1
|
Prozorova G, Emel'yanov A, Ivanova A, Semenova T, Fadeeva T, Nevezhina A, Korzhova S, Pozdnyakov A. A novel water-soluble polymer nanocomposite containing ultra-small Fe 3O 4 nanoparticles with strong antibacterial and antibiofilm activity. NANOSCALE 2025; 17:1458-1472. [PMID: 39620706 DOI: 10.1039/d4nr03276d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
A novel water-soluble polymer nanocomposite containing ultra-small iron oxide nanoparticles, intercalated into a biocompatible matrix of 1-vinyl-1,2,4-triazole and N-vinylpyrrolidone copolymer has been synthesized for the first time. The use of an original polymer matrix ensured effective stabilization of the crystalline phase of iron oxides at an early stage of its formation in an ultra-small (2-8 nm, average diameter is 4.8 nm) nanosized state due to its effective interaction with the functional groups of copolymer macromolecules. At the same time, the copolymer ensures the long-term stability of iron oxide nanoparticles in a nanosized dispersion. The structure and physicochemical properties of the copolymer and nanocomposite were studied by elemental analysis, 1H and 13C NMR spectroscopy, gel permeation chromatography, Fourier-transform infrared spectroscopy, transmission and scanning electron microscopy, dynamic light scattering, thermogravimetric analysis and differential scanning calorimetry. The nanocomposite exhibits high antibacterial and antibiofilm activity against both Gram-negative and Gram-positive bacteria. The nanocomposite at a concentration of 500 and 1000 μg mL-1 leads to complete death of Escherichia coli cells after 24 and 3 hours of incubation, respectively. The nanocomposite at a concentration of 100 μg mL-1 leads to complete death of Staphylococcus aureus cells after 24 hours of incubation. Which indicates the potential of using the nanocomposite for the treatment of superficial wounds and purulent-inflammatory complications.
Collapse
Affiliation(s)
- Galina Prozorova
- A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia.
| | - Artem Emel'yanov
- A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia.
| | - Anastasiya Ivanova
- A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia.
| | - Tatyana Semenova
- A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia.
| | - Tat'yana Fadeeva
- Irkutsk Scientific Center of Surgery and Traumatology, 1 Bortsov Revolutsii Street, 664003 Irkutsk, Russia
| | - Anna Nevezhina
- Irkutsk Scientific Center of Surgery and Traumatology, 1 Bortsov Revolutsii Street, 664003 Irkutsk, Russia
| | - Svetlana Korzhova
- A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia.
| | - Alexander Pozdnyakov
- A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia.
| |
Collapse
|
2
|
Ahmed NA, Elshahawy MF, Raafat AI, Abdou FY, Tahar HA. Rat model evaluation for healing-promoting effectiveness and antimicrobial activity of electron beam synthesized (polyvinyl alcohol-pectin)- silver doped zinc oxide hydrogel dressings enriched with lavender oil. Int J Biol Macromol 2024; 288:138618. [PMID: 39672426 DOI: 10.1016/j.ijbiomac.2024.138618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/18/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Ag/ZnO NPs and lavender oil (LVO) were incorporated into (polyvinyl alcohol/pectin) (PVA/Pet) dressings using electron beam irradiation technology. The Ag/ZnO NPs were prepared using the precipitation method and characterized using XRD, FTIR, and EDX techniques. TEM micrograph shows their spherical appearance with an average size of around 27.4 nm. The increase in the (PVA: Pet) feed solution concentration up to 30% enhances the gel content to 92%. The swelling degree reaches 1674% using 80 wt% pectin content. Meanwhile, increasing the irradiation dose up to 45 kGy increases the gel fraction and negatively affects the swelling capabilities. Incorporating Ag/ZnO NPs and LVO slightly decreased the gel fraction, the swelling degree, and the dressing's porosity reached 87%. In pseudo extracellular fluids, dressings with 10% LVO demonstrate 419% swelling capacities, and their WVTR reaches 271.1 g/m2h. Dressings show biocompatibility, antimicrobial potential, and excellent wound healing capacity towards the excisional wound model in rats, as confirmed by the histological and biochemical results. LVO-(PVA/Pet)-Ag/ZnO dressings may accelerate tissue granulation and remodeling by replacing lost collagen and cause the wound to constrict by upregulating markers associated with wound healing so that it can be recommended as a wound healing candidate.
Collapse
Affiliation(s)
- Nehad A Ahmed
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Mai F Elshahawy
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Amany I Raafat
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Fatma Y Abdou
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Hadeer A Tahar
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
3
|
Sulieman AME, Ibrahim SM, Alshammari M, Abdulaziz F, Idriss H, Alanazi NAH, Abdallah EM, Siddiqui AJ, Shommo SAM, Jamal A, Badraoui R. Zingiber officinale Uncovered: Integrating Experimental and Computational Approaches to Antibacterial and Phytochemical Profiling. Pharmaceuticals (Basel) 2024; 17:1551. [PMID: 39598460 PMCID: PMC11597846 DOI: 10.3390/ph17111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Zingiber officinale rhizome is widely cultivated in the central region of Sudan (Gezira) and data on the biological properties of this variety grown in Sudan's climate are scarce. This study aims to comprehensively analyze the antibacterial, antioxidant, phytochemical, and GC-MS properties of Zingiber officinale (ginger rhizome) to explore its potential applications. METHODS AND RESULTS The in vitro antibacterial assessment of the aqueous extract of Sudanese ginger revealed moderate activity against Staphylococcus aureus, Salmonella typhi, Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumonia, as determined by the disc diffusion method. The inhibition zones ranged from 12.87 ± 0.11 mm to 14.5 ± 0.12 mm at 30 µg/disc. The minimum inhibitory concentration ranged from 6.25 to 25 µg/mL, while the MBC ranged from 25 to 50 µg/mL. The MBC/MIC exhibited a bactericidal effect against all tested bacteria. Phytochemical screening revealed the presence of various chemical constituents, such as saponins, flavonoids, glycosides, alkaloids, steroids, terpenoids, and the absence of tannins in Sudanese ginger rhizome. Furthermore, GC-MS analysis of ginger rhizome identified 22 chemical compounds with retention times ranging from 7.564 to 17.023 min. The identification of 22 chemical compounds through GC-MS analysis further underscores the prospect of harnessing ginger rhizome for the development of novel medications. Computational analyses showed that ginger compounds bind the Protein Data Bank (PDB) codes 1JIJ and 2QZW with high binding affinities, reaching -9.5 kcal/mol. Ginger compounds also established promising molecular interactions with some key residues, satisfactorily explaining the in vitro results and supporting the pharmacokinetic and experimental findings. CONCLUSIONS This study lays the groundwork for future research and pharmaceutical exploration aimed at harnessing the beneficial properties of ginger rhizome for medicinal and therapeutic purposes, particularly its antimicrobial potential.
Collapse
Affiliation(s)
- Abdel Moneim Elhadi Sulieman
- Department of Biology, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (M.A.); (N.A.H.A.); (A.J.S.); (A.J.); (R.B.)
| | - Safa Mustafa Ibrahim
- Department of Microbiology, Faculty of Sciences, University of Gezira, Wad-Medani 21111, Sudan;
| | - Mamdouh Alshammari
- Department of Biology, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (M.A.); (N.A.H.A.); (A.J.S.); (A.J.); (R.B.)
| | - Fahad Abdulaziz
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia;
| | - Hajo Idriss
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia;
- Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Naimah Asid H. Alanazi
- Department of Biology, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (M.A.); (N.A.H.A.); (A.J.S.); (A.J.); (R.B.)
| | - Emad M. Abdallah
- Department of Biology, College of Science, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (M.A.); (N.A.H.A.); (A.J.S.); (A.J.); (R.B.)
| | - Sohair A. M. Shommo
- Department of Sport Science and Physical Activity, College of Education, University of Ha’il, Ha’il 81451, Saudi Arabia;
| | - Arshad Jamal
- Department of Biology, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (M.A.); (N.A.H.A.); (A.J.S.); (A.J.); (R.B.)
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (M.A.); (N.A.H.A.); (A.J.S.); (A.J.); (R.B.)
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta, Tunis 1007, Tunisia
| |
Collapse
|
4
|
Alsaidan OA, Ahmad N, Ejaz H, Hussain MA, Zafar A, Alhassan HH. Preparation and characterization of a ciprofloxacin-loaded nanoparticles incorporated polymeric film dressing. RSC Adv 2024; 14:27520-27529. [PMID: 39221130 PMCID: PMC11361098 DOI: 10.1039/d4ra02951h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
In an effort to prepare a modern polysaccharide-based dressing for sustained/prolonged delivery of the antibacterial agent to prevent and control skin wound infection, ciprofloxacin (CP)-loaded sodium alginate (SA)-chitosan (CS) nanoparticles (NPs) were incorporated into novel arabinoxylan (AX)-pectin (PC) blended polymeric films by solvent casting. The CP-NPs were prepared by a two-step ionic interaction method with < 300 nm size, about 25 mV zeta potential, 74% CP-loading efficiency, and approximately round shape. The CP-NPs were incorporated in optimized AX-PC polymeric film prepared by using 2% AX and 2% PC with a plasticizer (2% glycerol) and then these films were characterized for suitability as a film dressing. The transparency, improved mechanical strength, thermal stability, water transmission, and exudate uptake characteristics indicated that CP-NPs incorporated AX-PC polymeric films were suitable for dressing applications. The CP-NPs incorporated AX-PC films exhibited sustained CP release (90% release in 36 h) and better antibacterial susceptibility as compared to free CP-containing AX-PC films. Thus, CP-NPs incorporated AX-PC films are promising dressing materials to prevent and control wound infection with prolonged antibiotic release.
Collapse
Affiliation(s)
- Omar A Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University Sakaka 72388 Aljouf Saudi Arabia
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University Sakaka 72388 Aljouf Saudi Arabia
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University Sakaka 72388 Saudi Arabia
| | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab Lahore 54590 Pakistan
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University Sakaka 72388 Aljouf Saudi Arabia
| | - Hassan H Alhassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University Sakaka 72388 Saudi Arabia
| |
Collapse
|
5
|
Hernández-Rangel A, Silva-Bermudez P, Almaguer-Flores A, García VI, Esparza R, Luna-Bárcenas G, Velasquillo C. Development and characterization of three-dimensional antibacterial nanocomposite sponges of chitosan, silver nanoparticles and halloysite nanotubes. RSC Adv 2024; 14:24910-24927. [PMID: 39131504 PMCID: PMC11310750 DOI: 10.1039/d4ra04274c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
In this work, we developed novel nanocomposite three-dimensional (3D) scaffolds composed of chitosan (CTS), halloysite nanotubes (HNTs) and silver nanoparticles (AgNPs) with enhanced antimicrobial activity and fibroblast cell compatibility for their potential use in wound dressing applications. A stock CTS-HNT solution was obtained by mixing water-dispersed HNTs with CTS aqueous-acid solution, and then, AgNPs, in different concentrations, were synthesized in the CTS-HNT solution via a CTS-mediated in situ reduction method. Finally, freeze-gelation was used to obtain CTS-HNT-AgNP 3D porous scaffolds (sponges). Morphology analysis showed that synthesized AgNPs were spherical with an average diameter of 11 nm. HNTs' presence did not affect the AgNPs morphology or size but improved the mechanical properties of the scaffolds, where CTS-HNT sponges exhibited a 5 times larger compression stress than bare-CTS sponges. AgNPs in the scaffolds further increased their mechanical strength in correlation to the AgNP concentration, and conferred them improved antibacterial activity against Gram-negative and Gram-positive bacteria, inhibiting the planktonic proliferation and adhesion of bacteria in a AgNP concentration depending on manner. In vitro cell viability and immunofluorescence assays exhibited that human fibroblast (HF) culture was supported by the sponges, where HF retained their phenotype upon culture on the sponges. Present CTS-HNT-AgNP sponges showed promising mechanical, antibacterial and cytocompatibility properties to be used as potential scaffolds for wound dressing applications.
Collapse
Affiliation(s)
- A Hernández-Rangel
- Instituto Politécnico Nacional, ESIQIE Av. IPN S/N Zacatenco Mexico City 07738 Mexico
| | - P Silva-Bermudez
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra 14389 Ciudad de México Mexico
| | - A Almaguer-Flores
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México 04510 Ciudad de México Mexico
| | - V I García
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México 04510 Ciudad de México Mexico
| | - R Esparza
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México Boulevard Juriquilla 3001 Santiago de Querétaro 76230 Mexico
| | - G Luna-Bárcenas
- Centro de Investigación y de Estudios Avanzados del IPN 76230 Querétaro Mexico
| | - C Velasquillo
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra 14389 Ciudad de México Mexico
| |
Collapse
|
6
|
Afshar M, Rezaei A, Eghbali S, Nasirizadeh S, Alemzadeh E, Alemzadeh E, Shadi M, Sedighi M. Nanomaterial strategies in wound healing: A comprehensive review of nanoparticles, nanofibres and nanosheets. Int Wound J 2024; 21:e14953. [PMID: 38949185 PMCID: PMC11215686 DOI: 10.1111/iwj.14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/06/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Wound healing is a complex process that orchestrates the coordinated action of various cells, cytokines and growth factors. Nanotechnology offers exciting new possibilities for enhancing the healing process by providing novel materials and approaches to deliver bioactive molecules to the wound site. This article elucidates recent advancements in utilizing nanoparticles, nanofibres and nanosheets for wound healing. It comprehensively discusses the advantages and limitations of each of these materials, as well as their potential applications in various types of wounds. Each of these materials, despite sharing common properties, can exhibit distinct practical characteristics that render them particularly valuable for healing various types of wounds. In this review, our primary focus is to provide a comprehensive overview of the current state-of-the-art in applying nanoparticles, nanofibres, nanosheets and their combinations to wound healing, serving as a valuable resource to guide researchers in their appropriate utilization of these nanomaterials in wound-healing research. Further studies are necessary to gain insight into the application of this type of nanomaterials in clinical settings.
Collapse
Affiliation(s)
- Mohammad Afshar
- Department of Anatomy, Faculty of MedicineBirjand University of Medical SciencesBirjandIran
- Medical Toxicology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Alireza Rezaei
- Anatomical Clinical PathologistIslamic Azad University of Medical SciencesMashhadIran
| | - Samira Eghbali
- Department of Pharmacognosy and Traditional PharmacySchool of Pharmacy, Birjand University of Medical SciencesBirjandIran
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
| | - Samira Nasirizadeh
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
- Department of Pharmaceutics and NanotechnologySchool of Pharmacy, Birjand university of Medical SciencesBirjandIran
| | - Effat Alemzadeh
- Infectious Diseases Research CenterBirjand University of Medical SciencesBirjandIran
| | - Esmat Alemzadeh
- Department of Medical BiotechnologyFaculty of Medicine, Birjand University of Medical SciencesBirjandIran
| | - Mehri Shadi
- Department of Anatomy, Faculty of MedicineBirjand University of Medical SciencesBirjandIran
| | - Mahsa Sedighi
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
- Department of Pharmaceutics and NanotechnologySchool of Pharmacy, Birjand university of Medical SciencesBirjandIran
| |
Collapse
|
7
|
Hussan, Nisa S, Bano SA, Zia M. Chemically synthesized ciprofloxacin-PEG-FeO nanotherapeutic exhibits strong antibacterial and controlled cytotoxic effects. Nanomedicine (Lond) 2024; 19:875-893. [PMID: 38530883 DOI: 10.2217/nnm-2023-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Aim: To develop a biocompatible conjugated ciprofloxacin-PEG-FeO nanodelivery system with increased efficacy of available therapeutics in a controlled manner. Materials & methods: FeO nanoparticles were synthesized by chemical and biological methods and modified as ciprofloxacin-PEG-FeO nanoformulations. After initial antibacterial and cytotoxicity studies, the effective and biocompatible nanoformulations was further fabricated as nanotherapeutics for in vivo studies in mouse models. Results: Chemically synthesized ciprofloxacin-PEG-FeO nanoformulations demonstrated boosted antibacterial activity against clinically isolated bacterial strains. Nanoformulations were also found to be compatible with baby hamster kidney 21 cells and red blood cells. In in vivo studies, nanotherapeutic showed wound-healing effects with eradication of Staphylococcus aureus infection. Conclusion: The investigations indicate that the developed nanotherapeutic can eradicate localized infections and enhance wound healing with controlled cytotoxicity.
Collapse
Affiliation(s)
- Hussan
- Department of Microbiology, University of Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Sobia Nisa
- Department of Microbiology, University of Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Syeda Asma Bano
- Department of Microbiology, University of Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid e Azam University Islamabad, Islamabad, 15320, Pakistan
| |
Collapse
|
8
|
Sui J, Hou Y, Chen M, Zheng Z, Meng X, Liu L, Huo S, Liu S, Zhang H. Nanomaterials for Anti-Infection in Orthopedic Implants: A Review. COATINGS 2024; 14:254. [DOI: 10.3390/coatings14030254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Postoperative implant infection is a severe complication in orthopedic surgery, often leading to implant failure. Current treatment strategies mainly rely on systemic antibiotic therapies, despite contributing to increasing bacterial resistance. In recent years, nanomaterials have gained attention for their potential in anti-infection methods. They exhibit more substantial bactericidal effects and lower drug resistance than conventional antimicrobial agents. Nanomaterials also possess multiple bactericidal mechanisms, such as physico-mechanical interactions. Additionally, they can serve as carriers for localized antimicrobial delivery. This review explores recent applications of nanomaterials with different morphologies in post-orthopedic surgery infections and categorizes their bactericidal mechanisms.
Collapse
Affiliation(s)
- Junhao Sui
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Yijin Hou
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Mengchen Chen
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Zhong Zheng
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Xiangyu Meng
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Lu Liu
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Shicheng Huo
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Navy Medical University, Shanghai 200003, China
| | - Shu Liu
- Department of Spine Surgery, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Hao Zhang
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| |
Collapse
|
9
|
Hou S, Xia Z, Pan J, Wang N, Gao H, Ren J, Xia X. Bacterial Cellulose Applied in Wound Dressing Materials: Production and Functional Modification - A Review. Macromol Biosci 2024; 24:e2300333. [PMID: 37750477 DOI: 10.1002/mabi.202300333] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/12/2023] [Indexed: 09/27/2023]
Abstract
In recent years, the development of new type wound dressings has gradually attracted more attention. Bacterial cellulose (BC) is a natural polymer material with various unique properties, such as ultrafine 3D nanonetwork structure, high water retention capacity, and biocompatibility. These properties allow BC to be used independently or in combination with different components (such as biopolymers and nanoparticles) to achieve diverse effects. This means that BC has great potential as a wound dressing. However, systematic summaries for the production and commercial application of BC-based wound dressings are still lacking. Therefore, this review provides a detailed introduction to the production fermentation process of BC, including various production strains and their biosynthetic mechanisms. Subsequently, with regard to the functional deficiencies of bacterial cellulose as a wound dressing, recent research progress in this area is enumerated. Finally, prospects are discussed for the low-cost production and high-value-added product development of BC-based wound dressings.
Collapse
Affiliation(s)
- Shuaiwen Hou
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Zhaopeng Xia
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Jiajun Pan
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Ning Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Hanchao Gao
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Jingli Ren
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Xuekui Xia
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| |
Collapse
|
10
|
Permyakova ES, Solovieva AO, Sitnikova N, Kiryukhantsev-Korneev PV, Kutzhanov MK, Sheveyko AN, Ignatov SG, Slukin PV, Shtansky DV, Manakhov AM. Polycaprolactone Nanofibers Functionalized by Fibronectin/Gentamicin and Implanted Silver for Enhanced Antibacterial Properties, Cell Adhesion, and Proliferation. Polymers (Basel) 2024; 16:261. [PMID: 38257060 PMCID: PMC10819432 DOI: 10.3390/polym16020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Novel nanomaterials used for wound healing should have many beneficial properties, including high biological and antibacterial activity. Immobilization of proteins can stimulate cell migration and viability, and implanted Ag ions provide an antimicrobial effect. However, the ion implantation method, often used to introduce a bactericidal element into the surface, can lead to the degradation of vital proteins. To analyze the surface structure of nanofibers coated with a layer of plasma COOH polymer, fibronectin/gentamicin, and implanted with Ag ions, a new X-ray photoelectron spectroscopy (XPS) fitting method is used for the first time, allowing for a quantitative assessment of surface biomolecules. The results demonstrated noticeable changes in the composition of fibronectin- and gentamicin-modified nanofibers upon the introduction of Ag ions. Approximately 60% of the surface chemistry has changed, mainly due to an increase in hydrocarbon content and the introduction of up to 0.3 at.% Ag. Despite the significant degradation of fibronectin molecules, the biological activity of Ag-implanted nanofibers remained high, which is explained by the positive effect of Ag ions inducing the generation of reactive oxygen species. The PCL nanofibers with immobilized gentamicin and implanted silver ions exhibited very significant antipathogen activity to a wide range of Gram-positive and Gram-negative strains. Thus, the results of this work not only make a significant contribution to the development of new hybrid fiber materials for wound dressings but also demonstrate the capabilities of a new XPS fitting methodology for quantitative analysis of surface-related proteins and antibiotics.
Collapse
Affiliation(s)
- Elizaveta S. Permyakova
- Research Laboratory “Inorganic Nanomaterials”, National University of Science and Technology “MISIS”, Moscow 119049, Russia; (E.S.P.); (P.V.K.-K.); (M.K.K.); (A.N.S.); (S.G.I.); (P.V.S.); (D.V.S.)
| | - Anastasiya O. Solovieva
- Research Institute of Clinical and Experimental Lymphology—Branch of the ICG SB RAS, 2 Timakova St., Novosibirsk 630060, Russia; (A.O.S.); (N.S.)
| | - Natalia Sitnikova
- Research Institute of Clinical and Experimental Lymphology—Branch of the ICG SB RAS, 2 Timakova St., Novosibirsk 630060, Russia; (A.O.S.); (N.S.)
| | - Philipp V. Kiryukhantsev-Korneev
- Research Laboratory “Inorganic Nanomaterials”, National University of Science and Technology “MISIS”, Moscow 119049, Russia; (E.S.P.); (P.V.K.-K.); (M.K.K.); (A.N.S.); (S.G.I.); (P.V.S.); (D.V.S.)
| | - Magzhan K. Kutzhanov
- Research Laboratory “Inorganic Nanomaterials”, National University of Science and Technology “MISIS”, Moscow 119049, Russia; (E.S.P.); (P.V.K.-K.); (M.K.K.); (A.N.S.); (S.G.I.); (P.V.S.); (D.V.S.)
| | - Alexander N. Sheveyko
- Research Laboratory “Inorganic Nanomaterials”, National University of Science and Technology “MISIS”, Moscow 119049, Russia; (E.S.P.); (P.V.K.-K.); (M.K.K.); (A.N.S.); (S.G.I.); (P.V.S.); (D.V.S.)
| | - Sergey G. Ignatov
- Research Laboratory “Inorganic Nanomaterials”, National University of Science and Technology “MISIS”, Moscow 119049, Russia; (E.S.P.); (P.V.K.-K.); (M.K.K.); (A.N.S.); (S.G.I.); (P.V.S.); (D.V.S.)
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia
- Lomonosov Moscow State University, GSP-1, 1 Leninskiye Gory, Moscow 119991, Russia
| | - Pavel V. Slukin
- Research Laboratory “Inorganic Nanomaterials”, National University of Science and Technology “MISIS”, Moscow 119049, Russia; (E.S.P.); (P.V.K.-K.); (M.K.K.); (A.N.S.); (S.G.I.); (P.V.S.); (D.V.S.)
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia
| | - Dmitry V. Shtansky
- Research Laboratory “Inorganic Nanomaterials”, National University of Science and Technology “MISIS”, Moscow 119049, Russia; (E.S.P.); (P.V.K.-K.); (M.K.K.); (A.N.S.); (S.G.I.); (P.V.S.); (D.V.S.)
| | - Anton M. Manakhov
- Research Laboratory “Inorganic Nanomaterials”, National University of Science and Technology “MISIS”, Moscow 119049, Russia; (E.S.P.); (P.V.K.-K.); (M.K.K.); (A.N.S.); (S.G.I.); (P.V.S.); (D.V.S.)
- Research Institute of Clinical and Experimental Lymphology—Branch of the ICG SB RAS, 2 Timakova St., Novosibirsk 630060, Russia; (A.O.S.); (N.S.)
| |
Collapse
|
11
|
Andreica BI, Anisiei A, Iftime MM, Ababei RV, Ochiuz L, Vasincu D, Vasilache IA, Volovat C, Boboc D, Poroch V, Eva L, Agop M, Scripcariu DV, Volovat SR. Theoretical-Experimental Approach of Chitosan/Quaternized Chitosan Nanofibers' Behavior in Wound Exudate Media. Pharmaceutics 2023; 15:2722. [PMID: 38140063 PMCID: PMC10748138 DOI: 10.3390/pharmaceutics15122722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to investigate the behavior of chitosan/quaternized chitosan fibers in media mimicking wound exudates to understand their capacities as wound dressing. Fiber analysis of the fibers using dynamic vapor sorption proved their ability to adsorb moisture up to 60% and then to desorb it as a function of humidity, indicating their outstanding breathability. Dissolution analyses showed that quaternized chitosan leached from the fibers in water and PBS, whereas only small portions of chitosan were solubilized in water. In media containing lysozyme, the fibers degraded with a rate determined by their composition and pH, reaching a mass loss of up to 47% in media of physiologic pH. Notably, in media mimicking the wound exudate during healing, they adsorbed moisture even when their mass loss due to biodegradation was high, whereas they were completely degraded in the media of normal tissues, indicating bioabsorbable dressing capacities. A mathematical model was constructed, which characterized the degradation rate and morphology changes of chitosan/quaternized chitosan fibers through analyses of dynamics in scale space, using the Theory of Scale Relativity. The model was validated using experimental data, making it possible to generalize it to the degradation of other biopolymeric systems that address wound healing.
Collapse
Affiliation(s)
- Bianca-Iustina Andreica
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania; (B.-I.A.); (A.A.); (M.-M.I.)
| | - Alexandru Anisiei
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania; (B.-I.A.); (A.A.); (M.-M.I.)
| | - Manuela-Maria Iftime
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania; (B.-I.A.); (A.A.); (M.-M.I.)
| | - Razvan-Vasile Ababei
- Laboratory of Applied Meteorology and Climatology, A Building, Physics, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania, RECENT AIR, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania;
| | - Lacramioara Ochiuz
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Decebal Vasincu
- Department of Biophysics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania;
| | - Ingrid-Andrada Vasilache
- Department of Obstetrics and Gynecology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Constantin Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania; (D.B.); (S.R.V.)
| | - Diana Boboc
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania; (D.B.); (S.R.V.)
| | - Vladimir Poroch
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Lucian Eva
- “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 2 Ateneului Street, 700309 Iasi, Romania;
| | - Maricel Agop
- Department of Physics, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
- Romanian Scientists Academy, 050094 Bucharest, Romania
| | - Dragos-Viorel Scripcariu
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania;
| | - Simona Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania; (D.B.); (S.R.V.)
| |
Collapse
|
12
|
Capanema NSV, Mansur AAP, Carvalho SM, Martins T, Gonçalves MS, Andrade RS, Dorneles EMS, Lima LCD, de Alvarenga ÉLFC, da Fonseca EVB, de Sá MA, Lage AP, Lobato ZIP, Mansur HS. Nanosilver-Functionalized Hybrid Hydrogels of Carboxymethyl Cellulose/Poly(Vinyl Alcohol) with Antibacterial Activity for Prevention and Therapy of Infections of Diabetic Chronic Wounds. Polymers (Basel) 2023; 15:4542. [PMID: 38231902 PMCID: PMC10708083 DOI: 10.3390/polym15234542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Diabetic foot ulcers (DFUs) are considered one of the most severe chronic complications of diabetes and can lead to amputation in severe cases. In addition, bacterial infections in diabetic chronic wounds aggravate this scenario by threatening human health. Wound dressings made of polymer matrices with embedded metal nanoparticles can inhibit microorganism growth and promote wound healing, although the current clinical treatments for diabetic chronic wounds remain unsatisfactory. In this view, this research reports the synthesis and characterization of innovative hybrid hydrogels made of carboxymethyl cellulose (CMC) and poly(vinyl alcohol) (PVA) chemically crosslinked by citric acid (CA) functionalized with silver nanoparticles (AgNPs) generated in situ using an eco-friendly aqueous process. The results assessed through comprehensive in vitro and in vivo assays demonstrated that these hybrid polymer hydrogels functionalized with AgNPs possess physicochemical properties, cytocompatibility, hemocompatibility, bioadhesion, antibacterial activity, and biocompatibility suitable for wound dressings to support chronic wound healing process as well as preventing and treating bacterial infections. Hence, it can be envisioned that, with further research and development, these polymer-based hybrid nanoplatforms hold great potential as an important tool for creating a new generation of smart dressings for treating chronic diabetic wounds and opportunistic bacterial infections.
Collapse
Affiliation(s)
- Nádia S. V. Capanema
- Center of Nanoscience, Nanotechnology, and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (N.S.V.C.); (A.A.P.M.); (S.M.C.); (T.M.)
| | - Alexandra A. P. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (N.S.V.C.); (A.A.P.M.); (S.M.C.); (T.M.)
| | - Sandhra M. Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (N.S.V.C.); (A.A.P.M.); (S.M.C.); (T.M.)
| | - Talita Martins
- Center of Nanoscience, Nanotechnology, and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (N.S.V.C.); (A.A.P.M.); (S.M.C.); (T.M.)
| | - Maysa S. Gonçalves
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, UFLA, Lavras 37200-000, Brazil; (M.S.G.); (R.S.A.); (E.M.S.D.)
| | - Rafaella S. Andrade
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, UFLA, Lavras 37200-000, Brazil; (M.S.G.); (R.S.A.); (E.M.S.D.)
| | - Elaine M. S. Dorneles
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, UFLA, Lavras 37200-000, Brazil; (M.S.G.); (R.S.A.); (E.M.S.D.)
| | - Letícia C. D. Lima
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (L.C.D.L.); (M.A.d.S.)
| | - Érika L. F. C. de Alvarenga
- Department of Natural Sciences, Universidade Federal de São João Del-Rei, UFSJ, São João Del-Rei 36301-160, Brazil; (É.L.F.C.d.A.); (E.V.B.d.F.)
| | - Emanuel V. B. da Fonseca
- Department of Natural Sciences, Universidade Federal de São João Del-Rei, UFSJ, São João Del-Rei 36301-160, Brazil; (É.L.F.C.d.A.); (E.V.B.d.F.)
| | - Marcos Augusto de Sá
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (L.C.D.L.); (M.A.d.S.)
| | - Andrey P. Lage
- Departamento de Medicina Veterinária Preventiva, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (A.P.L.); (Z.I.P.L.)
| | - Zelia I. P. Lobato
- Departamento de Medicina Veterinária Preventiva, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (A.P.L.); (Z.I.P.L.)
| | - Herman S. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (N.S.V.C.); (A.A.P.M.); (S.M.C.); (T.M.)
| |
Collapse
|
13
|
Liang Y, Li M, Tang Y, Yang J, Wang J, Zhu Y, Liang H, Lin Q, Cheng Y, Yang X, Zhu H. Temperature-sensitive hydrogel dressing loaded with nicotinamide mononucleotide accelerating wound healing in diabetic mice. Biomed Pharmacother 2023; 167:115431. [PMID: 37688988 DOI: 10.1016/j.biopha.2023.115431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023] Open
Abstract
Diabetic foot ulcers, a common complication of diabetes mellitus, significantly impact patients' quality of life and impose a substantial economic burden on healthcare systems. However, the currently used treatments are associated with various challenges and the traditionally used dressings lack functional efficacy. Oxidative stress is believed to play a vital role in diabetic wound healing. Therefore, nicotinamide mononucleotide (NMN), which is known for its antioxidant properties, offers the potential to accelerate the wound-healing process. Here, a thermosensitive composite hydrogel was synthesized by mixing Pluronic F127 and Pluronic F68 with an antibacterial component chitosan. The hydrogel exhibited favorable properties including a stable structure, appropriate solid-liquid phase change, loose porosity, slow-release, antibacterial properties, and biocompatibility. In vitro experiments demonstrated that the NMN-loaded temperature-sensitive hydrogel effectively promoted cell proliferation, migration, and angiogenesis and exhibited antioxidant activity. In diabetic thickness skin defect models, NMN-loaded temperature-sensitive hydrogel treatment significantly accelerated wound healing by promoting collagen synthesis, angiogenesis, and increased expression of vascular endothelial growth factor and transforming growth factor- β1. In summary, NMN-loaded temperature-sensitive hydrogel can promote diabetic wound healing in a simple, economical, effective, and safe manner, with potential application in treating diabetic wounds.
Collapse
Affiliation(s)
- Yue Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Min Li
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuan Tang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jinlong Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jing Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuqi Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Huitong Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Qinru Lin
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yipen Cheng
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xinyi Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Sang W, Zhang R, Shi X, Dai Y. Advanced Metallized Nanofibers for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302044. [PMID: 37532670 PMCID: PMC10520626 DOI: 10.1002/advs.202302044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/13/2023] [Indexed: 08/04/2023]
Abstract
Nanofibers are long, wire-like materials with nanoscale diameters and specific length diameter ratios. Nanofibers have porous reticular networks with remarkably high specific surface areas and significant interconnectivity between pores, allowing for the chemical modification and loading of drugs. Metallized nanofibers are novel materials that enhance the performance of attributes of conventional nanofibers by combining metals with nanofibers through electrostatic spinning doping, chemical modification, and loading approaches. Due to their unique physical and chemical properties, metallized nanofibers are diverse, rapidly developed materials in the fields of physical chemistry, materials science, and battery preparation. To date, with improvement in advanced preparation techniques and biocompatibility levels for materials, metallized nanofiber applications are gradually expanding into the biomedical field due to their excellent thermal and electrical conductivities and unique metal properties. In this review, the applications of metallized nanofibers in biomedicine are summarized. It is suggested to prepare metallized multifunctional nanofibers for tissue engineering, drug delivery, tumor treatment, wound healing, and biosensing applications by taking safety and stability as the main material selection guidelines. Finally, the development of nanofibers for biomedical applications is summarized and discussed.
Collapse
Affiliation(s)
- Wei Sang
- Cancer Center and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- Institute of Medical TechnologyShanxi Medical UniversityTaiyuan030001China
| | - Ruiping Zhang
- The Radiology Department of First Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsDonghua UniversityShanghai201620China
| | - Yunlu Dai
- Cancer Center and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SAR999078China
| |
Collapse
|
15
|
Dasan A, Chandrasekar A. Special Issue: Bioceramics, Bioglasses, and Gels for Tissue Engineering. Gels 2023; 9:586. [PMID: 37504465 PMCID: PMC10379387 DOI: 10.3390/gels9070586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023] Open
Abstract
Undoubtedly, biomaterials such as bioceramics, bioactive glasses, and gels have attracted a wide range of research interest in the field of tissue engineering (TE), as they facilitate the essential support and environment for cells to grow, differentiate, and, specifically, regenerate new tissues [...].
Collapse
Affiliation(s)
- Arish Dasan
- FunGlass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia
| | | |
Collapse
|
16
|
Frousiou E, Tonis E, Rotas G, Pantelia A, Chalkidis SG, Heliopoulos NS, Kagkoura A, Siamidis D, Galeou A, Prombona A, Stamatakis K, Boukos N, Vougioukalakis GC. Kevlar ®, Nomex ®, and VAR Modification by Small Organic Molecules Anchoring: Transfusing Antibacterial Properties and Improving Water Repellency. Molecules 2023; 28:5465. [PMID: 37513342 PMCID: PMC10385662 DOI: 10.3390/molecules28145465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The surface modification of fabrics composed of Kevlar®, Nomex®, or VAR was extensively investigated. Kevlar® and Nomex® are widely-utilized aramid materials, whereas VAR is a technical fabric comprising 64% viscose, 24% para-aramid (Kevlar®), 10% polyamide, and 2% antistatic fibers. Both aramid materials and cellulose/viscose exhibit exceptional mechanical properties that render them valuable in a wide range of applications. For the herein studied modification of Kevlar®, Nomex®, and VAR, we used small organic molecules 3-allyl-5,5-dimethylhydantoin (ADMH) and 3-(acrylamidopropyl)trimethylammonium chloride (APTAC), which were anchored onto the materials under study via graft polymerization. By doing so, excellent antibacterial properties were induced in the three studied fabrics. Their water repellency was improved in most cases as well. Extensive characterization studies were conducted to probe the properties of the modified materials, employing Raman and FTIR spectroscopies, Scanning Electron Microscopy (SEM), and thermogravimetric analysis (TGA).
Collapse
Affiliation(s)
- Efrosyni Frousiou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Efstathios Tonis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Georgios Rotas
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
- Laboratory of Organic Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Anna Pantelia
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Savvas G Chalkidis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Nikolaos S Heliopoulos
- 700 Military Factory, Supreme Military Support Command, 50 Anapafseos, 18648 Piraeus, Greece
| | - Antonia Kagkoura
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | | | - Angeliki Galeou
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Patriarchou Grigoriou E' & Neapoleos Str., 15341 Agia Paraskevi Attica, Greece
| | - Anastasia Prombona
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Patriarchou Grigoriou E' & Neapoleos Str., 15341 Agia Paraskevi Attica, Greece
| | - Kostas Stamatakis
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Patriarchou Grigoriou E' & Neapoleos Str., 15341 Agia Paraskevi Attica, Greece
| | - Nikos Boukos
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", Patriarchou Grigoriou E' & Neapoleos Str., 15341 Agia Paraskevi Attica, Greece
| | - Georgios C Vougioukalakis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
17
|
Lin S, Lin Z, Zhou F, Wang D, Zheng B, Hu J. Polyoxometalate K 6[P 2Mo 18O 62] Inactivates Escherichia coli O157:H7 by Inducing recA Expression and Apoptosis-like Bacterial Death. Int J Mol Sci 2023; 24:11469. [PMID: 37511226 PMCID: PMC10380553 DOI: 10.3390/ijms241411469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Polyoxometalates have emerged as promising bactericidal agents. In the current study, the bactericidal activity of polyoxometalate K6[P2Mo18O62] against Escherichia coli (E. coli) O157:H7 and its possible underlying mechanisms were explored. The obtained results demonstrated that K6[P2Mo18O62] could effectively kill E. coli O157:H7 at millimolar levels. Moreover, K6[P2Mo18O62] treatment also induced significant increases in recA protein expression and further triggered characteristic apoptosis-like bacterial death events such as DNA fragmentation and phosphatidylserine exposure. In conclusion, polyoxometalate K6[P2Mo18O62] possesses a desirable antibacterial activity, and induction of bacterial apoptosis-like death might be involved in its underlying bactericidal mechanisms.
Collapse
Affiliation(s)
- Shaoling Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongjing Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dehua Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiamiao Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
18
|
Hassan M, Khaleel A, Karam SM, Al-Marzouqi AH, ur Rehman I, Mohsin S. Bacterial Inhibition and Osteogenic Potentials of Sr/Zn Co-Doped Nano-Hydroxyapatite-PLGA Composite Scaffold for Bone Tissue Engineering Applications. Polymers (Basel) 2023; 15:polym15061370. [PMID: 36987151 PMCID: PMC10057618 DOI: 10.3390/polym15061370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 03/12/2023] Open
Abstract
Bacterial infection associated with bone grafts is one of the major challenges that can lead to implant failure. Treatment of these infections is a costly endeavor; therefore, an ideal bone scaffold should merge both biocompatibility and antibacterial activity. Antibiotic-impregnated scaffolds may prevent bacterial colonization but exacerbate the global antibiotic resistance problem. Recent approaches combined scaffolds with metal ions that have antimicrobial properties. In our study, a unique strontium/zinc (Sr/Zn) co-doped nanohydroxyapatite (nHAp) and Poly (lactic-co-glycolic acid) -(PLGA) composite scaffold was fabricated using a chemical precipitation method with different ratios of Sr/Zn ions (1%, 2.5%, and 4%). The scaffolds’ antibacterial activity against Staphylococcus aureus were evaluated by counting bacterial colony-forming unit (CFU) numbers after direct contact with the scaffolds. The results showed a dose-dependent reduction in CFU numbers as the Zn concentration increased, with 4% Zn showing the best antibacterial properties of all the Zn-containing scaffolds. PLGA incorporation in Sr/Zn-nHAp did not affect the Zn antibacterial activity and the 4% Sr/Zn-nHAp-PLGA scaffold showed a 99.7% bacterial growth inhibition. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability assay showed that Sr/Zn co-doping supported osteoblast cell proliferation with no apparent cytotoxicity and the highest doping percentage in the 4% Sr/Zn-nHAp-PLGA was found to be ideal for cell growth. In conclusion, these findings demonstrate the potential for a 4% Sr/Zn-nHAp-PLGA scaffold with enhanced antibacterial activity and cytocompatibility as a suitable candidate for bone regeneration.
Collapse
Affiliation(s)
- Mozan Hassan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Abbas Khaleel
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sherif Mohamed Karam
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ali Hassan Al-Marzouqi
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ihtesham ur Rehman
- School of Medicine, University of Central Lancashire, Preston PR1 2HE, UK
| | - Sahar Mohsin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: ; Tel.: +971-3-713-7516
| |
Collapse
|
19
|
Sari MHM, Cobre ADF, Pontarolo R, Ferreira LM. Status and Future Scope of Soft Nanoparticles-Based Hydrogel in Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15030874. [PMID: 36986736 PMCID: PMC10057168 DOI: 10.3390/pharmaceutics15030874] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Wounds are alterations in skin integrity resulting from any type of trauma. The healing process is complex, involving inflammation and reactive oxygen species formation. Therapeutic approaches for the wound healing process are diverse, associating dressings and topical pharmacological agents with antiseptics, anti-inflammatory, and antibacterial actions. Effective treatment must maintain occlusion and moisture in the wound site, suitable capacity for the absorption of exudates, gas exchange, and the release of bioactives, thus stimulating healing. However, conventional treatments have some limitations regarding the technological properties of formulations, such as sensory characteristics, ease of application, residence time, and low active penetration in the skin. Particularly, the available treatments may have low efficacy, unsatisfactory hemostatic performance, prolonged duration, and adverse effects. In this sense, there is significant growth in research focusing on improving the treatment of wounds. Thus, soft nanoparticles-based hydrogels emerge as promising alternatives to accelerate the healing process due to their improved rheological characteristics, increased occlusion and bioadhesiveness, greater skin permeation, controlled drug release, and a more pleasant sensory aspect in comparison to conventional forms. Soft nanoparticles are based on organic material from a natural or synthetic source and include liposomes, micelles, nanoemulsions, and polymeric nanoparticles. This scoping review describes and discusses the main advantages of soft nanoparticle-based hydrogels in the wound healing process. Herein, a state-of-the-art is presented by addressing general aspects of the healing process, current status and limitations of non-encapsulated drug-based hydrogels, and hydrogels formed by different polymers containing soft nanostructures for wound healing. Collectively, the presence of soft nanoparticles improved the performance of natural and synthetic bioactive compounds in hydrogels employed for wound healing, demonstrating the scientific advances obtained so far.
Collapse
Affiliation(s)
| | - Alexandre de Fátima Cobre
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba 80210-170, Brazil
| | - Roberto Pontarolo
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba 80210-170, Brazil
- Pharmacy Department, Federal University of Paraná, Curitiba 80210-170, Brazil
| | - Luana Mota Ferreira
- Pharmacy Department, Federal University of Paraná, Curitiba 80210-170, Brazil
- Correspondence: ; Tel.: +55-41-3360-4095
| |
Collapse
|
20
|
Curative Effects of Copper Iodide Embedded on Gallic Acid Incorporated in a Poly(vinyl alcohol) (PVA) Liquid Bandage. Gels 2023; 9:gels9010053. [PMID: 36661819 PMCID: PMC9857981 DOI: 10.3390/gels9010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/11/2023] Open
Abstract
In daily life, people are often receiving minor cuts due to carelessness, leaving wounds on the skin. If wound healing is interrupted and the healing process does not finish, pathogens can easily enter wounds and cause infection. Liquid bandages are a fast and convenient way to help stop the bleeding of superficial wounds. Moreover, antibacterial agents in liquid bandages can promote wound restoration and fight bacteria. Herein, a poly(vinyl alcohol) (PVA) liquid bandage incorporating copper iodide nanoparticles (CuI NPs) was developed. CuI NPs were synthesized through green synthesis using gallic acid (GA) as a reducing and capping agent. The sizes of the CuI NPs, which were dependent on the concentration of GA, were 41.45, 43.51 and 49.71 nm, with the concentrations of gallic acid being 0, 2.5 mM and 5.0 mM, respectively. CuI NPs were analyzed using FTIR, XRD and SEM and tested for peroxidase-like properties and antibacterial activity. Then, PVA liquid bandages were formulated with different concentrations of stock CuI suspension. The results revealed that PVA liquid bandages incorporating 0.190% CuI synthesized with 5.0 mM of GA can kill bacteria within 24 h and have no harmful effects on human fibroblast cells.
Collapse
|
21
|
Antimicrobial activity enhancement of PVA/chitosan films with the additive of CZTS quantum dots. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
22
|
Liu Y, Li C, Feng Z, Han B, Yu DG, Wang K. Advances in the Preparation of Nanofiber Dressings by Electrospinning for Promoting Diabetic Wound Healing. Biomolecules 2022; 12:1727. [PMID: 36551155 PMCID: PMC9775188 DOI: 10.3390/biom12121727] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic diabetic wounds are one of the main complications of diabetes, manifested by persistent inflammation, decreased epithelialization motility, and impaired wound healing. This will not only lead to the repeated hospitalization of patients, but also bear expensive hospitalization costs. In severe cases, it can lead to amputation, sepsis or death. Electrospun nanofibers membranes have the characteristics of high porosity, high specific surface area, and easy functionalization of structure, so they can be used as a safe and effective platform in the treatment of diabetic wounds and have great application potential. This article briefly reviewed the pathogenesis of chronic diabetic wounds and the types of dressings commonly used, and then reviewed the development of electrospinning technology in recent years and the advantages of electrospun nanofibers in the treatment of diabetic wounds. Finally, the reports of different types of nanofiber dressings on diabetic wounds are summarized, and the method of using multi-drug combination therapy in diabetic wounds is emphasized, which provides new ideas for the effective treatment of diabetic wounds.
Collapse
Affiliation(s)
- Yukang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chaofei Li
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhangbin Feng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Biao Han
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
23
|
Ferrara F, Benedusi M, Cervellati F, Sguizzato M, Montesi L, Bondi A, Drechsler M, Pula W, Valacchi G, Esposito E. Dimethyl Fumarate-Loaded Transethosomes: A Formulative Study and Preliminary Ex Vivo and In Vivo Evaluation. Int J Mol Sci 2022; 23:ijms23158756. [PMID: 35955900 PMCID: PMC9369351 DOI: 10.3390/ijms23158756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, transethosomes were investigated as potential delivery systems for dimethyl fumarate. A formulative study was performed investigating the effect of the composition of transethosomes on the morphology and size of vesicles, as well as drug entrapment capacity, using cryogenic transmission electron microscopy, photon correlation spectroscopy, and HPLC. The stability of vesicles was evaluated, both for size increase and capability to control the drug degradation. Drug release kinetics and permeability profiles were evaluated in vitro using Franz cells, associated with different synthetic membranes. The in vitro viability, as well as the capacity to improve wound healing, were evaluated in human keratinocytes. Transmission electron microscopy enabled the evaluation of transethosome uptake and intracellular fate. Based on the obtained results, a transethosome gel was further formulated for the cutaneous application of dimethyl fumarate, the safety of which was evaluated in vivo with a patch test. It was found that the phosphatidylcholine concentration affected vesicle size and lamellarity, influencing the capacity to control dimethyl fumarate’s chemical stability and release kinetics. Indeed, phosphatidylcholine 2.7% w/w led to multivesicular vesicles with 344 nm mean size, controlling the drug’s chemical stability for at least 90 days. Conversely, phosphatidylcholine 0.9% w/w resulted in 130 nm sized unilamellar vesicles, which maintained 55% of the drug over 3 months. These latest kinds of transethosomes were able to improve wound healing in vitro and were easily internalised by keratinocytes. The selected transethosome gel, loading 25 mg/mL dimethyl fumarate, was not irritant after cutaneous application under occlusion, suggesting its possible suitability in the treatment of wounds caused by diabetes mellitus or peripheral vascular diseases.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Mascia Benedusi
- Department of Neurosciences and Rehabilitation, University of Ferrara, I-44121 Ferrara, Italy
| | - Franco Cervellati
- Department of Neurosciences and Rehabilitation, University of Ferrara, I-44121 Ferrara, Italy
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Leda Montesi
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| | - Agnese Bondi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI) Keylab “Electron and Optical Microscopy”, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Walter Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Giuseppe Valacchi
- Animal Science Department, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
24
|
Alamoudi AA, Alharbi AS, Abdel-Naim AB, Badr-Eldin SM, Awan ZA, Okbazghi SZ, Ahmed OAA, Alhakamy NA, Fahmy UA, Esmat A. Novel Nanoconjugate of Apamin and Ceftriaxone for Management of Diabetic Wounds. Life (Basel) 2022; 12:1096. [PMID: 35888184 PMCID: PMC9323216 DOI: 10.3390/life12071096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic hyperglycemia delays wound healing, leading to serious consequences. Topical antibiotics can reduce the risk of a wound infection during healing; nevertheless, the microbial fight against antibiotics brings about public health challenges. Anti-microbial peptides (AMPs) belong to a novel class of drug that is used to prevent and treat systemic and topical infections. The aim of the current work was to achieve better wound healing in diabetic rats by conjugating the anti-microbial peptide "apamin" (APA) with the broad-spectrum antibiotic "ceftriaxone" (CTX) to form a nanocomplex. The CTX-APA nanoconjugate formulation was optimized using a Box-Behnken design. The optimized CTX-APA nanoconjugate formulation was evaluated for its size and zeta potential, and was then examined using transmission electron microscopy (TEM). The CTX-APA nanoconjugate was loaded onto a hydroxypropyl methylcellulose (2% w/v)-based hydrogel. It was observed that the application of the CTX-APA nanocomplex on the wounded skin of diabetic rats accelerated the regeneration of the epithelium, granulation tissue formation, epidermal proliferation, and keratinization. The nanocomplex was capable of significantly reducing the expression of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6), while increasing the expression of transforming growth factor beta-1 (TGF-β1) as well as the angiogenic markers: hypoxia-inducible factor 1-alpha (HIF-1α) and vascular endothelial growth factor (VEGF). Conclusively, the application of an ion-paired CTX-APA nanocomplex enhances wound healing in diabetic rats.
Collapse
Affiliation(s)
- Abdullah A. Alamoudi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.A.); (A.S.A.); (S.M.B.-E.); (O.A.A.A.); (N.A.A.); (U.A.F.)
| | - Awaad S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.A.); (A.S.A.); (S.M.B.-E.); (O.A.A.A.); (N.A.A.); (U.A.F.)
- Alrass General Hospital, Ministry of Health, Qassim Region, Ar Rass 58883, Saudi Arabia
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.A.); (A.S.A.); (S.M.B.-E.); (O.A.A.A.); (N.A.A.); (U.A.F.)
- Department of Pharmaceutics, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Zuhier A. Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Solomon Z. Okbazghi
- Global Analytical and Pharmaceutical Development, Alexion Pharmaceuticals, New Haven, CT 06510, USA;
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.A.); (A.S.A.); (S.M.B.-E.); (O.A.A.A.); (N.A.A.); (U.A.F.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.A.); (A.S.A.); (S.M.B.-E.); (O.A.A.A.); (N.A.A.); (U.A.F.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.A.); (A.S.A.); (S.M.B.-E.); (O.A.A.A.); (N.A.A.); (U.A.F.)
| | - Ahmed Esmat
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|