan, hyaluronic acid, alginate, carrageenan, and cellulose. While these biopolymers possess inherent biocompatibility and renewability, they often suffer from poor mechanical properties and rapid degradation. Researchers have integrated biopolymers such as cellulose, starch, and chitosan into hydrogel matrices to overcome these limitations, resulting in nanocomposite hydrogels. These innovative materials exhibit enhanced mechanical strength, improved biocompatibility, and the ability to finely tune drug release profiles. The marriage of nanotechnology and hydrogel chemistry empowers precise control over these materials' physical and chemical properties, making them ideal for tissue engineering, drug delivery, wound healing, and biosensing applications. Recent advancements in the design, fabrication, and characterization of biopolymer-based nanocomposite hydrogels have showcased their potential to transform biomedicine. Researchers are employing strategic approaches for integrating biopolymer nanoparticles, exploring how nanoparticle properties impact hydrogel performance, and utilizing various characterization techniques to evaluate structure and functionality. Moreover, the diverse biomedical applications of these nanocomposite hydrogels hold promise for improving patient outcomes and addressing unmet clinical needs.
Collapse
Affiliation(s)
| | - Tasneam K El-Damhougy
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University P.O. Box: 11754, Yousef Abbas Str. Nasr City Cairo Egypt
| | - Ahmed Zaher
- Chemistry Department, Faculty of Science, El-Mansoura University Egypt
| | - Mohamed Madani
- College of Science and Humanities, Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority P.O. Box 29 Nasr City Cairo Egypt
| |
Collapse
|
4
|
Dartora VFC, Passos JS, Osorio B, Hung RC, Nguyen M, Wang A, Panitch A. Chitosan hydrogels with MK2 inhibitor peptide-loaded nanoparticles to treat atopic dermatitis. J Control Release 2023; 362:591-605. [PMID: 37660990 DOI: 10.1016/j.jconrel.2023.08.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/05/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder that lacks ideal long-term treatment options due to a series of side effects, such as skin atrophy, related to the most common treatment prescribed to manage moderate-to-severe AD. In this study, a cell-penetrating MK2 inhibitor peptide YARA (YARAAARQARAKALNRQGLVAA) was loaded into hollow thermo-responsive pNIPAM nanoparticles (NP), which were further incorporated into chitosan hydrogels (H-NP-YARA) to promote local drug delivery, improve moisture and the anti-inflammatory activity. The NPs exhibited high loading efficiency (>50%) and the hydrogel remained porous following NP incorporation as observed by scanning electron microscopy (SEM). Both nanoparticles and hydrogels were able to improve the release of YARA and sustained release to up to 120 h. The hydrogels and NPs delivered 2 and 4-fold more YARA into viable skin layers of porcine skin in vitro at 12 h post-application than the non-encapsulated compound in intact and impaired barrier conditions. Furthermore, the YARA-loaded NPs (NP-YARA) and H-NP-YARA treatment decreased the levels of inflammatory cytokines up to 20 time-fold compared with the non-treated group of human keratinocytes under inflammatory conditions. Consistent with the results in cell culture, the loading of YARA in NP reduced the levels of IL-1β, IL-6, and TNF-α up to 3.3 times in an ex vivo skin culture model after induction of inflammation. A further decrease of up to 17 times-fold was observed with H-NP-YARA treatment compared to the drug in solution. Our data collectively suggest that chitosan hydrogel containing YARA-loaded nanoparticles is a promising new formulation for the topical treatment of AD.
Collapse
Affiliation(s)
- Vanessa F C Dartora
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, USA
| | - Julia Sapienza Passos
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA, USA; Institute of Biomedical Sciences, Department of Pharmacology, University of Sao Paulo, Brazil
| | - Blanca Osorio
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA, USA
| | - Ruei-Chun Hung
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, USA
| | - Michael Nguyen
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA, USA
| | - Aijun Wang
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA, USA; Department of Surgery, University of California Davis, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA
| | - Alyssa Panitch
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA, USA; Department of Surgery, University of California Davis, Sacramento, CA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, USA.
| |
Collapse
|
5
|
Salem MA, Mohamed OG, Mosalam EM, Elberri AI, Abdel-Bar HM, Hassan M, Al-Karmalawy AA, Tripathi A, Ezzat SM, Abo Mansour HE. Investigation of the phytochemical composition, antioxidant, antibacterial, anti-osteoarthritis, and wound healing activities of selected vegetable waste. Sci Rep 2023; 13:13034. [PMID: 37563154 PMCID: PMC10415269 DOI: 10.1038/s41598-023-38591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
Agri-food wastes, produced following industrial food processing, are mostly discarded, leading to environmental hazards and losing the nutritional and medicinal values associated with their bioactive constituents. In this study, we performed a comprehensive analytical and biological evaluation of selected vegetable by-products (potato, onion, and garlic peels). The phytochemical analysis included UHPLC-ESI-qTOF-MS/MS in combination with molecular networking and determination of the total flavonoid and phenolic contents. Further, the antimicrobial, anti-osteoarthritis and wound healing potentials were also evaluated. In total, 47 compounds were identified, belonging to phenolic acids, flavonoids, saponins, and alkaloids as representative chemical classes. Onion peel extract (OPE) showed the higher polyphenolic contents, the promising antioxidant activity, the potential anti-osteoarthritis activity, and promising antimicrobial activity, especially against methicillin-resistant Staphylococcus aureus (MRSA). Furthermore, OPE revealed to have promising in vivo wound healing activity, restoring tissue physiology and integrity, mainly through the activation of AP-1 signaling pathway. Lastly, when OPE was loaded with nanocapsule based hydrogel, the nano-formulation revealed enhanced cellular viability. The affinities of the OPE major metabolites were evaluated against both p65 and ATF-2 targets using two different molecular docking processes revealing quercetin-3,4'-O-diglucoside, alliospiroside C, and alliospiroside D as the most promising entities with superior binding scores. These results demonstrate that vegetable by-products, particularly, those derived from onion peels can be incorporated as natural by-product for future evaluation against wounds and osteoarthritis.
Collapse
Affiliation(s)
- Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibīn al-Kawm, 32511, Menoufia, Egypt.
| | - Osama G Mohamed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo, 11562, Egypt
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Esraa M Mosalam
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shebin El-Koum, 32511, Egypt
| | - Aya Ibrahim Elberri
- Genetic Engineering and Molecular Biology Division, Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, 32511, Menoufia, Egypt
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr el Aini st., Cairo, 11562, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Hend E Abo Mansour
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shebin El-Koum, 32511, Egypt
| |
Collapse
|
6
|
Rehman S, Alahmari F, Aldossary L, Alhout M, Aljameel SS, Ali SM, Sabir JSM, Khan FA, Rather IA. Nano-sized warriors: zinc chromium vanadate nanoparticles as a dual solution for eradicating waterborne enterobacteriaceae and fighting cancer. Front Pharmacol 2023; 14:1213824. [PMID: 37521476 PMCID: PMC10373886 DOI: 10.3389/fphar.2023.1213824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
The revolution of biomedical applications has opened new avenues for nanotechnology. Zinc Chromium vanadate nanoparticles (VCrZnO4 NPs) have emerged as an up-and-coming candidate, with their exceptional physical and chemical properties setting them apart. In this study, a one-pot solvothermal method was employed to synthesize VCrZnO4 NPs, followed by a comprehensive structural and morphological analysis using a variety of techniques, including X-Ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, Energy-dispersive X-ray, and X-ray photoelectron spectroscopy. These techniques confirmed the crystallinity of the NPs. The VCrZnO4 NPs were tested for their antibacterial activity against primary contaminants such as Enterobacteriaceae, including Shigella flexneri, Salmonella cholerasis, and Escherichia coli, commonly found in hospital settings, using the broth dilution technique. The results indicated a stronger antibacterial activity of VCrZnO4 NPs against Shigella and Salmonella than E. coli. Electron microscopy showed that the NPs caused severe damage to the bacterial cell wall and membrane, leading to cell death. In addition, the study evaluated the anticancer activities of the metal complexes in vitro using colorectal cancer cells (HCT-116) and cervical cancer cells (HELA), along with non-cancer cells and human embryonic kidney cells (HEK-293). A vanadium complex demonstrated efficient anticancer effects with half-inhibitory concentrations (IC50) of 38.50+3.50 g/mL for HCT-116 cells and 42.25+4.15 g/mL for HELA cells. This study highlights the potential of Zinc Chromium vanadate nanoparticles as promising candidates for antibacterial and anticancer applications. Various advanced characterization techniques were used to analyze the properties of nanomaterials, which may help develop more effective and safer antibacterial and anticancer agents in the future.
Collapse
Affiliation(s)
- Suriya Rehman
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fatimah Alahmari
- Department of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Laila Aldossary
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Department of Environmental Sciences, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Maryam Alhout
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Department of Environmental Sciences, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Suhailah S. Aljameel
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Syed Mehmood Ali
- Department of Biomedical Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Jamal S. M. Sabir
- Department of Biological Science, Faulty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Irfan A. Rather
- Department of Biological Science, Faulty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Dam P, Celik M, Ustun M, Saha S, Saha C, Kacar EA, Kugu S, Karagulle EN, Tasoglu S, Buyukserin F, Mondal R, Roy P, Macedo MLR, Franco OL, Cardoso MH, Altuntas S, Mandal AK. Wound healing strategies based on nanoparticles incorporated in hydrogel wound patches. RSC Adv 2023; 13:21345-21364. [PMID: 37465579 PMCID: PMC10350660 DOI: 10.1039/d3ra03477a] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
The intricate, tightly controlled mechanism of wound healing that is a vital physiological mechanism is essential to maintaining the skin's natural barrier function. Numerous studies have focused on wound healing as it is a massive burden on the healthcare system. Wound repair is a complicated process with various cell types and microenvironment conditions. In wound healing studies, novel therapeutic approaches have been proposed to deliver an effective treatment. Nanoparticle-based materials are preferred due to their antibacterial activity, biocompatibility, and increased mechanical strength in wound healing. They can be divided into six main groups: metal NPs, ceramic NPs, polymer NPs, self-assembled NPs, composite NPs, and nanoparticle-loaded hydrogels. Each group shows several advantages and disadvantages, and which material will be used depends on the type, depth, and area of the wound. Better wound care/healing techniques are now possible, thanks to the development of wound healing strategies based on these materials, which mimic the extracellular matrix (ECM) microenvironment of the wound. Bearing this in mind, here we reviewed current studies on which NPs have been used in wound healing and how this strategy has become a key biotechnological procedure to treat skin infections and wounds.
Collapse
Affiliation(s)
- Paulami Dam
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Merve Celik
- Biomedical Engineering Graduate Program, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Merve Ustun
- Graduate School of Sciences and Engineering, Koç University Istanbul 34450 Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Sayantan Saha
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Chirantan Saha
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Elif Ayse Kacar
- Graduate Program of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Senanur Kugu
- Graduate Program of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Elif Naz Karagulle
- Biomedical Engineering Graduate Program, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Savaş Tasoglu
- Mechanical Engineering Department, School of Engineering, Koç University Istanbul Turkey
- Koç University Translational Medicine Research Center (KUTTAM), Koç University Istanbul Turkey
| | - Fatih Buyukserin
- Department of Biomedical Engineering, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Rittick Mondal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Priya Roy
- Department of Law, Raiganj University North Dinajpur West Bengal India
| | - Maria L R Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária 79070900 Campo Grande Mato Grosso do Sul 70790160 Brazil
| | - Octávio L Franco
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasília DF Brazil
| | - Marlon H Cardoso
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária 79070900 Campo Grande Mato Grosso do Sul 70790160 Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasília DF Brazil
| | - Sevde Altuntas
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
- Department of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
| | - Amit Kumar Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
- Centre for Nanotechnology Sciences (CeNS), Raiganj University North Dinajpur West Bengal India
| |
Collapse
|
8
|
Saruchi, Kumar V, Bhatt D, El-Serehy HA, Pandey S. Gum katira-silver nanoparticle-based bionanocomposite for the removal of methyl red dye. Front Chem 2023; 10:959104. [PMID: 36688053 PMCID: PMC9856520 DOI: 10.3389/fchem.2022.959104] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
The present study aimed to synthesize gum katira-silver nanoparticle-based bionanocomposite. Different characterization techniques were used to analyze the synthesized bionanocomposite, such as Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), thermo-gravimetric analysis (TGA), and transmission electronic microscopy (TEM). AgNPs were formed and were 6-20 nm in size. Thermo-gravimetric analysis showed that synthesized nanocomposites are more thermally stable than gum katira. All the reaction conditions, such as time, temperature, pH, solvent, amount of nanoparticles, the concentration of the initiator, crosslinker, and monomer were optimized with respect to swelling. The results showed that the highest percentage swelling (Ps) of Gk-cl-poly(AA) was 796%, and 867% of AgNPs were imbibed by Gk-cl-poly(acrylic acid)-AgNPs. Synthesized bionanocomposite was used as an adsorbent material for the adsorption of methyl red (MR) dye. The effects of different reaction conditions were also optimized to attain maximum adsorption of MR dye. The maximum dye adsorption through Gk-cl-poly(AA)-AgNPs bionanocomposite was 95.7%. Diverse kinetic and isotherm models were used to study the adsorption data. The R 2 value was established as 0.987 and k2 was .02671. The greater R 2 value of second-order kinetics over first-order kinetics suggested that MR adsorption by nanocomposite is best explained by pseudo-second-order kinetics, indicating that dye adsorption occurred through chemisorption. The R 2 value was determined to be .9954. The correlation coefficient values of Gk-cl-poly(AA)-AgNPs were best fitted by the Freundlich adsorption isotherm. Overall, synthesized bionanocomposite is a proficient material for removing of MR dye from wastewater.
Collapse
Affiliation(s)
- Saruchi
- Department of Biotechnology, CT Group of Institutions, CT Institute of Pharmaceutical Sciences (CTIPS), Jalandhar, Punjab, India
| | - Vaneet Kumar
- School of Natural Science, CT University, Ludhiana, Punjab, India
| | - Diksha Bhatt
- School of Natural Science, CT University, Ludhiana, Punjab, India
| | - Hamed A. El-Serehy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
9
|
Kazeminava F, Javanbakht S, Nouri M, Gholizadeh P, Nezhad-Mokhtari P, Ganbarov K, Tanomand A, Kafil HS. Gentamicin-loaded chitosan/folic acid-based carbon quantum dots nanocomposite hydrogel films as potential antimicrobial wound dressing. J Biol Eng 2022; 16:36. [PMID: 36544213 PMCID: PMC9773523 DOI: 10.1186/s13036-022-00318-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND To provide effective healing in the wound, various carbohydrate polymers are commonly utilized that are highly potent platforms as wound dressing films. In this work, novel antibacterial flexible polymeric hydrogel films were designed via crosslinking polymeric chitosan (CS) with folic acid-based carbon quantum dots (CQDs). To end this, folic acid as a bio-precursor is used to synthesize CQDs through the hydrothermal technique. The synthesized CQDs as a crosslinking agent was performed at different concentrations to construct nanocomposite hydrogel films via the casting technique. Also, gentamicin (GM), L-Arginine and glycerol were supplemented in the formulation of nanocomposite since their antibiotic, bioactivity and plasticizing ability, respectively. RESULTS The successful construction of films were verified with different methods (FT-IR, UV-Vis, PL, SEM, and AFM analyses). The GM release profile displayed a controlled release manner over 48 h with a low initial burst release in the simulated wound media (PBS, pH 7.4). Antibacterial and in vitro cytotoxicity results showed a significant activity toward different gram-positive and negative bacterial strains (about 2.5 ± 0.1 cm inhibition zones) and a desired cytocompatibility against Human skin fibroblast (HFF-1) cells (over 80% cell viability), respectively. CONCLUSION The obtained results recommend CQDs-crosslinked CS (CS/CQD) nanocomposite as a potent antimicrobial wound dressing.
Collapse
Affiliation(s)
- Fahimeh Kazeminava
- grid.412888.f0000 0001 2174 8913Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siamak Javanbakht
- grid.412888.f0000 0001 2174 8913Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- grid.412888.f0000 0001 2174 8913Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- grid.412888.f0000 0001 2174 8913Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parinaz Nezhad-Mokhtari
- grid.412888.f0000 0001 2174 8913Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khudaverdi Ganbarov
- grid.37600.320000 0001 1010 9948Research Laboratory of Microbiology and Virology, Baku State University, Baku, Azerbaijan
| | - Asghar Tanomand
- grid.449862.50000 0004 0518 4224Department of Microbiology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Hossein Samadi Kafil
- grid.412888.f0000 0001 2174 8913Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Nunes D, Loureiro JA, Pereira MC. Drug Delivery Systems as a Strategy to Improve the Efficacy of FDA-Approved Alzheimer's Drugs. Pharmaceutics 2022; 14:2296. [PMID: 36365114 PMCID: PMC9694621 DOI: 10.3390/pharmaceutics14112296] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 08/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, with a high impact worldwide, accounting for more than 46 million cases. The continuous increase of AD demands the fast development of preventive and curative therapeutic strategies that are truly effective. The drugs approved for AD treatment are classified into acetylcholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists. The therapeutic effectiveness of those drugs is hindered by their restricted access to the brain due to the blood-brain barrier, low bioavailability, and poor pharmacokinetic properties. In addition, the drugs are reported to have undesirable side effects. Several drug delivery systems (DDSs) have been widely exploited to address these issues. DDSs serve as drug carriers, combining the ability to deliver drugs locally and in a targeted manner with the ability to release them in a controlled and sustained manner. As a result, the pharmacological therapeutic effectiveness is raised, while the unwanted side effects induced by the unspecific distribution decrease. This article reviews the recently developed DDSs to increase the efficacy of Food and Drug Administration-approved AD drugs.
Collapse
Affiliation(s)
- Débora Nunes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana A. Loureiro
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
11
|
Sánchez-Cid P, Jiménez-Rosado M, Romero A, Pérez-Puyana V. Novel Trends in Hydrogel Development for Biomedical Applications: A Review. Polymers (Basel) 2022; 14:polym14153023. [PMID: 35893984 PMCID: PMC9370620 DOI: 10.3390/polym14153023] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/11/2022] Open
Abstract
Nowadays, there are still numerous challenges for well-known biomedical applications, such as tissue engineering (TE), wound healing and controlled drug delivery, which must be faced and solved. Hydrogels have been proposed as excellent candidates for these applications, as they have promising properties for the mentioned applications, including biocompatibility, biodegradability, great absorption capacity and tunable mechanical properties. However, depending on the material or the manufacturing method, the resulting hydrogel may not be up to the specific task for which it is designed, thus there are different approaches proposed to enhance hydrogel performance for the requirements of the application in question. The main purpose of this review article was to summarize the most recent trends of hydrogel technology, going through the most used polymeric materials and the most popular hydrogel synthesis methods in recent years, including different strategies of enhancing hydrogels’ properties, such as cross-linking and the manufacture of composite hydrogels. In addition, the secondary objective of this review was to briefly discuss other novel applications of hydrogels that have been proposed in the past few years which have drawn a lot of attention.
Collapse
Affiliation(s)
| | | | - Alberto Romero
- Correspondence: (P.S.-C.); (A.R.); Tel.: +34-954557179 (A.R.)
| | | |
Collapse
|
12
|
Kiyotake EA, Cheng ME, Thomas EE, Detamore MS. The Rheology and Printability of Cartilage Matrix-Only Biomaterials. Biomolecules 2022; 12:biom12060846. [PMID: 35740971 PMCID: PMC9220845 DOI: 10.3390/biom12060846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/27/2022] [Accepted: 06/14/2022] [Indexed: 01/19/2023] Open
Abstract
The potential chondroinductivity from cartilage matrix makes it promising for cartilage repair; however, cartilage matrix-based hydrogels developed thus far have failed to match the mechanical performance of native cartilage or be bioprinted without adding polymers for reinforcement. There is a need for cartilage matrix-based hydrogels with robust mechanical performance and paste-like precursor rheology for bioprinting/enhanced surgical placement. In the current study, our goals were to increase hydrogel stiffness and develop the paste-like precursor/printability of our methacryl-modified solubilized and devitalized cartilage (MeSDVC) hydrogels. We compared two methacryloylating reagents, methacrylic anhydride (MA) and glycidyl methacrylate (GM), and varied the molar excess (ME) of MA from 2 to 20. The MA-modified MeSDVCs had greater methacryloylation than GM-modified MeSDVC (20 ME). While GM and most of the MA hydrogel precursors exhibited paste-like rheology, the 2 ME MA and GM MeSDVCs had the best printability (i.e., shape fidelity, filament collapse). After crosslinking, the 2 ME MA MeSDVC had the highest stiffness (1.55 ± 0.23 MPa), approaching the modulus of native cartilage, and supported the viability/adhesion of seeded cells for 15 days. Overall, the MA (2 ME) improved methacryloylation, hydrogel stiffness, and printability, resulting in a stand-alone MeSDVC printable biomaterial. The MeSDVC has potential as a future bioink and has future clinical relevance for cartilage repair.
Collapse
Affiliation(s)
- Emi A. Kiyotake
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (E.A.K.); (M.E.C.)
| | - Michael E. Cheng
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (E.A.K.); (M.E.C.)
| | - Emily E. Thomas
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (E.A.K.); (M.E.C.)
- Correspondence:
| |
Collapse
|
13
|
NANOCOMPOSITES BASED ON SINGLECOMPONENT AND MULTICOMPONENT POLYMER MATRICES FOR BIOMEDICAL APPLICATIONS. Polym J 2022. [DOI: 10.15407/polymerj.44.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The review is devoted to analysis of the publications in the area of polymers of biomedical applications. Different types of the polymer matrices for drug delivery are analyzed, including polyurethanes, hydroxyacrylates, and multicomponent polymer matrices, which created by method of interpenetrating polymer networks. Particular attention is paid to description of synthesized and investigated nanocomposites based on polyurethane / poly (2-hydroxyethyl methacrylate) polymer matrix and nanooxides modified by biologically active compounds.
Collapse
|
14
|
NVCL-Based Hydrogels and Composites for Biomedical Applications: Progress in the Last Ten Years. Int J Mol Sci 2022; 23:ijms23094722. [PMID: 35563114 PMCID: PMC9103572 DOI: 10.3390/ijms23094722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/20/2022] Open
Abstract
Hydrogels consist of three-dimensionally crosslinked polymeric chains, are hydrophilic, have the ability to absorb other molecules in their structure and are relatively easy to obtain. However, in order to improve some of their properties, usually mechanical, or to provide them with some physical, chemical or biological characteristics, hydrogels have been synthesized combined with other synthetic or natural polymers, filled with inorganic nanoparticles, metals, and even polymeric nanoparticles, giving rise to composite hydrogels. In general, different types of hydrogels have been synthesized; however, in this review, we refer to those obtained from the thermosensitive polymer poly(N-vinylcaprolactam) (PNVCL) and we focus on the definition, properties, synthesis techniques, nanomaterials used as fillers in composites and mainly applications of PNVCL-based hydrogels in the biomedical area. This type of material has great potential in biomedical applications such as drug delivery systems, tissue engineering, as antimicrobials and in diagnostic and bioimaging.
Collapse
|
15
|
Khan M, Koivisto JT, Kellomäki M. Injectable and self‐healing biobased composite hydrogels as future anticancer therapeutic biomaterials. NANO SELECT 2022. [DOI: 10.1002/nano.202100354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Musammir Khan
- Biomaterials and Tissue Engineering Group, BioMediTech Institute, Faculty of Medicine and Health Technology Tampere University Tampere Finland
- Department of Chemistry University of Wah Quaid Avenue, Wah Cantt Rawalpindi Punjab 47040 Pakistan
| | - Janne T. Koivisto
- Biomaterials and Tissue Engineering Group, BioMediTech Institute, Faculty of Medicine and Health Technology Tampere University Tampere Finland
- Department of Laboratory Medicine Karolinska Institute Huddinge Stockholm Sweden
| | - Minna Kellomäki
- Biomaterials and Tissue Engineering Group, BioMediTech Institute, Faculty of Medicine and Health Technology Tampere University Tampere Finland
| |
Collapse
|
16
|
Nunes D, Andrade S, Ramalho MJ, Loureiro JA, Pereira MC. Polymeric Nanoparticles-Loaded Hydrogels for Biomedical Applications: A Systematic Review on In Vivo Findings. Polymers (Basel) 2022; 14:polym14051010. [PMID: 35267833 PMCID: PMC8912535 DOI: 10.3390/polym14051010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/18/2022] [Accepted: 03/01/2022] [Indexed: 02/07/2023] Open
Abstract
Clinically available medications face several hurdles that limit their therapeutic activity, including restricted access to the target tissues due to biological barriers, low bioavailability, and poor pharmacokinetic properties. Drug delivery systems (DDS), such as nanoparticles (NPs) and hydrogels, have been widely employed to address these issues. Furthermore, the DDS improves drugs’ therapeutic efficacy while reducing undesired side effects caused by the unspecific distribution over the different tissues. The integration of NPs into hydrogels has emerged to improve their performance when compared with each DDS individually. The combination of both DDS enhances the ability to deliver drugs in a localized and targeted manner, paired with a controlled and sustained drug release, resulting in increased drug therapeutic effectiveness. With the incorporation of the NPs into hydrogels, it is possible to apply the DDS locally and then provide a sustained release of the NPs in the site of action, allowing the drug uptake in the required location. Additionally, most of the materials used to produce the hydrogels and NPs present low toxicity. This article provides a systematic review of the polymeric NPs-loaded hydrogels developed for various biomedical applications, focusing on studies that present in vivo data.
Collapse
Affiliation(s)
- Débora Nunes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (D.N.); (S.A.); (M.J.R.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Stéphanie Andrade
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (D.N.); (S.A.); (M.J.R.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria João Ramalho
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (D.N.); (S.A.); (M.J.R.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana A. Loureiro
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (D.N.); (S.A.); (M.J.R.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: (J.A.L.); (M.C.P.)
| | - Maria Carmo Pereira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (D.N.); (S.A.); (M.J.R.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: (J.A.L.); (M.C.P.)
| |
Collapse
|
17
|
Huang J, Liu F, Su H, Xiong J, Yang L, Xia J, Liang Y. Advanced Nanocomposite Hydrogels for Cartilage Tissue Engineering. Gels 2022; 8:138. [PMID: 35200519 PMCID: PMC8871651 DOI: 10.3390/gels8020138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering is becoming an effective strategy for repairing cartilage damage. Synthesized nanocomposite hydrogels mimic the structure of natural cartilage extracellular matrices (ECMs), are biocompatible, and exhibit nano-bio effects in response to external stimuli. These inherent characteristics make nanocomposite hydrogels promising scaffold materials for cartilage tissue engineering. This review summarizes the advances made in the field of nanocomposite hydrogels for artificial cartilage. We discuss, in detail, their preparation methods and scope of application. The challenges involved for the application of hydrogel nanocomposites for cartilage repair are also highlighted.
Collapse
Affiliation(s)
- Jianghong Huang
- Department of Spine Surgery and Orthopedics, Shenzhen Second People’s Hospital (First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen 518035, China; (J.H.); (J.X.); (L.Y.)
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Fei Liu
- Department of Biochemistry, Texas A&M University School of Medicine, Bryan, TX 77807, USA;
| | - Haijing Su
- Technology R&D Department, Shenzhen Lechuang Medical Research Institute Co., Ltd., Shenzhen 518129, China;
| | - Jianyi Xiong
- Department of Spine Surgery and Orthopedics, Shenzhen Second People’s Hospital (First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen 518035, China; (J.H.); (J.X.); (L.Y.)
| | - Lei Yang
- Department of Spine Surgery and Orthopedics, Shenzhen Second People’s Hospital (First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen 518035, China; (J.H.); (J.X.); (L.Y.)
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China;
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| |
Collapse
|
18
|
Zakhireh S, Barar J, Adibkia K, Beygi-Khosrowshahi Y, Fathi M, Omidain H, Omidi Y. Bioactive Chitosan-Based Organometallic Scaffolds for Tissue Engineering and Regeneration. Top Curr Chem (Cham) 2022; 380:13. [PMID: 35149879 DOI: 10.1007/s41061-022-00364-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
Captivating achievements in developing advanced hybrid biostructures through integrating natural biopolymers with inorganic materials (e.g., metals and metalloids) have paved the way towards the application of bioactive organometallic scaffolds (OMSs) in tissue engineering and regenerative medicine (TERM). Of various biopolymers, chitosan (CS) has been used widely for the development of bioactive OMSs, in large part due to its unique characteristics (e.g., biocompatibility, biodegradability, surface chemistry, and functionalization potential). In integration with inorganic elements, CS has been used to engineer advanced biomimetic matrices to accommodate both embedded cells and drug molecules and serve as scaffolds in TERM. The use of the CS-based OMSs is envisioned to provide a new pragmatic potential in TERM and even in precision medicine. In this review, we aim to elaborate on recent achievements in a variety of CS/metal, CS/metalloid hybrid scaffolds, and discuss their applications in TERM. We also provide comprehensive insights into the formulation, surface modification, characterization, biocompatibility, and cytotoxicity of different types of CS-based OMSs.
Collapse
Affiliation(s)
- Solmaz Zakhireh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Beygi-Khosrowshahi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Omidain
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA.
| |
Collapse
|
19
|
Synthesis and characterization of Aloe-vera-poly(acrylic acid)-Cu-Ni-bionanocomposite: its evaluation as removal of carcinogenic dye malachite green. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Microwave-Assisted Synthesis of Modified Glycidyl Methacrylate-Ethyl Methacrylate Oligomers, Their Physico-Chemical and Biological Characteristics. Molecules 2022; 27:molecules27020337. [PMID: 35056652 PMCID: PMC8779268 DOI: 10.3390/molecules27020337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, well-known oligomers containing ethyl methacrylate (EMA) and glycidyl methacrylate (GMA) components for the synthesis of the oligomeric network [P(EMA)-co-(GMA)] were used. In order to change the hydrophobic character of the [P(EMA)-co-(GMA)] to a more hydrophilic one, the oligomeric chain was functionalized with ethanolamine, xylitol (Xyl), and L-ornithine. The oligomeric materials were characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy, scanning electron microscopy, and differential thermogravimetric analysis. In the final stage, thanks to the large amount of -OH groups, it was possible to obtain a three-dimensional hydrogel (HG) network. The HGs were used as a matrix for the immobilization of methylene blue, which was chosen as a model compound of active substances, the release of which from the matrix was examined using spectrophotometric detection. The cytotoxic test was performed using fluid extracts of the HGs and human skin fibroblasts. The cell culture experiment showed that only [P(EMA)-co-(GMA)] and [P(EMA)-co-(GMA)]-Xyl have the potential to be used in biomedical applications. The studies revealed that the obtained HGs were porous and non-cytotoxic, which gives them the opportunity to possess great potential for use as an oligomeric network for drug reservoirs in in vitro application.
Collapse
|
21
|
Sakr MA, Sakthivel K, Hossain T, Shin SR, Siddiqua S, Kim J, Kim K. Recent trends in gelatin methacryloyl nanocomposite hydrogels for tissue engineering. J Biomed Mater Res A 2021; 110:708-724. [PMID: 34558808 DOI: 10.1002/jbm.a.37310] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/21/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022]
Abstract
Gelatin methacryloyl (GelMA), a photocrosslinkable gelatin-based hydrogel, has been immensely used for diverse applications in tissue engineering and drug delivery. Apart from its excellent functionality and versatile mechanical properties, it is also suitable for a wide range of fabrication methodologies to generate tissue constructs of desired shapes and sizes. Despite its exceptional characteristics, it is predominantly limited by its weak mechanical strength, as some tissue types naturally possess high mechanical stiffness. The use of high GelMA concentrations yields high mechanical strength, but not without the compromise in its porosity, degradability, and three-dimensional (3D) cell attachment. Recently, GelMA has been blended with various natural and synthetic biomaterials to reinforce its physical properties to match with the tissue to be engineered. Among these, nanomaterials have been extensively used to form a composite with GelMA, as they increase its biological and physicochemical properties without affecting the unique characteristics of GelMA and also introduce electrical and magnetic properties. This review article presents the recent advances in the formation of hybrid GelMA nanocomposites using a variety of nanomaterials (carbon, metal, polymer, and mineral-based). We give an overview of each nanomaterial's characteristics followed by a discussion of the enhancement in GelMA's physical properties after its incorporation. Finally, we also highlight the use of each GelMA nanocomposite for different applications, such as cardiac, bone, and neural regeneration.
Collapse
Affiliation(s)
- Mahmoud A Sakr
- School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Kabilan Sakthivel
- School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Towsif Hossain
- School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham Women's Hospital, Cambridge, Massachusetts, USA
| | - Sumi Siddiqua
- School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Jaehwan Kim
- Advanced Geo-materials Research Department, Korea Institute of Geosciece and Mineral Resources, Pohang-si, South Korea
| | - Keekyoung Kim
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Shen KH, Lu CH, Kuo CY, Li BY, Yeh YC. Smart near infrared-responsive nanocomposite hydrogels for therapeutics and diagnostics. J Mater Chem B 2021; 9:7100-7116. [PMID: 34212171 DOI: 10.1039/d1tb00980j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nanocomposite (NC) hydrogels are emerging biomaterials that possess desirable and defined properties and functions for therapeutics and diagnostics. Particularly, nanoparticles (NPs) are employed as stimulus-transducers in NC hydrogels to facilitate the treatment process by providing controllable structural change and payload release under internal and external simulations. Among the various external stimuli, near-infrared (NIR) light has attracted considerable interest due to its minimal photo-damage, deep tissue penetration, low auto-fluorescence in living systems, facile on/off switch, easy remote and spatiotemporal control. In this study, we discuss four types of transducing nanomaterials used in NIR-responsive NC hydrogels, including metal-based nanoparticles, carbon-based nanomaterials, polydopamine nanoparticles (PDA NPs), and upconversion nanoparticles (UCNPs). This review provides an overview of the current progress in NIR-responsive NC hydrogels, focusing on their preparation, properties, applications, and future prospects.
Collapse
Affiliation(s)
- Ke-Han Shen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Cheng-Hsun Lu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chih-Yu Kuo
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Bo-Yan Li
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
23
|
Abstract
Nanocrystalline nickel manganite (NiMn2O4) powder with a pure cubic spinel phase structure was synthesized via sol-gel combustion and characterized with XRD, FT-IR, XPS and SEM. The powder was mixed with sodium alginate gel to form a nano-biocomposite gel, dried at room temperature to form a thick film and characterized with FT-IR and SEM. DC resistance and AC impedance of sensor test structures obtained by drop casting the nano-biocomposite gel onto test interdigitated PdAg electrodes on an alumina substrate were measured in the temperature range of 20–50 °C at a constant relative humidity (RH) of 50% and at room temperature (25 °C) in the RH range of 40–90%. The material constant obtained from the measured decrease in resistance with temperature was determined to be 4523 K, while the temperature sensitivity at room temperature (25 °C) was −5.09%/K. Analysis of the complex impedance plots showed a dominant influence of grains. The decrease in complex impedance with increase in temperature confirmed the negative temperature coefficient effect. The grain resistance and grain relaxation frequency were determined using an equivalent circuit. The activation energy for conduction was determined as 0.45 eV from the temperature dependence of the grain resistance according to the small polaron hopping model, while the activation energy for relaxation was 0.43 eV determined from the Arrhenius dependence of the grain relaxation frequency on temperature.
Collapse
|
24
|
Ghomi ER, Shakiba M, Ardahaei AS, Akbari M, Faraji M, Ataei S, Kohansal P, Jafari I, Abdouss M, Ramakrishna S. Innovations in drug delivery for chronic wound healing. Curr Pharm Des 2021; 28:340-351. [PMID: 34269663 DOI: 10.2174/1381612827666210714102304] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
Wound healing is a varied and complex process designed to promptly restore standard skin structure, function, and appearance. To achieve this goal, different immune and biological systems participate in coordination through four separate steps, including homeostasis, inflammation, proliferation, and regeneration. Each step involves the function of other cells, cytokines, and growth factors. However, chronic ulcers, which are classified into three types of ulcers, namely vascular ulcers, diabetic ulcers, and pressure ulcers, cannot heal through the mentioned natural stages. It causes mental and physical problems for these people and, as a result, imposes high economic and social costs on society. In this regard, using a system that can accelerate the healing process of such chronic wounds, as an urgent need in the community, should be considered. Therefore, in this study, the innovations of drug delivery systems for the healing of chronic wounds using hydrogels, nanomaterial, and membranes are discussed and reviewed.
Collapse
Affiliation(s)
- Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, Faculty of Engineering, Singapore 117581, Singapore
| | | | - Ali Saedi Ardahaei
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, P.O. Box 491888369, Iran
| | - Mahsa Akbari
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Mehdi Faraji
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Shahla Ataei
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Parisa Kohansal
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Iman Jafari
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, Faculty of Engineering, Singapore 117581, Singapore
| |
Collapse
|
25
|
Moradpoor H, Safaei M, Mozaffari HR, Sharifi R, Imani MM, Golshah A, Bashardoust N. An overview of recent progress in dental applications of zinc oxide nanoparticles. RSC Adv 2021; 11:21189-21206. [PMID: 35479373 PMCID: PMC9034121 DOI: 10.1039/d0ra10789a] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Nanotechnology is an emerging field of science, engineering, and technology concerning the materials in nanoscale dimensions. Several materials are used in dentistry, which can be modified by applying nanotechnology. Nanotechnology has various applications in dentistry to achieve reliable treatment outcomes. The most common nanometals used in dental materials are gold, silver, copper oxide, magnesium oxide, iron oxide, cerium oxide, aluminum oxide, titanium dioxide, and zinc oxide (ZnO). ZnO nanoparticles (NPs), with their unparalleled properties such as high selectivity, enhanced cytotoxicity, biocompatibility, and easy synthesis as important materials were utilized in the field of dentistry. With this background, the present review aimed to discuss the current progress and gain an insight into applications of ZnO NPs in nanodentistry, including restorative, endodontic, implantology, periodontal, prosthodontics, and orthodontics fields.
Collapse
Affiliation(s)
- Hedaiat Moradpoor
- Department of Prosthodontics, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mohsen Safaei
- Advanced Dental Sciences Research Center, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Hamid Reza Mozaffari
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Roohollah Sharifi
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mohammad Moslem Imani
- Department of Orthodontics, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Amin Golshah
- Department of Orthodontics, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Negin Bashardoust
- Students Research Committee, Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
26
|
Neculai-Valeanu AS, Ariton AM, Mădescu BM, Rîmbu CM, Creangă Ş. Nanomaterials and Essential Oils as Candidates for Developing Novel Treatment Options for Bovine Mastitis. Animals (Basel) 2021; 11:1625. [PMID: 34072849 PMCID: PMC8229472 DOI: 10.3390/ani11061625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Nanomaterials have been used for diagnosis and therapy in the human medical field, while their application in veterinary medicine and animal production is still relatively new. Nanotechnology, however, is a rapidly growing field, offering the possibility of manufacturing new materials at the nanoscale level, with the formidable potential to revolutionize the agri-food sector by offering novel treatment options for prevalent and expensive illnesses such as bovine mastitis. Since current treatments are becoming progressively more ineffective in resistant bacteria, the development of innovative products based on both nanotechnology and phytotherapy may directly address a major global problem, antimicrobial resistance, while providing a sustainable animal health solution that supports the production of safe and high-quality food products. This review summarizes the challenges encountered presently in the treatment of bovine mastitis, emphasizing the possibility of using new-generation nanomaterials (e.g., biological synthesized nanoparticles and graphene) and essential oils, as candidates for developing novel treatment options for bovine mastitis.
Collapse
Affiliation(s)
- Andra Sabina Neculai-Valeanu
- Research and Development Station for Cattle Breeding Dancu, Sos. Iasi-Ungheni no. 9, 707252 Dancu, Romania; (A.M.A.); (B.M.M.)
| | - Adina Mirela Ariton
- Research and Development Station for Cattle Breeding Dancu, Sos. Iasi-Ungheni no. 9, 707252 Dancu, Romania; (A.M.A.); (B.M.M.)
- Department of Fundamental Sciences in Animal Husbandry, Faculty of Food and Animal Sciences, Iasi University of Life Sciences (IULS), Mihail Sadoveanu Alley no. 8, 700490 Iasi, Romania;
| | - Bianca Maria Mădescu
- Research and Development Station for Cattle Breeding Dancu, Sos. Iasi-Ungheni no. 9, 707252 Dancu, Romania; (A.M.A.); (B.M.M.)
- Department of Fundamental Sciences in Animal Husbandry, Faculty of Food and Animal Sciences, Iasi University of Life Sciences (IULS), Mihail Sadoveanu Alley no. 8, 700490 Iasi, Romania;
| | - Cristina Mihaela Rîmbu
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences (IULS), Mihail Sadoveanu Alley no. 8, 700490 Iasi, Romania;
| | - Şteofil Creangă
- Department of Fundamental Sciences in Animal Husbandry, Faculty of Food and Animal Sciences, Iasi University of Life Sciences (IULS), Mihail Sadoveanu Alley no. 8, 700490 Iasi, Romania;
| |
Collapse
|
27
|
Barrett-Catton E, Ross ML, Asuri P. Multifunctional Hydrogel Nanocomposites for Biomedical Applications. Polymers (Basel) 2021; 13:856. [PMID: 33799539 PMCID: PMC8001467 DOI: 10.3390/polym13060856] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 02/06/2023] Open
Abstract
Hydrogels are used for various biomedical applications due to their biocompatibility, capacity to mimic the extracellular matrix, and ability to encapsulate and deliver cells and therapeutics. However, traditional hydrogels have a few shortcomings, especially regarding their physical properties, thereby limiting their broad applicability. Recently, researchers have investigated the incorporation of nanoparticles (NPs) into hydrogels to improve and add to the physical and biochemical properties of hydrogels. This brief review focuses on papers that describe the use of nanoparticles to improve more than one property of hydrogels. Such multifunctional hydrogel nanocomposites have enhanced potential for various applications including tissue engineering, drug delivery, wound healing, bioprinting, and biowearable devices.
Collapse
Affiliation(s)
| | | | - Prashanth Asuri
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053, USA; (E.B.-C.); (M.L.R.)
| |
Collapse
|
28
|
Mazzoni E, Iaquinta MR, Lanzillotti C, Mazziotta C, Maritati M, Montesi M, Sprio S, Tampieri A, Tognon M, Martini F. Bioactive Materials for Soft Tissue Repair. Front Bioeng Biotechnol 2021; 9:613787. [PMID: 33681157 PMCID: PMC7933465 DOI: 10.3389/fbioe.2021.613787] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/26/2021] [Indexed: 01/29/2023] Open
Abstract
Over the past decades, age-related pathologies have increased abreast the aging population worldwide. The increased age of the population indicates that new tools, such as biomaterials/scaffolds for damaged tissues, which display high efficiency, effectively and in a limited period of time, for the regeneration of the body's tissue are needed. Indeed, scaffolds can be used as templates for three-dimensional tissue growth in order to promote the tissue healing stimulating the body's own regenerative mechanisms. In tissue engineering, several types of biomaterials are employed, such as bioceramics including calcium phosphates, bioactive glasses, and glass-ceramics. These scaffolds seem to have a high potential as biomaterials in regenerative medicine. In addition, in conjunction with other materials, such as polymers, ceramic scaffolds may be used to manufacture composite scaffolds characterized by high biocompatibility, mechanical efficiency and load-bearing capabilities that render these biomaterials suitable for regenerative medicine applications. Usually, bioceramics have been used to repair hard tissues, such as bone and dental defects. More recently, in the field of soft tissue engineering, this form of scaffold has also shown promising applications. Indeed, soft tissues are continuously exposed to damages, such as burns or mechanical traumas, tumors and degenerative pathology, and, thereby, thousands of people need remedial interventions such as biomaterials-based therapies. It is known that scaffolds can affect the ability to bind, proliferate and differentiate cells similar to those of autologous tissues. Therefore, it is important to investigate the interaction between bioceramics and somatic/stem cells derived from soft tissues in order to promote tissue healing. Biomimetic scaffolds are frequently employed as drug-delivery system using several therapeutic molecules to increase their biological performance, leading to ultimate products with innovative functionalities. This review provides an overview of essential requirements for soft tissue engineering biomaterials. Data on recent progresses of porous bioceramics and composites for tissue repair are also presented.
Collapse
Affiliation(s)
- Elisa Mazzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | | | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Martina Maritati
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Monica Montesi
- Institute of Science and Technology for Ceramics-National Research Council (ISTEC-CNR), Faenza, Italy
| | - Simone Sprio
- Institute of Science and Technology for Ceramics-National Research Council (ISTEC-CNR), Faenza, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics-National Research Council (ISTEC-CNR), Faenza, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
29
|
Joshi P, Breaux S, Naro J, Wang Y, Ahmed MSU, Vig K, Auad ML. Synthesis and characterization of photopolymerizable hydrogels based on poly (ethylene glycol) for biomedical applications. J Appl Polym Sci 2021. [DOI: 10.1002/app.50489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Prutha Joshi
- Department of Chemical Engineering Auburn University Auburn Alabama USA
- Center for Polymers and Advanced Composites Auburn University Auburn Alabama USA
| | - Steven Breaux
- Department of Chemical Engineering Auburn University Auburn Alabama USA
- Center for Polymers and Advanced Composites Auburn University Auburn Alabama USA
| | - Joseph Naro
- Department of Chemical Engineering Auburn University Auburn Alabama USA
- Center for Polymers and Advanced Composites Auburn University Auburn Alabama USA
| | - Yuyang Wang
- Department of Chemical Engineering Auburn University Auburn Alabama USA
- Center for Polymers and Advanced Composites Auburn University Auburn Alabama USA
| | | | - Komal Vig
- Department of Biological Sciences Alabama State University Montgomery Alabama USA
| | - Maria L. Auad
- Department of Chemical Engineering Auburn University Auburn Alabama USA
- Center for Polymers and Advanced Composites Auburn University Auburn Alabama USA
| |
Collapse
|
30
|
Saygili E, Kaya E, Ilhan-Ayisigi E, Saglam-Metiner P, Alarcin E, Kazan A, Girgic E, Kim YW, Gunes K, Eren-Ozcan GG, Akakin D, Sun JY, Yesil-Celiktas O. An alginate-poly(acrylamide) hydrogel with TGF-β3 loaded nanoparticles for cartilage repair: Biodegradability, biocompatibility and protein adsorption. Int J Biol Macromol 2021; 172:381-393. [PMID: 33476613 DOI: 10.1016/j.ijbiomac.2021.01.069] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/27/2020] [Accepted: 01/12/2021] [Indexed: 02/04/2023]
Abstract
Current implantable materials are limited in terms of function as native tissue, and there is still no effective clinical treatment to restore articular impairments. Hereby, a functionalized polyacrylamide (PAAm)-alginate (Alg) Double Network (DN) hydrogel acting as an articular-like tissue is developed. These hydrogels sustain their mechanical stability under different temperature (+4 °C, 25 °C, 40 °C) and humidity conditions (60% and 75%) over 3 months. As for the functionalization, transforming growth factor beta-3 (TGF-β3) encapsulated (NPTGF-β3) and empty poly(lactide-co-glycolide) (PLGA) nanoparticles (PLGA NPs) are synthesized by using microfluidic platform, wherein the mean particle sizes are determined as 81.44 ± 9.2 nm and 126 ± 4.52 nm with very low polydispersity indexes (PDI) of 0.194 and 0.137, respectively. Functionalization process of PAAm-Alg hydrogels with ester-end PLGA NPs is confirmed by FTIR analysis, and higher viscoelasticity is obtained for functionalized hydrogels. Moreover, cartilage regeneration capability of these hydrogels is evaluated with in vitro and in vivo experiments. Compared with the PAAm-Alg hydrogels, functionalized formulations exhibit a better cell viability. Histological staining, and score distribution confirmed that proposed hydrogels significantly enhance regeneration of cartilage in rats due to stable hydrogel matrix and controlled release of TGF-β3. These findings demonstrated that PAAm-Alg hydrogels showed potential for cartilage repair and clinical application.
Collapse
Affiliation(s)
- Ecem Saygili
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Elif Kaya
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Esra Ilhan-Ayisigi
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Emine Alarcin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, 34668 Istanbul, Turkey
| | - Aslihan Kazan
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey; Department of Bioengineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, 16310 Bursa, Turkey
| | - Ezgi Girgic
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Yong-Woo Kim
- Department of Materials Science and Engineering, Seoul National University, 08826 Seoul, Republic of Korea; Research Institute of Advanced Materials (RIAM), Seoul National University, 08826 Seoul, Republic of Korea
| | - Kasim Gunes
- School of Medicine, Department of Histology and Embryology, Marmara University, 34854, Istanbul, Turkey
| | | | - Dilek Akakin
- School of Medicine, Department of Histology and Embryology, Marmara University, 34854, Istanbul, Turkey
| | - Jeong-Yun Sun
- Department of Materials Science and Engineering, Seoul National University, 08826 Seoul, Republic of Korea; Research Institute of Advanced Materials (RIAM), Seoul National University, 08826 Seoul, Republic of Korea
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey.
| |
Collapse
|
31
|
Sulaiman NS, Hamzah N, Zakaria SF, Che Othman SF, Mohamed Suffian IF. Hydrogel-nanoparticle hybrids for biomedical applications: principles and advantages. Nanomedicine (Lond) 2020; 16:81-84. [PMID: 33356530 DOI: 10.2217/nnm-2020-0420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Nur Shahirah Sulaiman
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Nurasyikin Hamzah
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Siti Fatimah Zakaria
- Department of Computational & Theoretical Sciences, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Siti Fairuz Che Othman
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Izzat Fahimuddin Mohamed Suffian
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| |
Collapse
|
32
|
Elkhoury K, Koçak P, Kang A, Arab-Tehrany E, Ellis Ward J, Shin SR. Engineering Smart Targeting Nanovesicles and Their Combination with Hydrogels for Controlled Drug Delivery. Pharmaceutics 2020; 12:E849. [PMID: 32906833 PMCID: PMC7559099 DOI: 10.3390/pharmaceutics12090849] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Smart engineered and naturally derived nanovesicles, capable of targeting specific tissues and cells and delivering bioactive molecules and drugs into them, are becoming important drug delivery systems. Liposomes stand out among different types of self-assembled nanovesicles, because of their amphiphilicity and non-toxic nature. By modifying their surfaces, liposomes can become stimulus-responsive, releasing their cargo on demand. Recently, the recognized role of exosomes in cell-cell communication and their ability to diffuse through tissues to find target cells have led to an increase in their usage as smart delivery systems. Moreover, engineering "smarter" delivery systems can be done by creating hybrid exosome-liposome nanocarriers via membrane fusion. These systems can be loaded in naturally derived hydrogels to achieve sustained and controlled drug delivery. Here, the focus is on evaluating the smart behavior of liposomes and exosomes, the fabrication of hybrid exosome-liposome nanovesicles, and the controlled delivery and routes of administration of a hydrogel matrix for drug delivery systems.
Collapse
Affiliation(s)
- Kamil Elkhoury
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (K.E.); (P.K.); (A.K.)
- LIBio, University of Lorraine, F-54000 Nancy, France;
| | - Polen Koçak
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (K.E.); (P.K.); (A.K.)
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, TR-34755 Istanbul, Turkey
| | - Alex Kang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (K.E.); (P.K.); (A.K.)
| | | | - Jennifer Ellis Ward
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (K.E.); (P.K.); (A.K.)
| |
Collapse
|
33
|
Mohammadi M, Arabi L, Alibolandi M. Doxorubicin-loaded composite nanogels for cancer treatment. J Control Release 2020; 328:171-191. [PMID: 32866591 DOI: 10.1016/j.jconrel.2020.08.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023]
Abstract
Nanogels as a versatile vehicle for doxorubicin have attracted great attention during the last decade. Since a nanogel composite device transport encapsulated drugs to the site of action and release them in a desirable time-frame, it could provide higher therapeutic effect. By implementation of different polymers, polymer/inorganic NPs and various crosslinking chemistry, it is possible to fabricate novel composite nanogel systems with favorable characteristics such as smart intelligent systems or multipurpose platforms. Due to high stability, good drug loading capacity for hydrophobic and hydrophilic agents, nanogels introduce great opportunity in pharmaceutical innovations. Composite nanogels show capability in gene, drug and diagnostic agents' delivery while providing an ideal platform for theranostic purposes as multifunctional systems. Doxorubicin as an anticancer agent is widely used against numerous cancers. Due to high systemic toxicity of doxorubicin, there is still need for its safe and specific delivery to the site of action. In this regard, so many efforts have been put in by the researchers for preparation of different nanogel formulations of doxorubicin in order to produce more efficient formulations. This review focuses on design, fabrication, advantages and disadvantages of composite nanogel-based doxorubicin formulations.
Collapse
Affiliation(s)
- Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
34
|
Wu J, Chen Q, Deng C, Xu B, Zhang Z, Yang Y, Lu T. Exquisite design of injectable Hydrogels in Cartilage Repair. Theranostics 2020; 10:9843-9864. [PMID: 32863963 PMCID: PMC7449920 DOI: 10.7150/thno.46450] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
Cartilage damage is still a threat to human beings, yet there is currently no treatment available to fully restore the function of cartilage. Recently, due to their unique structures and properties, injectable hydrogels have been widely studied and have exhibited high potential for applications in therapeutic areas, especially in cartilage repair. In this review, we briefly introduce the properties of cartilage, some articular cartilage injuries, and now available treatment strategies. Afterwards, we propose the functional and fundamental requirements of injectable hydrogels in cartilage tissue engineering, as well as the main advantages of injectable hydrogels as a therapy for cartilage damage, including strong plasticity and excellent biocompatibility. Moreover, we comprehensively summarize the polymers, cells, and bioactive molecules regularly used in the fabrication of injectable hydrogels, with two kinds of gelation, i.e., physical and chemical crosslinking, which ensure the excellent design of injectable hydrogels for cartilage repair. We also include novel hybrid injectable hydrogels combined with nanoparticles. Finally, we conclude with the advances of this clinical application and the challenges of injectable hydrogels used in cartilage repair.
Collapse
Affiliation(s)
- Jiawei Wu
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University School of Life Sciences
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Qi Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Baoping Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Zeiyan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Tingli Lu
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University School of Life Sciences
| |
Collapse
|
35
|
Michel R, Auzély-Velty R. Hydrogel-Colloid Composite Bioinks for Targeted Tissue-Printing. Biomacromolecules 2020; 21:2949-2965. [PMID: 32568527 DOI: 10.1021/acs.biomac.0c00305] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of extrusion-based bioprinting for tissue engineering is conditioned by the design of bioinks displaying adequate printability, shape stability, and postprinting bioactivity. In this context, simple bioink formulations, made of cells supported by a polymer matrix, often lack the necessary versatility. To address this issue, intense research work has been focused on introducing colloidal particles into the ink formulation. By creating weak cross-links between polymer chains, added particles modify the rheology and mechanical behavior of bioinks to improve their printability and structural integrity. Additionally, nano- and microscopic particles display composition- and structure-specific properties that can affect the cellular behavior and enhance the formation of tissue within the printed material. This Review offers a comprehensive picture of the role of colloids in bioprinting from a physicochemical and biological perspective. As such, it provides guidance on devising adaptable bioinks for the fabrication of biomimetic tissues.
Collapse
Affiliation(s)
- Raphaël Michel
- Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, 38041 CEDEX 9 Grenoble, France
| | - Rachel Auzély-Velty
- Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, 38041 CEDEX 9 Grenoble, France
| |
Collapse
|
36
|
Bardajee GR, Khamooshi N, Nasri S, Vancaeyzeele C. Multi-stimuli responsive nanogel/hydrogel nanocomposites based on κ-carrageenan for prolonged release of levodopa as model drug. Int J Biol Macromol 2020; 153:180-189. [DOI: 10.1016/j.ijbiomac.2020.02.329] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/12/2022]
|
37
|
Kausar A. Nanocarbon in Polymeric Nanocomposite Hydrogel—Design and Multi-Functional Tendencies. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1757106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ayesha Kausar
- Nanosciences Division, National Center for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
38
|
Samanipour R, Wang T, Werb M, Hassannezhad H, Rangel JML, Hoorfar M, Hasan A, Lee CK, Shin SR. Ferritin Nanocage Conjugated Hybrid Hydrogel for Tissue Engineering and Drug Delivery Applications. ACS Biomater Sci Eng 2020; 6:277-287. [PMID: 33313389 PMCID: PMC7725239 DOI: 10.1021/acsbiomaterials.9b01482] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hydrogels have recently been attractive in various drug delivery and tissue engineering applications because of their structural similarities to the natural extracellular matrix. Despite enormous advances in the application of hydrogels, poor mechanical properties and lack of control for the release of drugs and biomolecules act as major barriers for widespread clinical applications. To overcome these challenges, we developed both physically and covalently conjugated nanocage-laden hydrogels between the surface of the nanocage and a gelatin methacryloyl (GelMA) hydrogel matrix. Ferritin and its empty-core equivalent apoferritin were used as nanocages that could be easily incorporated into a GelMA hydrogel via physical bonding. To fabricate covalently conjugated nanocage-laden GelMA hydrogels, ferritin and apoferritin were chemically modified to present the methacryloyl groups, ferritin methacryloyl (FerMA) and apoferritin methacryloyl (ApoMA), respectively. The covalently conjugated FerMA- and ApoMA-GelMA hydrogels offered a better ability to tune mechanical properties compared with those prepared by direct dispersion of ferritin and apoferritin into GelMA hydrogels with physical bonding, without affecting their porosity or cell growth. Furthermore, the ability of the nanocage to release small chemical compounds was confirmed by performing a cumulative release test on fluorescein isothiocyanate (FITC) encapsulated apoferritin and ApoMA incorporated GelMA hydrogels by pH stimulus. Thus, the nanocage incorporated hydrogels have emerged as excellent materials for drug delivery and tissue engineering applications.
Collapse
Affiliation(s)
- Roya Samanipour
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Department of Mechanical Engineering, School of Engineering, University of British Columbia, Kelowna V6T 1Z4, Canada
| | - Ting Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Moritz Werb
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Hamed Hassannezhad
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Juan Manuel Ledesma Rangel
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Mina Hoorfar
- Department of Mechanical Engineering, School of Engineering, University of British Columbia, Kelowna V6T 1Z4, Canada
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713 Doha, Qatar
- Biomedical Research Centre (BRC), Qatar University, 2713 Doha, Qatar
| | - Chang Kee Lee
- Korea Packaging Center, Korea Institute of Industrial Technology, Bucheon 31056, Republic of Korea
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
39
|
Chyzy A, Tomczykowa M, Plonska-Brzezinska ME. Hydrogels as Potential Nano-, Micro- and Macro-Scale Systems for Controlled Drug Delivery. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E188. [PMID: 31906527 PMCID: PMC6981598 DOI: 10.3390/ma13010188] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
Abstract
This review is an extensive evaluation and essential analysis of the design and formation of hydrogels (HGs) for drug delivery. We review the fundamental principles of HGs (their chemical structures, physicochemical properties, synthesis routes, different types, etc.) that influence their biological properties and medical and pharmaceutical applications. Strategies for fabricating HGs with different diameters (macro, micro, and nano) are also presented. The size of biocompatible HG materials determines their potential uses in medicine as drug carriers. Additionally, novel drug delivery methods for enhancing treatment are discussed. A critical review is performed based on the latest literature reports.
Collapse
Affiliation(s)
| | | | - Marta E. Plonska-Brzezinska
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland; (A.C.); (M.T.)
| |
Collapse
|
40
|
Song Y, Azmand HR, Seo SW. Rapid photothermal actuation of light-addressable, arrayed hydrogel columns in a macroporous silicon membrane. SENSORS AND ACTUATORS. A, PHYSICAL 2020; 301:111729. [PMID: 32863582 PMCID: PMC7451047 DOI: 10.1016/j.sna.2019.111729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This paper presents rapid photothermal actuation of light-addressable, arrayed hydrogel columns in a macroporous silicon membrane. Au nanorods are incorporated into thermo-responsive p-NIPAAm hydrogel to utilize surface plasmon-induced local heating by near-infrared light. By measuring optical transmission through the fabricated membrane structure with Au nanorod embedded hydrogel, we have demonstrated that photothermal actuation of hydrogel can be done in two-dimensional, pixel-like configuration with high spatial and temporal resolutions. Benefiting from the hydrogel volume confinement within micron-sized pores, we have achieved sub-second response time of hydrogel photothermal actuation and its repeatable photothermal actuation on highly localized illuminated area. Considering that each hydrogel column is confined within each pore and different wavelength of light can be used to induce photothermal actuation of hydrogel's deswelling characteristics by modifying physical dimensions of Au nanorods, it has a potential for optically-addressable, multiplexed drug release systems with rapid response time.
Collapse
Affiliation(s)
- Youngsik Song
- Department of Electrical Engineering, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Hojjat Rostami Azmand
- Department of Electrical Engineering, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Sang-Woo Seo
- Department of Electrical Engineering, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| |
Collapse
|
41
|
Mohammed AA, Pinna A, Li S, Sang T, Jones JR. Auto-catalytic redox polymerisation using nanoceria and glucose oxidase for double network hydrogels. J Mater Chem B 2020; 8:2834-2844. [DOI: 10.1039/c9tb02729g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A novel auto-catalytic reaction that utilizes both the redox properties of nanoceria and oxidoreductase properties of glucose oxidase to graft polymers on the surface of nanoceria in an open vessel to form double network hydrogel nanocomposites.
Collapse
Affiliation(s)
| | | | - Siwei Li
- Department of Materials
- Imperial College London
- London
- UK
| | - Tian Sang
- Department of Materials
- Imperial College London
- London
- UK
| | | |
Collapse
|
42
|
Kim S, Cha C. Enhanced mechanical and electrical properties of heteroscaled hydrogels infused with aqueous-dispersible hybrid nanofibers. Biofabrication 2019; 12:015020. [DOI: 10.1088/1758-5090/ab5385] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Wang L, Cavaco-Paulo A, Xu B, Martins M. Polymeric Hydrogel Coating for Modulating the Shape of Keratin Fiber. Front Chem 2019; 7:749. [PMID: 31824915 PMCID: PMC6879650 DOI: 10.3389/fchem.2019.00749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/21/2019] [Indexed: 01/26/2023] Open
Abstract
Hydrogel coating was explored to modulate the shape of keratin hair fiber. The motivation was the development of an eco-friendly methodology with non-toxic chemicals to modulate keratin fiber. Polymeric hydrogel of acrylic acid and N-N-dimethylacrylamide was prepared by free-radical polymerization in aqueous solution, using nano-alumina particles as crosslinker and potassium persulfate as an initiator. Physico-chemical properties of the hydrogel was investigated by Fourier transformer infrared spectrum (FTIR), thermal analysis and swelling ratio behavior. After hydrogel coating, morphological modification was observed from straight to curly hair effect. The influence of hydrogel coating on hair fiber was evaluated by perming efficiency supported by X-ray diffraction and morphological characterization (SEM and AFM). The durability of hydrogel coating was tested until four wash processes maintaining around 65% the new configuration of the hair fiber.
Collapse
Affiliation(s)
- Lanlan Wang
- International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University, Wuxi, China
| | - Artur Cavaco-Paulo
- International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University, Wuxi, China.,Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Bo Xu
- International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University, Wuxi, China.,Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, China
| | - Madalena Martins
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| |
Collapse
|
44
|
Alginate-nanohydroxyapatite hydrogel system: Optimizing the formulation for enhanced bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:109985. [DOI: 10.1016/j.msec.2019.109985] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/14/2019] [Accepted: 07/18/2019] [Indexed: 01/04/2023]
|
45
|
Fialho L, Araújo D, Alves VD, Roma-Rodrigues C, Baptista PV, Fernandes AR, Freitas F, Reis MAM. Cation-mediated gelation of the fucose-rich polysaccharide FucoPol: preparation and characterization of hydrogel beads and their cytotoxicity assessment. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1695205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Letícia Fialho
- UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Diana Araújo
- UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Vitor D. Alves
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Caparica, Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Pedro V. Baptista
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Alexandra R. Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Filomena Freitas
- UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Maria A. M. Reis
- UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
46
|
Filippi M, Born G, Felder-Flesch D, Scherberich A. Use of nanoparticles in skeletal tissue regeneration and engineering. Histol Histopathol 2019; 35:331-350. [PMID: 31721139 DOI: 10.14670/hh-18-184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bone and osteochondral defects represent one of the major causes of disabilities in the world. Derived from traumas and degenerative pathologies, these lesions cause severe pain, joint deformity, and loss of joint motion. The standard treatments in clinical practice present several limitations. By producing functional substitutes for damaged tissues, tissue engineering has emerged as an alternative in the treatment of defects in the skeletal system. Despite promising preliminary clinical outcomes, several limitations remain. Nanotechnologies could offer new solutions to overcome those limitations, generating materials more closely mimicking the structures present in naturally occurring systems. Nanostructures comparable in size to those appearing in natural bone and cartilage have thus become relevant in skeletal tissue engineering. In particular, nanoparticles allow for a unique combination of approaches (e.g. cell labelling, scaffold modification or drug and gene delivery) inside single integrated systems for optimized tissue regeneration. In the present review, the main types of nanoparticles and the current strategies for their application to skeletal tissue engineering are described. The collection of studies herein considered confirms that advanced nanomaterials will be determinant in the design of regenerative therapeutic protocols for skeletal lesions in the future.
Collapse
Affiliation(s)
- Miriam Filippi
- Department of Biomedical Engineering, University of Basel, Allschwil, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gordian Born
- Department of Biomedical Engineering, University of Basel, Allschwil, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Delphine Felder-Flesch
- Institut de Physique et Chimie des Matériaux Strasbourg, UMR CNRS-Université de Strasbourg, Strasbourg, France
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Basel, Switzerland.
| |
Collapse
|
47
|
García-Couce J, Almirall A, Fuentes G, Kaijzel E, Chan A, Cruz LJ. Targeting Polymeric Nanobiomaterials as a Platform for Cartilage Tissue Engineering. Curr Pharm Des 2019; 25:1915-1932. [DOI: 10.2174/1381612825666190708184745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/26/2019] [Indexed: 01/05/2023]
Abstract
Articular cartilage is a connective tissue structure that is found in anatomical areas that are important for the movement of the human body. Osteoarthritis is the ailment that most often affects the articular cartilage. Due to its poor intrinsic healing capacity, damage to the articular cartilage is highly detrimental and at present the reconstructive options for its repair are limited. Tissue engineering and the science of nanobiomaterials are two lines of research that together can contribute to the restoration of damaged tissue. The science of nanobiomaterials focuses on the development of different nanoscale structures that can be used as carriers of drugs / cells to treat and repair damaged tissues such as articular cartilage. This review article is an overview of the composition of articular cartilage, the causes and treatments of osteoarthritis, with a special emphasis on nanomaterials as carriers of drugs and cells, which reduce inflammation, promote the activation of biochemical factors and ultimately contribute to the total restoration of articular cartilage.
Collapse
Affiliation(s)
- Jomarien García-Couce
- Translational Nanobiomaterials and Imaging (TNI) group, Radiology department, Leiden University Medical Centrum, Leiden, Netherlands
| | - Amisel Almirall
- Translational Nanobiomaterials and Imaging (TNI) group, Radiology department, Leiden University Medical Centrum, Leiden, Netherlands
| | - Gastón Fuentes
- Translational Nanobiomaterials and Imaging (TNI) group, Radiology department, Leiden University Medical Centrum, Leiden, Netherlands
| | - Eric Kaijzel
- Translational Nanobiomaterials and Imaging (TNI) group, Radiology department, Leiden University Medical Centrum, Leiden, Netherlands
| | - Alan Chan
- Percuros B.V., Zernikedreef 8, 2333 CL Leiden, Netherlands
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging (TNI) group, Radiology department, Leiden University Medical Centrum, Leiden, Netherlands
| |
Collapse
|
48
|
Kim SH, Oh S, Chae S, Lee JW, Choi KH, Lee KE, Chang J, Shi L, Choi JY, Lee JH. Exceptional Mechanical Properties of Phase-Separation-Free Mo 3Se 3--Chain-Reinforced Hydrogel Prepared by Polymer Wrapping Process. NANO LETTERS 2019; 19:5717-5724. [PMID: 31369273 DOI: 10.1021/acs.nanolett.9b02343] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As Mo3Se3- chain nanowires have dimensions comparable to those of natural hydrogel chains (molecular-level diameters of ∼0.6 nm and lengths of several micrometers) and excellent mechanical strength and flexibility, they have large potential to reinforce hydrogels and improve their mechanical properties. When a Mo3Se3--chain-nanowire-gelatin composite hydrogel is prepared simply by mixing Mo3Se3- nanowires with gelatin, phase separation of the Mo3Se3- nanowires from the gelatin matrix occurs in the micronetwork, providing only small improvements in their mechanical properties. In contrast, when the surface of the Mo3Se3- nanowire is wrapped with the gelatin polymer, the chemical compatibility of the Mo3Se3- nanowire with the gelatin matrix is significantly improved, which enables the fabrication of a phase-separation-free Mo3Se3--reinforced gelatin hydrogel. The composite gelatin hydrogel exhibits significantly improved mechanical properties, including a tensile strength of 27.6 kPa, fracture toughness of 26.9 kJ/m3, and elastic modulus of 54.8 kPa, which are 367%, 868%, and 378% higher than those of the pure gelatin hydrogel, respectively. Furthermore, the amount of Mo3Se3- nanowires added in the composite hydrogel is as low as 0.01 wt %. The improvements in the mechanical properties are significantly larger than those for other reported composite hydrogels reinforced with one-dimensional materials.
Collapse
Affiliation(s)
- Si Hyun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University (SKKU) , Suwon , Gyeonggi 16419 , Republic of Korea
| | - Seungbae Oh
- School of Advanced Materials Science and Engineering , Sungkyunkwan University (SKKU) , Suwon , Gyeonggi 16419 , Republic of Korea
| | - Sudong Chae
- School of Advanced Materials Science and Engineering , Sungkyunkwan University (SKKU) , Suwon , Gyeonggi 16419 , Republic of Korea
| | - Jin Woong Lee
- School of Advanced Materials Science and Engineering , Sungkyunkwan University (SKKU) , Suwon , Gyeonggi 16419 , Republic of Korea
| | - Kyung Hwan Choi
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University (SKKU) , Suwon , Gyeonggi 16419 , Republic of Korea
| | - Kyung Eun Lee
- Biomedical Research Center , Korea Institute of Science and Technology (KIST) , Seoul 02792 , Republic of Korea
| | - Jongwha Chang
- School of Pharmacy , University of Texas , El Paso , Texas 79968 , United States
| | - Liyi Shi
- Research Center of Nanoscience and Nanotechnology , Shanghai University , Shanghai 200444 , China
| | - Jae-Young Choi
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University (SKKU) , Suwon , Gyeonggi 16419 , Republic of Korea
- School of Advanced Materials Science and Engineering , Sungkyunkwan University (SKKU) , Suwon , Gyeonggi 16419 , Republic of Korea
| | - Jung Heon Lee
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University (SKKU) , Suwon , Gyeonggi 16419 , Republic of Korea
- School of Advanced Materials Science and Engineering , Sungkyunkwan University (SKKU) , Suwon , Gyeonggi 16419 , Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS) , Sungkyunkwan University (SKKU) , Suwon , Gyeonggi 16419 , Republic of Korea
| |
Collapse
|
49
|
Rajivgandhi G, Maruthupandy M, Veeramani T, Quero F, Li WJ. Anti-ESBL investigation of chitosan/silver nanocomposites against carbapenem resistant Pseudomonas aeruginosa. Int J Biol Macromol 2019; 132:1221-1234. [DOI: 10.1016/j.ijbiomac.2019.03.238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/20/2019] [Accepted: 03/31/2019] [Indexed: 12/20/2022]
|
50
|
Li J, Chen G, Xu X, Abdou P, Jiang Q, Shi D, Gu Z. Advances of injectable hydrogel-based scaffolds for cartilage regeneration. Regen Biomater 2019; 6:129-140. [PMID: 31198581 PMCID: PMC6547311 DOI: 10.1093/rb/rbz022] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/31/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
Articular cartilage is an important load-bearing tissue distributed on the surface of diarthrodial joints. Due to its avascular, aneural and non-lymphatic features, cartilage has limited self-regenerative properties. To date, the utilization of biomaterials to aid in cartilage regeneration, especially through the use of injectable scaffolds, has attracted considerable attention. Various materials, therapeutics and fabrication approaches have emerged with a focus on manipulating the cartilage microenvironment to induce the formation of cartilaginous structures that have similar properties to the native tissues. In particular, the design and fabrication of injectable hydrogel-based scaffolds have advanced in recent years with the aim of enhancing its therapeutic efficacy and improving its ease of administration. This review summarizes recent progress in these efforts, including the structural improvement of scaffolds, network cross-linking techniques and strategies for controlled release, which present new opportunities for the development of injectable scaffolds for cartilage regeneration.
Collapse
Affiliation(s)
- Jiawei Li
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, P.R. China
| | - Guojun Chen
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 8-684 Factor Building, Los Angeles, CA, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, USA
| | - Xingquan Xu
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, P.R. China
| | - Peter Abdou
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 8-684 Factor Building, Los Angeles, CA, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, USA
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, P.R. China
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, P.R. China
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 8-684 Factor Building, Los Angeles, CA, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, USA
| |
Collapse
|