1
|
Gimenez G, Marin E, Zanon A, Lapeyre V, Douliez JP, Ravaine V, Perro A. Study of the Interactions between Simple Coacervates and Chemicals for Water Depollution by Self-coacervation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24854-24862. [PMID: 39418541 DOI: 10.1021/acs.langmuir.4c02738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The use of microextraction or sequestration offers a promising method for removing chemicals from polluted water. Simple coacervates, which are water-in-water droplets, present the advantage of being formed at a given pH while being destroyed upon pH-change. Theoretically, such stimuli-responsiveness could be leveraged to recover the pollutant. Coacervates have shown exceptional capability in sequestering diverse chemicals and colloids. In this paper, we seek to understand more in-depth the sequestration mechanisms occurring with a variety of usual ionic pollutants, both qualitatively and quantitatively, since the presence of ions can affect the coacervate formation. By combining microscopy observations with spectroscopic analysis, we have precisely defined the nature and strength of the interactions between coacervates and chemicals. Our findings indicate that polluted solutions treated with coacervates show removal efficiencies ranging from 30% to 90%. We highlight that factors such as charge, concentration, solubility, and process play critical roles in the sequestration efficiency of these coacervates. Understanding these interactions is crucial for advancing several fields, particularly in water purification processes.
Collapse
Affiliation(s)
- Guillaume Gimenez
- Université de Bordeaux, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, Pessac 33607, France
| | - Etienne Marin
- Université de Bordeaux, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, Pessac 33607, France
| | - Agathe Zanon
- Université de Bordeaux, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, Pessac 33607, France
| | - Véronique Lapeyre
- Université de Bordeaux, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, Pessac 33607, France
| | - Jean-Paul Douliez
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Villenave d'Ornon F-33140, France
| | - Valérie Ravaine
- Université de Bordeaux, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, Pessac 33607, France
| | - Adeline Perro
- Université de Bordeaux, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, Pessac 33607, France
| |
Collapse
|
2
|
Babanejad N, Mfoafo K, Thumma A, Omidi Y, Omidian H. Advances in cryostructures and their applications in biomedical and pharmaceutical products. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
3
|
Ambreen J, Haleem A, Shah AA, Mushtaq F, Siddiq M, Bhatti MA, Shah Bukhari SNU, Chandio AD, Mahdi WA, Alshehri S. Facile Synthesis and Fabrication of NIPAM-Based Cryogels for Environmental Remediation. Gels 2023; 9:gels9010064. [PMID: 36661830 PMCID: PMC9857948 DOI: 10.3390/gels9010064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Herein, polymeric cryogels containing poly(N-isopropylacrylamide) were synthesized by cryo-polymerization at subzero temperature. The synthesized cryogels were loaded with silver and palladium nanoparticles by the chemical reduction method at room temperature using the reducing agent NaBH4. Moreover, for comparison with cryogels, pure poly(N-isopropylacrylamide) hydrogel and its silver hybrid were also prepared by the conventional method at room temperature. The chemical structure and functional group analysis of the pure cryogels was confirmed by Fourier transform infrared spectroscopy. The synthesis of hybrid cryogels was confirmed by the X-ray diffraction technique and energy dispersive X-ray. The pore size and surface morphology of the pure cryogels, their respective hybrid cryogels and of conventional hydrogels were studied by using the scanning electron microscopy technique. The hybrid cryogels were successfully used as a catalyst for the degradation of methyl orange dye. The degradation performance of the hybrid cryogels was much better than its counterpart hybrid hydrogel for methyl orange dye. The effect of temperature and amount of catalyst on catalytic performance was studied by UV-visible spectroscopy. The reduction follows pseudo-first-order reaction kinetics. In addition, the antibacterial activities of these cryogels were evaluated against Gram-positive bacteria (Staphylococcus aureus, ATCC: 2593) and Gram-negative bacteria (Escherichia coli, ATCC: 25922). Both hybrid cryogels have shown much better antibacterial activity for these two strains of bacteria compared to pure cryogels. The results indicate that these cryogels are potential candidates for water purification systems as well as biomedical applications.
Collapse
Affiliation(s)
- Jaweria Ambreen
- Department of Chemistry, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan
- Correspondence: (J.A.); (A.A.S.)
| | - Abdul Haleem
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45550, Pakistan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Aqeel Ahmed Shah
- Wet Chemistry Laboratory, Department of Metallurgical Engineering, NED University of Engineering and Technology, University Road, Karachi 75720, Pakistan
- Correspondence: (J.A.); (A.A.S.)
| | - Fozia Mushtaq
- Department of Chemistry, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan
| | - Muhammad Siddiq
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45550, Pakistan
| | - Muhammad Ali Bhatti
- Institute of Environmental Sciences, University of Sindh, Jamshoro 76080, Pakistan
| | - Syed Nizam Uddin Shah Bukhari
- Department of Basic Science and Humanities, Dawood University of Engineering and Technology, Karachi 74800, Pakistan
| | - Ali Dad Chandio
- Wet Chemistry Laboratory, Department of Metallurgical Engineering, NED University of Engineering and Technology, University Road, Karachi 75720, Pakistan
| | - Wael A. Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
De Berardinis L, Plazzotta S, Manzocco L. Optimising Soy and Pea Protein Gelation to Obtain Hydrogels Intended as Precursors of Food-Grade Dried Porous Materials. Gels 2023; 9:gels9010062. [PMID: 36661828 PMCID: PMC9858295 DOI: 10.3390/gels9010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Dried porous materials based on plant proteins are attracting large attention thanks to their potential use as sustainable food ingredients. Nevertheless, plant proteins present lower gelling properties than animal ones. Plant protein gelling could be improved by optimising gelation conditions by acting on protein concentration, pH, and ionic strength. This work aimed to systematically study the effect of these factors on the gelation behaviour of soy and pea protein isolates. Protein suspensions having different concentrations (10, 15, and 20% w/w), pH (3.0, 4.5, 7.0), and ionic strength (IS, 0.0, 0.6, 1.5 M) were heat-treated (95 °C for 15 min) and characterised for rheological properties and physical stability. Strong hydrogels having an elastic modulus (G') higher than 103 Pa and able to retain more than 90% water were only obtained from suspensions containing at least 15% soy protein, far from the isoelectric point and at an IS above 0.6 M. By contrast, pea protein gelation was achieved only at a high concentration (20%), and always resulted in weak gels, which showed increasing G' with the increase in pH and IS. Results were rationalised into a map identifying the gelation conditions to modulate the rheological properties of soy and pea protein hydrogels, for their subsequent conversion into xerogels, cryogels, and aerogels.
Collapse
|
5
|
Abdiyev KZ, Maric M, Orynbayev BY, Toktarbay Z, Zhursumbaeva MB, Seitkaliyeva NZ. Flocculating properties of 2-acrylamido-2-methyl-1-propane sulfonic acid-co-allylamine polyampholytic copolymers. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03994-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Eigel D, Schuster R, Männel MJ, Thiele J, Panasiuk MJ, Andreae LC, Varricchio C, Brancale A, Welzel PB, Huttner WB, Werner C, Newland B, Long KR. Sulfonated cryogel scaffolds for focal delivery in ex-vivo brain tissue cultures. Biomaterials 2021; 271:120712. [PMID: 33618220 DOI: 10.1016/j.biomaterials.2021.120712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/11/2022]
Abstract
The human brain has unique features that are difficult to study in animal models, including the mechanisms underlying neurodevelopmental and psychiatric disorders. Despite recent advances in human primary brain tissue culture systems, the use of these models to elucidate cellular disease mechanisms remains limited. A major reason for this is the lack of tools available to precisely manipulate a specific area of the tissue in a reproducible manner. Here we report an easy-to-use tool for site-specific manipulation of human brain tissue in culture. We show that line-shaped cryogel scaffolds synthesized with precise microscale dimensions allow the targeted delivery of a reagent to a specific region of human brain tissue in culture. 3-sulfopropyl acrylate (SPA) was incorporated into the cryogel network to yield a negative surface charge for the reversible binding of molecular cargo. The fluorescent dyes BODIPY and DiI were used as model cargos to show that placement of dye loaded scaffolds onto brain tissue in culture resulted in controlled delivery without a burst release, and labelling of specific regions without tissue damage. We further show that cryogels can deliver tetrodotoxin to tissue, inhibiting neuronal function in a reversible manner. The robust nature and precise dimensions of the cryogel resulted in a user-friendly and reproducible tool to manipulate primary human tissue cultures. These easy-to-use cryogels offer an innovate approach for more complex manipulations of ex-vivo tissue.
Collapse
Affiliation(s)
- Dimitri Eigel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| | - Romy Schuster
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307, Dresden, Germany
| | - Max J Männel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| | - Julian Thiele
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| | - Martyna J Panasiuk
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom
| | - Laura C Andreae
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom
| | - Carmine Varricchio
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Petra B Welzel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307, Dresden, Germany
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany; Technische Universität Dresden, Center for Regenerative Therapies Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Ben Newland
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany; School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| | - Katherine R Long
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307, Dresden, Germany; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom.
| |
Collapse
|
7
|
Kudaibergenov SE. Synthetic and natural polyampholytes: Structural and behavioral similarity. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sarkyt E. Kudaibergenov
- Institute of Polymer Materials and Technology Atyrau Kazakhstan
- Laboratory of Engineering Profile Satbayev University Almaty Kazakhstan
| |
Collapse
|
8
|
Ihlenburg RBJ, Lehnen AC, Koetz J, Taubert A. Sulfobetaine Cryogels for Preferential Adsorption of Methyl Orange from Mixed Dye Solutions. Polymers (Basel) 2021; 13:E208. [PMID: 33435604 PMCID: PMC7826763 DOI: 10.3390/polym13020208] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/08/2023] Open
Abstract
New cryogels for selective dye removal from aqueous solution were prepared by free radical polymerization from the highly water-soluble crosslinker N,N,N',N'-tetramethyl-N,N'-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The resulting white and opaque cryogels have micrometer sized pores with a smaller substructure. They adsorb methyl orange (MO) but not methylene blue (MB) from aqueous solution. Mixtures of MO and MB can be separated through selective adsorption of the MO to the cryogels while the MB remains in solution. The resulting cryogels are thus candidates for the removal of hazardous organic substances, as exemplified by MO and MB, from water. Clearly, it is possible that the cryogels are also potentially interesting for removal of other compounds such as pharmaceuticals or pesticides, but this must be investigated further.
Collapse
Affiliation(s)
| | | | | | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 26, D-14476 Potsdam, Germany; (R.B.J.I.); (A.-C.L.); (J.K.)
| |
Collapse
|
9
|
Kurochkin II, Kurochkin IN, Kolosova OY, Lozinsky VI. Cryostructuring of Polymeric Systems †: Application of Deep Neural Networks for the Classification of Structural Features Peculiar to Macroporous Poly(vinyl alcohol) Cryogels Prepared without and with the Additives of Chaotropes or Kosmotropes. Molecules 2020; 25:molecules25194480. [PMID: 33003473 PMCID: PMC7582390 DOI: 10.3390/molecules25194480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 12/28/2022] Open
Abstract
Macroporous poly(vinyl alcohol) cryogels (PVACGs) are physical gels formed via cryogenic processing of polymer solutions. The properties of PVACGs depend on many factors: the characteristics and concentration of PVA, the absence or presence of foreign solutes, and the freezing-thawing conditions. These factors also affect the macroporous morphology of PVACGs, their total porosity, pore size and size distribution, etc. In this respect, there is the problem with developing a scientifically-grounded classification of the morphological features inherent in various PVACGs. In this study PVA cryogels have been prepared at different temperatures when the initial polymer solutions contained chaotropic or kosmotropic additives. After the completion of gelation, the rigidity and heat endurance of the resultant PVACGs were evaluated, and their macroporous structure was investigated using optical microscopy. The images obtained were treated mathematically, and deep neural networks were used for the classification of these images. Training and test sets were used for their classification. The results of this classification for the specific deep neural network architecture are presented, and the morphometric parameters of the macroporous structure are discussed. It was found that deep neural networks allow us to reliably classify the type of additive or its absence when using a combined dataset.
Collapse
Affiliation(s)
- Ilya I. Kurochkin
- A.A. Karkevich Institute for Information Transmission Problems of Russian Academy of Sciences, Moscow 127051, Russia
- Correspondence: (I.I.K.); (V.I.L.); Tel.: +7(903)-5001-338 (I.I.K.); +7(499)-1356-492 (V.I.L.)
| | - Ilya N. Kurochkin
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia;
- Department of Chemical Enzymology, Chemical Faculty, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Olga Yu. Kolosova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Vladimir I. Lozinsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia;
- Correspondence: (I.I.K.); (V.I.L.); Tel.: +7(903)-5001-338 (I.I.K.); +7(499)-1356-492 (V.I.L.)
| |
Collapse
|
10
|
Lozinsky VI. Cryostructuring of Polymeric Systems. 55. Retrospective View on the More than 40 Years of Studies Performed in the A.N.Nesmeyanov Institute of Organoelement Compounds with Respect of the Cryostructuring Processes in Polymeric Systems. Gels 2020; 6:E29. [PMID: 32927850 PMCID: PMC7559272 DOI: 10.3390/gels6030029] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
The processes of cryostructuring in polymeric systems, the techniques of the preparation of diverse cryogels and cryostructurates, the physico-chemical mechanisms of their formation, and the applied potential of these advanced polymer materials are all of high scientific and practical interest in many countries. This review article describes and discusses the results of more than 40 years of studies in this field performed by the researchers from the A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences-one of the key centers, where such investigations are carried out. The review includes brief historical information, the description of the main effects and trends characteristic of the cryostructuring processes, the data on the morphological specifics inherent in the polymeric cryogels and cryostructurates, and examples of their implementation for solving certain applied tasks.
Collapse
Affiliation(s)
- Vladimir I Lozinsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| |
Collapse
|
11
|
Sun L, Feng X, Zhong T, Zhang X. Preparation of supermacroporous cryogels with improved mechanical strength for efficient purification of lysozyme from chicken egg white. J Sep Sci 2020; 43:3315-3326. [DOI: 10.1002/jssc.202000255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Lifen Sun
- College of Chemistry and Chemical EngineeringYunnan Normal University Kunming P. R. China
| | - Xiyun Feng
- College of Chemistry and Chemical EngineeringYunnan Normal University Kunming P. R. China
| | - Tianyi Zhong
- College of Chemistry and Chemical EngineeringYunnan Normal University Kunming P. R. China
| | - Xufeng Zhang
- College of Chemistry and Chemical EngineeringYunnan Normal University Kunming P. R. China
| |
Collapse
|
12
|
Influence of succinylation of a wide-pore albumin cryogels on their properties, structure, biodegradability, and release dynamics of dioxidine loaded in such spongy carriers. Int J Biol Macromol 2020; 160:583-592. [PMID: 32479937 DOI: 10.1016/j.ijbiomac.2020.05.251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 05/27/2020] [Indexed: 11/21/2022]
Abstract
The goal of this study was to reveal how the chemical modification, succinylation in this case, of the wide-pore serum-albumin-based cryogels affects on their osmotic characteristics (swelling extent), biodegradability and ability to be loaded with the bactericide substance - dioxidine, as well as on its release. The cryogels were prepared via the cryogenic processing (freezing - frozen storage - thawing) of aqueous solutions containing bovine serum albumin (50 g/L), denaturant (urea or guanidine hydrochloride, 1.0 mol/L) and reductant (cysteine, 0.01 mol/L). Freezing/frozen storage temperatures were either -15, or -20, or -25 °C. After defrosting, spongy cryogels were obtained that possessed the system of interconnected gross pores, whose shape and dimensions were dependent on the freezing temperature and on the type of denaturant introduced in the feed solution. Subsequent succinylation of the resultant cryogels caused the growth of the swelling degree of the pore walls of these spongy materials, resulted in strengthening of their resistance against of trypsinolysis and gave rise to an increase in their loading capacity with respect to dioxidine. With that, the microbiological tests showed a higher bactericidal activity of the dioxidine-loaded sponges based on the succinylated albumin cryogels as compared to that of the drug-carriers based on the non-modified protein sponges.
Collapse
|
13
|
Dzhardimalieva GI, Zharmagambetova AK, Kudaibergenov SE, Uflyand IE. Polymer-Immobilized Clusters and Metal Nanoparticles in Catalysis. KINETICS AND CATALYSIS 2020. [DOI: 10.1134/s0023158420020044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Flow-Through Catalytic Reactors Based on Metal Nanoparticles Immobilized within Porous Polymeric Gels and Surfaces/Hollows of Polymeric Membranes. Polymers (Basel) 2020; 12:polym12030572. [PMID: 32143486 PMCID: PMC7182848 DOI: 10.3390/polym12030572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
State-of-the-art of flow-through catalytic reactors based on metal nanoparticles immobilized within the pores of nano-, micro- and macrosized polymeric gels and in the surface or hollow of polymeric membranes is discussed in this mini-review. The unique advantages of continuous flow-through nanocatalysis over the traditional batch-type analog are high activity, selectivity, productivity, recyclability, continuous operation, and purity of reaction products etc. The methods of fabrication of polymeric carriers and immobilization technique for metal nanoparticles on the surface of porous or hollow structures are considered. Several catalytic model reactions comprising of hydrolysis, decomposition, hydrogenation, oxidation, Suzuki coupling and enzymatic reactions in the flow system are exemplified. Realization of “on-off” switching mechanism for regulation of the rate of catalytic process through controlling the mass transfers of reactants in liquid media with the help of stimuli-responsive polymers is demonstrated. Comparative analysis of the efficiency of different flow-through catalytic reactors for various reactions is also surveyed.
Collapse
|
15
|
Abstract
Abstract
The macromolecular complexes of random, regular, graft, block and dendritic polyampholytes with respect to transition metal ions, surfactants, dyes, polyelectrolytes, and proteins are discussed in this review. Application aspects of macromolecular complexes of polyampholytes in biotechnology, medicine, nanotechnology, catalysis are demonstrated.
Collapse
Affiliation(s)
- Sarkyt E. Kudaibergenov
- Institute of Polymer Materials and Technology , Almaty , Kazakhstan
- Laboratory of Engineering Profile, Satbayev University , Almaty , Kazakhstan
| |
Collapse
|
16
|
Highly stretchable and thermally healable polyampholyte hydrogels via hydrophobic modification. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04605-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Tercan M, Demirci S, Dayan O, Sahiner N. Simultaneous degradation and reduction of multiple organic compounds by poly(vinyl imidazole) cryogel-templated Co, Ni, and Cu metal nanoparticles. NEW J CHEM 2020. [DOI: 10.1039/d0nj00148a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Simultaneous degradation of methylene blue, eosin Y and 4-nitrophenol reduction by p(vinyl imidazole)–Co cryogel composite catalyst in aqueous environments.
Collapse
Affiliation(s)
- Melek Tercan
- Department of Chemistry
- Faculty of Arts and Science
- Canakkale Onsekiz Mart University
- Canakkale
- Turkey
| | - Sahin Demirci
- Department of Chemistry
- Faculty of Arts and Science
- Canakkale Onsekiz Mart University
- Canakkale
- Turkey
| | - Osman Dayan
- Department of Chemistry
- Faculty of Arts and Science
- Canakkale Onsekiz Mart University
- Canakkale
- Turkey
| | - Nurettin Sahiner
- Department of Chemistry
- Faculty of Arts and Science
- Canakkale Onsekiz Mart University
- Canakkale
- Turkey
| |
Collapse
|
18
|
Raju RR, Liebig F, Klemke B, Koetz J. Ultralight magnetic aerogels from Janus emulsions. RSC Adv 2020; 10:7492-7499. [PMID: 35492159 PMCID: PMC9049865 DOI: 10.1039/c9ra10247g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/07/2020] [Indexed: 11/21/2022] Open
Abstract
Magnetite containing aerogels were synthesized by freeze-drying olive oil/silicone oil-based Janus emulsion gels containing gelatin and sodium carboxymethylcellulose (NaCMC). The magnetite nanoparticles dispersed in olive oil are processed into the gel and remain in the macroporous aerogel after removing the oil components. The coexistence of macropores from the Janus droplets and mesopores from freeze-drying of the hydrogels in combination with the magnetic properties offer a special hierarchical pore structure, which is of relevance for smart supercapacitors, biosensors, and spilled oil sorption and separation. The morphology of the final structure was investigated in dependence on initial compositions. More hydrophobic aerogels with magnetic responsiveness were synthesized by bisacrylamide-crosslinking of the hydrogel. The crosslinked aerogels can be successfully used in magnetically responsive clean up experiments of the cationic dye methylene blue. Magnetite containing aerogels were synthesized by freeze-drying olive oil/silicone oil-based Janus emulsion gels containing gelatin and sodium carboxymethylcellulose (NaCMC).![]()
Collapse
Affiliation(s)
| | - Ferenc Liebig
- Institute of Chemistry
- University of Potsdam
- 14476 Potsdam
- Germany
| | - Bastian Klemke
- Helmholtz-Zentrum Berlin für Materialien und Energie
- 14109 Berlin
- Germany
| | - Joachim Koetz
- Institute of Chemistry
- University of Potsdam
- 14476 Potsdam
- Germany
| |
Collapse
|
19
|
Rogers ZJ, Bencherif SA. Cryogelation and Cryogels. Gels 2019; 5:gels5040046. [PMID: 31816989 PMCID: PMC6956035 DOI: 10.3390/gels5040046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Zachary J. Rogers
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA;
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA;
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Laboratory of Biomechanics & Bioengineering (BMBI), Sorbonne University, University of Technology of Compiègne (UTC), 60200 Compiègne, France
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Correspondence:
| |
Collapse
|
20
|
Su E, Okay O. Cryogenic formation-structure-property relationships of poly(2-acrylamido-2-methyl-1-propanesulfonic acid) cryogels. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Zvukova ND, Klimova TP, Ivanov RV, Ryabev AN, Tsiskarashvili AV, Lozinsky VI. Cryostructuring of Polymeric Systems. 52. Properties, Microstructure and an Example of a Potential Biomedical Use of the Wide-Pore Alginate Cryostructurates. Gels 2019; 5:E25. [PMID: 31075923 PMCID: PMC6630887 DOI: 10.3390/gels5020025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/29/2022] Open
Abstract
Wide-pore cryostructurates were prepared via freezing sodium alginate aqueous solutions with subsequent ice sublimation from the frozen samples, followed by their incubation in the ethanol solutions of calcium chloride or sulfuric acid, rinsing, and final drying. Such sequence of operations resulted in the calcium alginate or alginic acid sponges, respectively. The swelling degree of the walls of macropores in such matrices decreased with increasing polymer concentration in the initial solution. The dependence of the degree of swelling on the cryogenic processing temperature had a bell-like character with a maximum for the samples formed at -20 °C. According to 1H NMR spectroscopy, the content of mobile (non-frozen) water in the frozen water-sodium alginate systems also depended on the initial polymer concentration and freezing temperature. The cryostructurates obtained did not lose their integrity in water, saline, in an acidic medium at pH 2 for at least three weeks. Under alkaline conditions at pH 12 the first signs of dissolution of the Ca-alginate sponge arose only after a week of incubation. Microbiological testing of the model depot form of the antibiotics entrapped in the Ca-alginate cryostructurate demonstrated the efficiency of this system as the antibacterial material.
Collapse
Affiliation(s)
- Natalia D Zvukova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia.
| | - Tamara P Klimova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia.
| | - Roman V Ivanov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia.
| | - Andrei N Ryabev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia.
| | - Archil V Tsiskarashvili
- N.N. Priorov National Medical Research Center of Traumatology and Orthopedics, Ministry of Health of the Russian Federation, Priorov Street, 10., 127299 Moscow, Russia.
| | - Vladimir I Lozinsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia.
| |
Collapse
|