1
|
Florowska A, Florowski T, Goździk P, Hilal A, Florowska H, Janiszewska-Turak E. The Effect of High Hydrostatic Pressure (HHP) Induction Parameters on the Formation and Properties of Inulin-Soy Protein Hydrogels. Gels 2024; 10:570. [PMID: 39330172 PMCID: PMC11430855 DOI: 10.3390/gels10090570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
The aim of this study was to determine the effect of high hydrostatic pressure (HHP) induction parameters on the formation and properties of inulin-soy protein hydrogels. Solutions containing 20 g/100 g of inulin and 3 or 6 g/100 g of soy protein isolate (3 SPI; 6 SPI) were subjected to HHPs of 150, 300, or 500 MPa for 5, 10, or 20 min. The HHP parameters had no significant impact on the effectiveness of hydrogel formation. In most cases, the time of solution pressurization had no significant effect on the characteristics of hydrogels. However, increasing the induction pressure from 150 to 300 MPa resulted in hydrogels with different characteristics being obtained, e.g., more flattened microstructure; higher stability (only 3 SPI); higher yield stress, firmness, and adhesiveness; and lower spreadability. These changes were more noticeable in the hydrogels with lower protein content. An increase in the induction pressure (to 500 MPa) did not result in a significant strengthening of the hydrogel structure. However, in the case of 6 SPI hydrogels, induction with a pressure of 500 MPa had an unfavorable effect on their stability. The results indicate that HHP (300 MPa) can be used as an effective method for strengthening the structure of inulin-protein hydrogels.
Collapse
Affiliation(s)
- Anna Florowska
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska Street, 02-787 Warsaw, Poland
| | - Tomasz Florowski
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska Street, 02-787 Warsaw, Poland
| | - Patrycja Goździk
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska Street, 02-787 Warsaw, Poland
| | - Adonis Hilal
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska Street, 02-787 Warsaw, Poland
| | - Hanna Florowska
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, 36 Rakowiecka Street, 02-532 Warsaw, Poland
| | - Emilia Janiszewska-Turak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska Street, 02-787 Warsaw, Poland
| |
Collapse
|
2
|
Li X, He Z, Xu J, Su C, Xiao X, Zhang L, Zhang H, Li H. Conformational Changes in Proteins Caused by High-Pressure Homogenization Promote Nanoparticle Formation in Natural Bone Aqueous Suspension. Foods 2022; 11:2869. [PMID: 36140999 PMCID: PMC9498631 DOI: 10.3390/foods11182869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
As a natural calcium resource, animal bone needs to be miniaturized to the nanoscale to improve palatability and absorption capacity. To explore the mechanism of high-pressure homogenization (HPH) in preparing natural bone aqueous nanosuspensions, the relationships between the changes in protein conformation, solubility and quality characteristics of rabbit bone aqueous suspensions (RBAS) prepared by different HPH cycles were studied. The results showed that the improvements in particle size, stability and calcium solubility of RBASs could be mainly attributed to the improvement of protein solubility induced by the changes in protein conformation. HPH treatment led to the denaturation and degradation of protein in rabbit bone, generating soluble peptides and improving the stability of the suspensions by enhancing the surface charge of the particles. When collagen as the main protein was partially degraded, the hydroxyapatite in the bone was crushed into tiny particles. The increase in the particle-specific surface area led to the release of calcium ions, which chelated with the peptides to produce peptide calcium. However, excessive HPH treatment caused the production of protein macromolecular aggregates and affected the quality of RBASs. This study is helpful to promote the application of HPH technology in animal bone nanoprocessing.
Collapse
Affiliation(s)
- Xue Li
- College of Food Science, Southwest University, Chongqing 400715, China
- Agricultural Product Processing Institute, Chongqing Academy of Agricultural Science, Chongqing 401329, China
| | - Zhifei He
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Jingbing Xu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Chang Su
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xu Xiao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ling Zhang
- Agricultural Product Processing Institute, Chongqing Academy of Agricultural Science, Chongqing 401329, China
| | - Huanhuan Zhang
- Agricultural Product Processing Institute, Chongqing Academy of Agricultural Science, Chongqing 401329, China
| | - Hongjun Li
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| |
Collapse
|
3
|
Hatakeyama W, Taira M, Sawada T, Hoshi M, Hachinohe Y, Sato H, Takafuji K, Kihara H, Takemoto S, Kondo H. Bone Regeneration of Critical-Size Calvarial Defects in Rats Using Highly Pressed Nano-Apatite/Collagen Composites. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3376. [PMID: 35591709 PMCID: PMC9099897 DOI: 10.3390/ma15093376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 12/18/2022]
Abstract
Osteo-conductive bone substitute materials are required in dentistry. In this study, highly pressed nano-hydroxyapatite/collagen (P-nHAP/COL) composites were formed by a hydraulic press. Critical-size bone defects (Φ = 6 mm) were made in the cranial bones of 10-week-old Wistar rats, in which P-nHAP/COL and pressed collagen (P-COL) specimens were implanted. Defect-only samples (DEF) were also prepared. After the rats had been nourished for 3 days, 4 weeks, or 8 weeks, ossification of the cranial defects of the rats was evaluated by micro-computed tomography (micro-CT) (n = 6 each). Animals were sacrificed at 8 weeks, followed by histological examination. On micro-CT, the opacity of the defect significantly increased with time after P-nHAP/COL implantation (between 3 days and 8 weeks, p < 0.05) due to active bone regeneration. In contrast, with P-COL and DEF, the opacity increased only slightly with time after implantation, indicating sluggish bone regeneration. Histological inspections of the defect zone implanted with P-nHAP/COL indicated the adherence of multinucleated giant cells (osteoclasts) to the implant with phagocytosis and fragmentation of P-nHAP/COL, whereas active bone formation occurred nearby. Fluorescent double staining indicated dynamic bone-formation activities. P-nHAP/COL is strongly osteo-conductive and could serve as a useful novel bone substitute material for future dental implant treatments.
Collapse
Affiliation(s)
- Wataru Hatakeyama
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Iwate, Japan; (W.H.); (M.H.); (Y.H.); (K.T.); (H.K.); (H.K.)
| | - Masayuki Taira
- Department of Biomedical Engineering, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun 028-3694, Iwate, Japan; (T.S.); (S.T.)
| | - Tomofumi Sawada
- Department of Biomedical Engineering, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun 028-3694, Iwate, Japan; (T.S.); (S.T.)
| | - Miki Hoshi
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Iwate, Japan; (W.H.); (M.H.); (Y.H.); (K.T.); (H.K.); (H.K.)
| | - Yuki Hachinohe
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Iwate, Japan; (W.H.); (M.H.); (Y.H.); (K.T.); (H.K.); (H.K.)
| | - Hirotaka Sato
- Division of Anatomical and Cellular Pathology, Department of Pathology, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun 028-3694, Iwate, Japan;
| | - Kyoko Takafuji
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Iwate, Japan; (W.H.); (M.H.); (Y.H.); (K.T.); (H.K.); (H.K.)
| | - Hidemichi Kihara
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Iwate, Japan; (W.H.); (M.H.); (Y.H.); (K.T.); (H.K.); (H.K.)
| | - Shinji Takemoto
- Department of Biomedical Engineering, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun 028-3694, Iwate, Japan; (T.S.); (S.T.)
| | - Hisatomo Kondo
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Iwate, Japan; (W.H.); (M.H.); (Y.H.); (K.T.); (H.K.); (H.K.)
| |
Collapse
|