1
|
Akhtar MS, Ali S, Zaman W. Innovative Adsorbents for Pollutant Removal: Exploring the Latest Research and Applications. Molecules 2024; 29:4317. [PMID: 39339312 PMCID: PMC11433758 DOI: 10.3390/molecules29184317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The growing presence of diverse pollutants, including heavy metals, organic compounds, pharmaceuticals, and emerging contaminants, poses significant environmental and health risks. Traditional methods for pollutant removal often face limitations in efficiency, selectivity, and sustainability. This review provides a comprehensive analysis of recent advancements in innovative adsorbents designed to address these challenges. It explores a wide array of non-conventional adsorbent materials, such as nanocellulose, metal-organic frameworks (MOFs), graphene-based composites, and biochar, emphasizing their sources, structural characteristics, and unique adsorption mechanisms. The review discusses adsorption processes, including the basic principles, kinetics, isotherms, and the factors influencing adsorption efficiency. It highlights the superior performance of these materials in removing specific pollutants across various environmental settings. The practical applications of these adsorbents are further explored through case studies in industrial settings, pilot studies, and field trials, showcasing their real-world effectiveness. Additionally, the review critically examines the economic considerations, technical challenges, and environmental impacts associated with these adsorbents, offering a balanced perspective on their viability and sustainability. The conclusion emphasizes future research directions, focusing on the development of scalable production methods, enhanced material stability, and sustainable regeneration techniques. This comprehensive assessment underscores the transformative potential of innovative adsorbents in pollutant remediation and their critical role in advancing environmental protection.
Collapse
Affiliation(s)
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
2
|
Adamowska M, Kaniewska K, Muszyńska M, Romański J, Hyk W, Karbarz M. Smart Hydrogel Based on Derivatives of Natural α-Amino Acids for Efficient Removal of Metal Ions from Wastewater. Gels 2024; 10:560. [PMID: 39330162 PMCID: PMC11431252 DOI: 10.3390/gels10090560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
A novel class of hydrogels, rich in a variety of functional groups capable of interacting/complexing with metal ions was successfully synthesized. This was achieved by using acryloyl derivatives of natural α-amino acids, specifically ornithine and cystine. The δ-amino group of ornithine was modified with an acryloyl group to facilitate its attachment to the polymer chain. Additionally, N,N'-bisacryloylcystine, derived from cystine, was employed as the cross-linker. The hydrogel was obtained through a process of free radical polymerization. This hydrogel, composed only from derivatives of natural amino acids, has proven to be a competitive sorbent and has been effectively used to remove heavy metal pollutants, mainly lead, copper, and silver ions, from aqueous media. The maximum sorption capacities were ca. 155 mg·g-1, 90 mg·g-1, and 215 mg·g-1, respectively for Pb(II), Cu(II), and Ag(I). The material was characterized by effective regeneration, maintaining the sorption capacity at around 80%, 85%, and 90% for Cu(II), Ag(I), and Pb(II), respectively, even after five cycles. The properties of sorption materials, such as sorption kinetics and the effect of pH on sorption, as well as the influence of the concentration of the examined metal ions on the swelling ratio and morphology of the gel, were investigated. The EDS technique was employed to investigate the composition and element distribution in the dry gel samples. Additionally, IR spectroscopy was used to identify the functional groups responsible for binding the studied metal ions, providing insights into their specific interactions with the hydrogel.
Collapse
Affiliation(s)
- Monika Adamowska
- Faculty of Chemistry, University of Warsaw, 1 Pasteura, PL 02-093 Warsaw, Poland; (M.A.); (K.K.); (M.M.); (J.R.)
| | - Klaudia Kaniewska
- Faculty of Chemistry, University of Warsaw, 1 Pasteura, PL 02-093 Warsaw, Poland; (M.A.); (K.K.); (M.M.); (J.R.)
| | - Magdalena Muszyńska
- Faculty of Chemistry, University of Warsaw, 1 Pasteura, PL 02-093 Warsaw, Poland; (M.A.); (K.K.); (M.M.); (J.R.)
- Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Av., PL 02-089 Warsaw, Poland
| | - Jan Romański
- Faculty of Chemistry, University of Warsaw, 1 Pasteura, PL 02-093 Warsaw, Poland; (M.A.); (K.K.); (M.M.); (J.R.)
| | - Wojciech Hyk
- Faculty of Chemistry, University of Warsaw, 1 Pasteura, PL 02-093 Warsaw, Poland; (M.A.); (K.K.); (M.M.); (J.R.)
- Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Av., PL 02-089 Warsaw, Poland
| | - Marcin Karbarz
- Faculty of Chemistry, University of Warsaw, 1 Pasteura, PL 02-093 Warsaw, Poland; (M.A.); (K.K.); (M.M.); (J.R.)
- Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Av., PL 02-089 Warsaw, Poland
| |
Collapse
|
3
|
Zamani-Babgohari F, Irannejad A, Kalantari Pour M, Khayati GR. Synthesis of carboxymethyl starch co (polyacrylamide/ polyacrylic acid) hydrogel for removing methylene blue dye from aqueous solution. Int J Biol Macromol 2024; 269:132053. [PMID: 38704075 DOI: 10.1016/j.ijbiomac.2024.132053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/13/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Natural polysaccharides, notably starch, have garnered attention for their accessibility, cost-effectiveness, and biodegradability. Modifying starch to carboxymethyl starch enhances its solubility, swelling capacity, and adsorption efficiency. This research examines the synthesis of an effective hydrogel adsorbent based on carboxymethyl starch for the elimination of methylene blue from aqueous solutions. The hydrogel was synthesized using polyacrylamide and polyacrylic acid as monomers, ammonium persulfate as the initiator, and N,N'-methylenebisacrylamide as the cross-linker. Through FESEM, swelling morphology was evaluated in both distilled water and methylene blue dye. The adsorption data elucidated that the adsorption capacity of the hydrogel significantly depends on the dosage of the adsorbent, pH, and concentration of the MB dye. At a pH of 7 and a dye concentration of 250 mg/L, the hydrogel exhibited an impressive 95 % removal rate for methylene blue. The results indicate that the adsorption process follows pseudo-second-order kinetics and conforms well to the Langmuir adsorption isotherm, indicating a maximum adsorption capacity of 1700 mg/g. According to the pseudo-second-order kinetic model and FTIR analysis, methylene blue chemisorbs to the adsorbent material. Hydrogel absorbents regulate adsorption through both intra-particle diffusion and liquid film diffusion. These results highlight the potential of the new hydrogel absorber for water purification.
Collapse
Affiliation(s)
- Fatemeh Zamani-Babgohari
- Department of Materials Engineering and Metallurgy, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ahmad Irannejad
- Department of Materials Engineering and Metallurgy, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Maryam Kalantari Pour
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Gholam Reza Khayati
- Department of Materials Engineering and Metallurgy, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
4
|
Silva EC, Pina J, Pereira RFP, Murtinho D, Valente AJM, Fajardo AR. Synthesis and characterization of fluorescent poly(α-cyclodextrin)/carbon quantum dots composite for efficient removal and detection of toluene and xylene from aqueous media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123778. [PMID: 38499171 DOI: 10.1016/j.envpol.2024.123778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
This study reports the synthesis and characterization of a supramolecular composite comprised of carbon dots (CDots) embedded within net-poly[(α-cyclodextrin)-ν-(citric acid)] (α-CD/CA/CDots) for the removal and detection of toluene and xylene from aqueous media. The remarkable stability of CDots within the composite enables the preservation of photoluminescence properties for prolonged storage and extended UV-light irradiation. As demonstrated, following the adsorption of both organic compounds, the composite detected them in the aqueous medium due to a fluorescence quenching mechanism. Spectroscopic analyses reveal that the accessible Stern-Volmer quenching constants for toluene and xylene are KSVa = 15.4 M-1 and KSVa = 10.3 M-1, respectively. As a result, the α-CD/CA/CDots composite were sensitive to the tested volatile organic compounds (LODtoluene = 3.7 mg/L and LODxylene = 4.9 mg/L). Optimal conditions for toluene and xylene adsorption were found, allowing to achieve noticeable adsorption capabilities (qe(toluene) = 68.9 and qe(xylene) = 48.2 mg/g) and removal efficiencies exceeding 70%. Different characterization techniques confirmed the successful synthesis of the composite and elucidated the interaction mechanisms between the adsorbent and the tested compounds. In summary, the multifunctionality demonstrated by the α-CD/CA/CDots composite ranks it as an efficient and promising adsorbent and detection probe for this class of water contaminants.
Collapse
Affiliation(s)
- Emilly C Silva
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900, Pelotas, RS, Brazil; University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535, Coimbra, Portugal
| | - João Pina
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535, Coimbra, Portugal
| | - Rui F P Pereira
- Chemistry Center and Chemistry Department, University of Minho, 4710-057, Braga, Portugal
| | - Dina Murtinho
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535, Coimbra, Portugal
| | - Artur J M Valente
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535, Coimbra, Portugal.
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
5
|
Cecone C, Hoti G, Caldera F, Ginepro M, Matencio A, Trotta F. Evaluation of the Swelling Properties and Sorption Capacity of Maltodextrin-Based Cross-Linked Polymers. Gels 2024; 10:232. [PMID: 38667651 PMCID: PMC11049296 DOI: 10.3390/gels10040232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
The development of polymers obtained from renewable sources such as polysaccharides has gained scientific and industrial attention. Cross-linked bio-derived cationic polymers were synthesized via a sustainable approach exploiting a commercial maltodextrin product, namely, Glucidex 2®, as the building block, while diglycidyl ethers and triglycidyl ethers were used as the cross-linking agents. The polymer products were characterized via FTIR-ATR, TGA, DSC, XRD, SEM, elemental analysis, and zeta-potential measurements, to investigate their composition, structure, and properties. Polydispersed amorphous granules displaying thermal stabilities higher than 250 °C, nitrogen contents ranging from 0.8 wt % and 1.1 wt %, and zeta potential values between 10 mV and 15 mV were observed. Subsequently, water absorption capacity measurements ranging from 800% to 1500%, cross-linking density determination, and rheological evaluations demonstrated the promising gel-forming properties of the studied systems. Finally, nitrate, sulfate, and phosphate removal tests were performed to assess the possibility of employing the studied polymer products as suitable sorbents for water remediation. The results obtained from the ion chromatography technique showed high sorption rates, with 80% of nitrates, over 90% of sulfates, and total phosphates removal.
Collapse
Affiliation(s)
- Claudio Cecone
- Department of Chemistry, Nanomaterials for Industry and Sustainability Centre (NIS Centre), Università degli Studi di Torino, Via P. Giuria 7, 10125 Turin, Italy; (G.H.); (F.C.); (M.G.); (A.M.); (F.T.)
| | - Gjylije Hoti
- Department of Chemistry, Nanomaterials for Industry and Sustainability Centre (NIS Centre), Università degli Studi di Torino, Via P. Giuria 7, 10125 Turin, Italy; (G.H.); (F.C.); (M.G.); (A.M.); (F.T.)
- Department of Drug Science and Technology, Università degli Studi di Torino, Via P. Giuria 9, 10125 Turin, Italy
| | - Fabrizio Caldera
- Department of Chemistry, Nanomaterials for Industry and Sustainability Centre (NIS Centre), Università degli Studi di Torino, Via P. Giuria 7, 10125 Turin, Italy; (G.H.); (F.C.); (M.G.); (A.M.); (F.T.)
| | - Marco Ginepro
- Department of Chemistry, Nanomaterials for Industry and Sustainability Centre (NIS Centre), Università degli Studi di Torino, Via P. Giuria 7, 10125 Turin, Italy; (G.H.); (F.C.); (M.G.); (A.M.); (F.T.)
| | - Adrián Matencio
- Department of Chemistry, Nanomaterials for Industry and Sustainability Centre (NIS Centre), Università degli Studi di Torino, Via P. Giuria 7, 10125 Turin, Italy; (G.H.); (F.C.); (M.G.); (A.M.); (F.T.)
| | - Francesco Trotta
- Department of Chemistry, Nanomaterials for Industry and Sustainability Centre (NIS Centre), Università degli Studi di Torino, Via P. Giuria 7, 10125 Turin, Italy; (G.H.); (F.C.); (M.G.); (A.M.); (F.T.)
| |
Collapse
|
6
|
Benković M, Laljak I, Valinger D, Jurina T, Sokač Cvetnić T, Gajdoš Kljusurić J, Jurinjak Tušek A. Comparison of the Adsorption and Desorption Dynamics of Biological Molecules on Alginate Hydrogel Microcapsules-The Case of Sugars, Polyphenols, and Proteins. Gels 2024; 10:201. [PMID: 38534619 DOI: 10.3390/gels10030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
The aim of this work was to analyze and compare the adsorption and desorption processes of carbohydrates (glucose as a model molecule), polyphenols (gallic acid as a model molecule), and proteins (bovine serum albumin, BSA as a model molecule) on alginate microcapsules. The adsorption and desorption processes were described by mathematical models (pseudo-first-order, pseudo-second-order, and Weber-Morris intraparticle diffusion model for adsorption, and first-order, Korsmeyer-Peppas, and the Higuchi model for desorption) in order to determine the dominant mechanisms responsible for both processes. By comparing the values of adsorption rate (k2) and initial adsorption rate (h0) based on the pseudo-first-order model, the lowest values were recorded for BSA (k1 = 0.124 ± 0.030 min-1), followed by glucose (k1 = 0.203 ± 0.041 min-1), while the model-obtained values for gallic acid were not considered significant at p < 0.05. For glucose and gallic acid, the limiting step of the adsorption process is the chemical sorption of substances, and the rate of adsorption does not depend on the adsorbate concentration, but depends on the capacity of the hydrogel adsorbent. Based on the desorption rates determined by the Korsmeyer-Peppas model (k), the highest values were recorded for gallic acid (k = 3.66236 ± 0.20776 g beads/mg gallic acid per min), followed by glucose (k = 2.55760 ± 0.16960 g beads/mg glucose per min) and BSA (k = 0.78881 ± 0.11872 g beads/mg BSA per min). The desorption process from alginate hydrogel microcapsules is characterized by the pseudo Fickian diffusion mechanism.
Collapse
Affiliation(s)
- Maja Benković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Izvorka Laljak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Davor Valinger
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Tamara Jurina
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Tea Sokač Cvetnić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Ungureanu C, Răileanu S, Zgârian R, Tihan G, Burnei C. State-of-the-Art Advances and Current Applications of Gel-Based Membranes. Gels 2024; 10:39. [PMID: 38247761 PMCID: PMC10815837 DOI: 10.3390/gels10010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/09/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Gel-based membranes, a fusion of polymer networks and liquid components, have emerged as versatile tools in a variety of technological domains thanks to their unique structural and functional attributes. Historically rooted in basic filtration tasks, recent advancements in synthetic strategies have increased the mechanical strength, selectivity, and longevity of these membranes. This review summarizes their evolution, emphasizing breakthroughs that have positioned them at the forefront of cutting-edge applications. They have the potential for desalination and pollutant removal in water treatment processes, delivering efficiency that often surpasses conventional counterparts. The biomedical field has embraced them for drug delivery and tissue engineering, capitalizing on their biocompatibility and tunable properties. Additionally, their pivotal role in energy storage as gel electrolytes in batteries and fuel cells underscores their adaptability. However, despite monumental progress in gel-based membrane research, challenges persist, particularly in scalability and long-term stability. This synthesis provides an overview of the state-of-the-art applications of gel-based membranes and discusses potential strategies to overcome current limitations, laying the foundation for future innovations in this dynamic field.
Collapse
Affiliation(s)
- Camelia Ungureanu
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, The National University of Science and Technology POLITEHNICA Bucharest, Gheorghe Polizu 1-7 Street, 011061 Bucharest, Romania
| | - Silviu Răileanu
- Department of Automation and Industrial Informatics, Faculty of Automatic Control and Computer Science, The National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independenţei 313 Street, 060042 Bucharest, Romania;
| | - Roxana Zgârian
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, The National University of Science and Technology POLITEHNICA Bucharest, Gheorghe Polizu 1-7 Street, 011061 Bucharest, Romania
| | - Grațiela Tihan
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, The National University of Science and Technology POLITEHNICA Bucharest, Gheorghe Polizu 1-7 Street, 011061 Bucharest, Romania
| | - Cristian Burnei
- Clinical Department of Orthopedics and Traumatology II, Clinical Emergency Hospital, Calea Floreasca 8, 014461 Bucharest, Romania;
| |
Collapse
|
8
|
Radoor S, Karayil J, Jayakumar A, Kandel DR, Kim JT, Siengchin S, Lee J. Recent advances in cellulose- and alginate-based hydrogels for water and wastewater treatment: A review. Carbohydr Polym 2024; 323:121339. [PMID: 37940239 DOI: 10.1016/j.carbpol.2023.121339] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 11/10/2023]
Abstract
From the environmental perspective, it is essential to develop cheap, eco-friendly, and highly efficient materials for water and wastewater treatment. In this regard, hydrogels and hydrogel-based composites have been widely employed to mitigate global water pollution as this methodology is simple and free from harmful by-products. Notably, alginate and cellulose, which are natural carbohydrate polymers, have gained great attention for their availability, price competitiveness, excellent biodegradability, biocompatibility, hydrophilicity, and superior physicochemical performance in water treatment. This review outlined the recent progress in developing and applying alginate- and cellulose-based hydrogels to remove various pollutants such as dyes, heavy metals, oils, pharmaceutical contaminants, and pesticides from wastewater streams. This review also highlighted the effects of various physical or chemical methods, such as crosslinking, grafting, the addition of fillers, nanoparticle incorporation, and polymer blending, on the physiochemical and adsorption properties of hydrogels. In addition, this review covered the alginate- and cellulose-based hydrogels' current limitations such as low mechanical performance and poor stability, while presenting strategies to improve the drawbacks of the hydrogels. Lastly, we discussed the prospects and future directions of alginate- and cellulose-based hydrogels. We hope this review provides valuable insights into the efficient preparations and applications of hydrogels.
Collapse
Affiliation(s)
- Sabarish Radoor
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Jasila Karayil
- Department of Applied Science, Government Engineering College West Hill, Kozhikode, Kerala, India
| | - Aswathy Jayakumar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dharma Raj Kandel
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Suchart Siengchin
- Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Jaewoo Lee
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Department of JBNU-KIST Industry-Academia Convergence Research, Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea.
| |
Collapse
|
9
|
Thamer BM, Al-aizari FA, Abdo HS. Activated Carbon-Incorporated Tragacanth Gum Hydrogel Biocomposite: A Promising Adsorbent for Crystal Violet Dye Removal from Aqueous Solutions. Gels 2023; 9:959. [PMID: 38131945 PMCID: PMC10743021 DOI: 10.3390/gels9120959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Biomaterials-based adsorbents have emerged as a sustainable and promising solution for water purification, owing to their eco-friendly nature and remarkable adsorption capacities. In this study, a biocomposite hydrogel was prepared by the incorporation of activated carbon derived from pomegranate peels (PPAC) in tragacanth gum (TG). The hydrogel biocomposite (PPAC/TG) showed a porous structure, a negative surface charge at a pH of more than 4.9, and good stability in aqueous media. The adsorption properties of the PPAC/TG hydrogel biocomposite were assessed for the removal of crystal violet dye (CV) from aqueous solutions using a batch adsorption. The equilibrium adsorption data followed the Sips isotherm model, as supported by the calculated R2 (>0.99), r-χ2 (<64), and standard error values (<16). According to the Sips model, the maximum values of the adsorption capacity of PPAC/TG were 455.61, 470.86, and 477.37 mg/g at temperatures of 25, 30, and 35 °C, respectively. The adsorption kinetic of CV onto the PPAC/TG hydrogel biocomposite was well described by the pseudo-second-order model with R2 values more than 0.999 and r-χ2 values less than 12. Thermodynamic studies confirmed that the CV dye adsorption was spontaneous and endothermic. Furthermore, the prepared hydrogel exhibited excellent reusability, retaining its adsorption capacity even after being used more than five times. Overall, this study concludes that the prepared PPAC/TG exhibited a significant adsorption capacity for cationic dyes, indicating its potential as an effective and eco-friendly adsorbent for water treatment.
Collapse
Affiliation(s)
- Badr M. Thamer
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Faiz A. Al-aizari
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Hany S. Abdo
- Department of Mechanical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia;
| |
Collapse
|
10
|
Chan K, Kawai M, Yamake M, Zinchenko A. Copper Ion Removal Using a Waste-Plastic-Derived Hydrogel Adsorbent Prepared via Microwave-Assisted PET Aminolysis. Gels 2023; 9:874. [PMID: 37998964 PMCID: PMC10670419 DOI: 10.3390/gels9110874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Despite the tremendous progress in the development of functional materials from plastic waste to promote its recycling, only a few examples of hydrogel materials from plastic waste were reported. In this study, microwave-assisted depolymerization of waste PET plastic using polyamine was performed to prepare short aminophthalamide oligomers followed by chemically cross-linking into a hydrogel material. Catalyst-free microwave-assisted aminolysis of PET was completed within 30-40 s, demonstrating high efficiency of the depolymerization reaction. Subsequent epoxy cross-linking of the oligomers yielded a hydrogel with a swelling degree of ca. 92.1 times in pure water. The application of the obtained hydrogel for the removal of copper ions (Cu2+) from water was demonstrated. Efficient complexation of NH2 groups of the hydrogel with Cu2+ resulted in high adsorption capacities of the hydrogel material toward Cu2+ removal, which were the highest at neutral pHs and reached ca. 213 mg/g. The proposed type of environmental material is beneficial owing to its waste-derived nature and functionality that can be applied for the high-efficiency removal of a broad scope of known environmental pollutants.
Collapse
Affiliation(s)
- Kayee Chan
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Masami Kawai
- Gifu High School, 3-1, Onawaba, Gifu 500-8889, Japan
| | - Mina Yamake
- Gifu Kita High School, 1841-11, Noritake, Gifu 502-0931, Japan
| | - Anatoly Zinchenko
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
11
|
Venkataraman S, Viswanathan V, Thangaiah SG, Omine K, Mylsamy P. Adsorptive exclusion of crystal violet dye using barium encapsulated alginate/carbon composites: characterization and adsorption modeling studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106718-106735. [PMID: 37735334 DOI: 10.1007/s11356-023-29894-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
The present study is devoted to the removal of crystal violet dye using the synthesized barium alginate/carbon composites abbreviated as BA (barium alginate), BAAC (barium alginate/activated carbon), BASC (barium alginate/starch carbon), and BASSC (barium alginate/starch carbon modified with CTAB). The adsorptive removal of crystal violet as a function of contact time, pH of solution, composite dose, initial dye concentration, and temperature was studied. The uptake of crystal violet (CV) dye for the composites was recorded in the range of 36 mg g-1 to 50 mg g-1 at pH 8.03 ± 0.03 for an equilibrium time of 120 min. The adsorption kinetics and isotherms in compliance with the CV sorption onto BA/carbon composites corroborated the utmost fit of pseudo-second-order and Freundlich isotherm models, respectively. The recycling process was achieved using the barium alginate-treated bead carbons for different initial CV dye concentrations of 10-30 mg L-1 with a scope of zero disposal. The practicability of BA/carbon composites in a groundwater sample spiked with 30 mg L-1 of CV was successfully achieved with a removal efficiency of about 65-74%. Characterization studies for the composites using FTIR, SEM (with EDS), XRD, TGA, and BET were carried out and discussed in the paper.
Collapse
Affiliation(s)
- Sivasankar Venkataraman
- Post Graduate and Research Department of Chemistry, Pachaiyappa's College Affiliated to University of Madras, Chennai, Tamil Nadu, 600 030, India
| | - Vinitha Viswanathan
- Post Graduate and Research Department of Chemistry, Pachaiyappa's College Affiliated to University of Madras, Chennai, Tamil Nadu, 600 030, India
| | - Sunitha Ganesan Thangaiah
- Post Graduate and Research Department of Chemistry, Pachaiyappa's College Affiliated to University of Madras, Chennai, Tamil Nadu, 600 030, India.
| | - Kiyoshi Omine
- Department of Civil Engineering, School of Engineering, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan
| | - Prabhakaran Mylsamy
- Post Graduate and Research Department of Botany, Pachaiyappa's College Affiliated to University of Madras, Chennai, Tamil Nadu, 600 030, India
| |
Collapse
|
12
|
Ghiorghita CA, Lazar MM, Ghimici L, Dinu MV. Self-Assembled Chitosan/Dialdehyde Carboxymethyl Cellulose Hydrogels: Preparation and Application in the Removal of Complex Fungicide Formulations from Aqueous Media. Polymers (Basel) 2023; 15:3496. [PMID: 37688121 PMCID: PMC10490195 DOI: 10.3390/polym15173496] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Environmental contamination with pesticides occurs at a global scale as a result of prolonged usage and, therefore, their removal by low-cost and environmentally friendly systems is actively demanded. In this context, our study was directed to investigate the feasibility of using some self-assembled hydrogels, comprising chitosan (CS) and carboxymethylcellulose (CMC) or dialdehyde (DA)-CMC, for the removal of four complex fungicide formulations, namely Melody Compact (MC), Dithane (Dt), Curzate Manox (CM), and Cabrio®Top (CT). Porous CS/CMC and CS/DA-CMC hydrogels were prepared as discs by combining the semi-dissolution acidification sol-gel transition method with a freeze-drying approach. The obtained CS/CMC and CS/DA-CMC hydrogels were characterized by gel fraction yield, FTIR, SEM, swelling kinetics, and uniaxial compression tests. The batch-sorption studies indicated that the fungicides' removal efficiency (RE%) by the CS/CMC hydrogels was increased significantly with increasing sorbent doses reaching 94%, 93%, 66% and 48% for MC, Dt, CM and CT, respectively, at 0.2 g sorbent dose. The RE values were higher for the hydrogels prepared using DA-CMC than for those prepared using non-oxidized CMC when initial fungicide concentrations of 300 mg/L or 400 mg/L were used. Our results indicated that CS/DA-CMC hydrogels could be promising biosorbents for mitigating pesticide contamination of aqueous environments.
Collapse
Affiliation(s)
| | | | | | - Maria Valentina Dinu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania; (C.-A.G.); (M.M.L.); (L.G.)
| |
Collapse
|
13
|
Hajareh Haghighi F, Binaymotlagh R, Chronopoulou L, Cerra S, Marrani AG, Amato F, Palocci C, Fratoddi I. Self-Assembling Peptide-Based Magnetogels for the Removal of Heavy Metals from Water. Gels 2023; 9:621. [PMID: 37623076 PMCID: PMC10454050 DOI: 10.3390/gels9080621] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
In this study, we present the synthesis of a novel peptide-based magnetogel obtained through the encapsulation of γ-Fe2O3-polyacrylic acid (PAA) nanoparticles (γ-Fe2O3NPs) into a hydrogel matrix, used for enhancing the ability of the hydrogel to remove Cr(III), Co(II), and Ni(II) pollutants from water. Fmoc-Phe (Fluorenylmethoxycarbonyl-Phenylalanine) and diphenylalanine (Phe2) were used as starting reagents for the hydrogelator (Fmoc-Phe3) synthesis via an enzymatic method. The PAA-coated magnetic nanoparticles were synthesized in a separate step, using the co-precipitation method, and encapsulated into the peptide-based hydrogel. The resulting organic/inorganic hybrid system (γ-Fe2O3NPs-peptide) was characterized with different techniques, including FT-IR, Raman, UV-Vis, DLS, ζ-potential, XPS, FESEM-EDS, swelling ability tests, and rheology. Regarding the application in heavy metals removal from aqueous solutions, the behavior of the obtained magnetogel was compared to its precursors and the effect of the magnetic field was assessed. Four different systems were studied for the separation of heavy metal ions from aqueous solutions, including (1) γ-Fe2O3NPs stabilized with PAA, (γ-Fe2O3NPs); (2) Fmoc-Phe3 hydrogel (HG); (3) γ-Fe2O3NPs embedded in peptide magnetogel (γ-Fe2O3NPs@HG); and (4) γ-Fe2O3NPs@HG in the presence of an external magnetic field. To quantify the removal efficiency of these four model systems, the UV-Vis technique was employed as a fast, cheap, and versatile method. The results demonstrate that both Fmoc-Phe3 hydrogel and γ-Fe2O3NPs peptide magnetogel can efficiently remove all the tested pollutants from water. Interestingly, due to the presence of magnetic γ-Fe2O3NPs inside the hydrogel, the removal efficiency can be enhanced by applying an external magnetic field. The proposed magnetogel represents a smart multifunctional nanosystem with improved absorption efficiency and synergic effect upon applying an external magnetic field. These results are promising for potential environmental applications of γ-Fe2O3NPs-peptide magnetogels to the removal of pollutants from aqueous media.
Collapse
Affiliation(s)
- Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| | - Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sara Cerra
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| | - Andrea Giacomo Marrani
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| | - Francesco Amato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| |
Collapse
|
14
|
Ahmadian M, Jaymand M. Interpenetrating polymer network hydrogels for removal of synthetic dyes: A comprehensive review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
15
|
He X, Xia J, He J, Qi K, Peng A, Liu Y. Highly Efficient Capture of Heavy Metal Ions on Amine-Functionalized Porous Polymer Gels. Gels 2023; 9:gels9040297. [PMID: 37102909 PMCID: PMC10137378 DOI: 10.3390/gels9040297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Porous polymer gels (PPGs) are characterized by inherent porosity, a predictable structure, and tunable functionality, which makes them promising for the heavy metal ion trap in environmental remediation. However, their real-world application is obstructed by the balance between performance and economy in material preparation. Development of an efficient and cost-effective approach to produce PPGs with task-specific functionality remains a significant challenge. Here, a two-step strategy to fabricate amine-enriched PPGs, NUT-21-TETA (NUT means Nanjing Tech University, TETA indicates triethylenetetramine), is reported for the first time. The NUT-21-TETA was synthesized through a simple nucleophilic substitution using two readily available and low-cost monomers, mesitylene and α, α′-dichloro-p-xylene, followed by the successful post-synthetic amine functionalization. The obtained NUT-21-TETA demonstrates an extremely high Pb2+ capacity from aqueous solution. The maximum Pb2+ capacity, qm, assessed by the Langmuir model was as high as 1211 mg/g, which is much higher than most benchmark adsorbents including ZIF-8 (1120 mg/g), FGO (842 mg/g), 732-CR resin (397 mg/g), Zeolite 13X (541 mg/g), and AC (58 mg/g). The NUT-21-TETA can be regenerated easily and recycled five times without a noticeable decrease of adsorption capacity. The excellent Pb2+ uptake and perfect reusability, in combination with a low synthesis cost, gives the NUT-21-TETA a strong potential for heavy metal ion removal.
Collapse
Affiliation(s)
- Xue He
- College of Pharmacy, Dali University, Dali 671003, China
| | - Jumu Xia
- College of Pharmacy, Dali University, Dali 671003, China
| | - Jieli He
- College of Pharmacy, Dali University, Dali 671003, China
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali 671003, China
| | - Anzhong Peng
- College of Pharmacy, Dali University, Dali 671003, China
| | - Yong Liu
- College of Pharmacy, Dali University, Dali 671003, China
| |
Collapse
|
16
|
Huang J, Wang Y, Liu P, Li J, Song M, Cui J, Wei L, Yan Y, Liu J. Kneading-Dough-Inspired Quickly Dispersing of Hydrophobic Particles into Aqueous Solutions for Designing Functional Hydrogels. Gels 2023; 9:gels9030242. [PMID: 36975691 PMCID: PMC10048493 DOI: 10.3390/gels9030242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Hydrogels containing hydrophobic materials have attracted great attention for their potential applications in drug delivery and biosensors. This work presents a kneading-dough-inspired method for dispersing hydrophobic particles (HPs) into water. The kneading process can quickly mix HPs with polyethyleneimine (PEI) polymer solution to form "dough", which facilitates the formation of stable suspensions in aqueous solutions. Combining with photo or thermal curing processes, one type of HPs incorporated PEI-polyacrylamide (PEI/PAM) composite hydrogel exhibiting good self-healing ability, tunable mechanical property is synthesized. The incorporating of HPs into the gel network results in the decrease in the swelling ratio, as well as the enhancement of the compressive modulus by more than five times. Moreover, the stable mechanism of polyethyleneimine-modified particles has been investigated using surface force apparatus, where the pure repulsion during approaching contributes to the good stability of the suspension. The stabilization time of the suspension is dependent on the molecular weight of PEI: the higher the molecular weight is, the better the stability of the suspension will be. Overall, this work demonstrates a useful strategy to introduce HPs into functional hydrogel networks. Future research can be focused on understanding the strengthening mechanism of HPs in the gel networks.
Collapse
Affiliation(s)
- Jun Huang
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 102206, China
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Youqi Wang
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 102206, China
- Research Institute of Petroleum Exploration and Development, Sinopec, Beijing 102206, China
| | - Ping Liu
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 102206, China
- Research Institute of Petroleum Exploration and Development, Sinopec, Beijing 102206, China
| | - Jinzhi Li
- Oil and Gas Development Management Center of Shengli Oilfield Company, Sinopec, Dongying 257000, China
| | - Min Song
- Oil and Gas Development Management Center of Shengli Oilfield Company, Sinopec, Dongying 257000, China
| | - Jiuyu Cui
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Luxing Wei
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Yonggan Yan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Jing Liu
- Xinxing Cathay International (Beijing) Institute of Materials Technology Co., Ltd., Beijing 100078, China
| |
Collapse
|
17
|
Edathil AA, Othman I, Pal P, Banat F. Interpenetrating network nanocomposite hydrogels as efficient adsorbents for the removal of total impurities from industrial lean methyldiethanolamine solution. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04542-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Fortunato A, Mba M. A Peptide-Based Hydrogel for Adsorption of Dyes and Pharmaceuticals in Water Remediation. Gels 2022; 8:672. [PMID: 36286173 PMCID: PMC9601570 DOI: 10.3390/gels8100672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 08/26/2023] Open
Abstract
The removal of dyes and pharmaceuticals from water has become a major issue in recent years due to the shortage of freshwater resources. The adsorption of these pollutants through nontoxic, easy-to-make, and environmentally friendly adsorbents has become a popular topic. In this work, a tetrapeptide-pyrene conjugate was rationally designed to form hydrogels under controlled acidic conditions. The hydrogels were thoroughly characterized, and their performance in the adsorption of various dyes and pharmaceuticals from water was investigated. The supramolecular hydrogel efficiently adsorbed methylene blue (MB) and diclofenac (DCF) from water. The effect of concentration in the adsorption efficiency was studied, and results indicated that while the adsorption of MB is governed by the availability of adsorption sites, in the case of DCF, concentration is the driving force of the process. In the case of MB, the nature of the dye-hydrogel interactions and the mechanism of the adsorption process were investigated through UV-Vis absorption spectroscopy. The studies proved how this dye is first adsorbed as a monomer, probably through electrostatic interactions; successively, at increasing concentrations as the electrostatic adsorption sites are depleted, dimerization on the hydrogel surface occurs.
Collapse
Affiliation(s)
| | - Miriam Mba
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
19
|
Gellan gum/bacterial cellulose hydrogel crosslinked with citric acid as an eco-friendly green adsorbent for safranin and crystal violet dye removal. Int J Biol Macromol 2022; 222:77-89. [PMID: 36096252 DOI: 10.1016/j.ijbiomac.2022.09.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/20/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022]
Abstract
In this study, ex-situ crosslinked gellan gum (GG)/bacterial cellulose (BC) hydrogels have been investigated as good absorbents for the removal of safranin and crystal violet dye pollutants. The preparation involves a cost-effective and easy-to-perform crosslinking procedure, using citric acid (CA) as a green crosslinker. The physicochemical and mechanical properties of the crosslinked hydrogels were examined by FTIR, TGA, SEM, XRD, and unconfined compression analyses. The swelling capacity of the hydrogels as a function of pH was investigated. CA depicted to improve structural stability as a crosslinker. The dye removal capacity of the hydrogels as good adsorbents was explored and showed higher efficiency in the removal of safranin dye as compared to crystal violet with optimum adsorption capacities obtained as 17.57 and 13.49 mg/g, respectively. Adsorption kinetics and isotherm models as well as thermodynamics examined. Results showed the adsorption process well fitted the pseudo 2nd-order kinetic and Langmuir-Freundlich models while temperature dependence study depicted to be exothermic. Furthermore, no significant loss of removal efficiency of the hydrogel adsorbent was observed even after five adsorption-desorption cycles. Based on the revealed results, the prepared hydrogel may serve as an effective adsorbent for the removal of dyes from the aqueous phase.
Collapse
|