1
|
Chawla N, Gupta L, Kumar S. Bioremediation technologies for remediation of dyes from wastewater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1229. [PMID: 39570539 DOI: 10.1007/s10661-024-13410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
The colored dyes are extensively applied in diverse industrial setups such as textiles, paper, leather, and cosmetics. The unutilized dyes are released in the waste and pose a serious menace to the environment, ecological balance, and human health. Because of their chemical nature, they are extremely resistant to common methods of treatment and often persist in the aquatic environment. A sustainable and eco-friendly approach for treating dye-contaminated wastewater is "bioremediation." This manuscript aims to discuss the exclusive role of diversified microorganisms and plants, immobilized microbial cells/enzymes, microbial consortia, nanomaterials, and combination approaches in the bioremediation of dyes. It also provides a comprehensive understanding of different bio-remedial technologies used to remove dyes from wastewater. In addition, the underlying mechanisms affecting the efficacy of bio-remedial technologies, the latest breakthroughs, challenges, and potential solutions in scaling up, and prospects in this area are also explored. We also detail the noteworthiness of genetic engineering in different bioremediation technologies to solve the issues associated with dye contamination in wastewater and its removal from the environment.
Collapse
Affiliation(s)
- Niti Chawla
- Department of Biotechnology, Chaudhary Bansi Lal University, Prem Nagar, Bhiwani, 127031, Haryana, India
| | - Lalita Gupta
- Department of Zoology, Chaudhary Bansi Lal University, Prem Nagar, Bhiwani, 127031, Haryana, India
| | - Sanjeev Kumar
- Department of Biotechnology, Chaudhary Bansi Lal University, Prem Nagar, Bhiwani, 127031, Haryana, India.
| |
Collapse
|
2
|
Zhang X, Liang Y, Luo D, Li P, Chen Y, Fu X, Yue Y, Hou R, Liu J, Wang X. Advantages and disadvantages of various hydrogel scaffold types: A research to improve the clinical conversion rate of loaded MSCs-Exos hydrogel scaffolds. Biomed Pharmacother 2024; 179:117386. [PMID: 39241570 DOI: 10.1016/j.biopha.2024.117386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Mesenchymal stem cell-derived exosomes(MSCs-Exos) offer promising therapeutic potential for a wide range of tissues and organs such as bone/cartilage, nerves, skin, fat, and endocrine organs. In comparison to the application of mesenchymal stem cells (MSCs), MSCs-Exos address critical challenges related to rejection reactions and ethical concerns, positioning themselves as a promising cell-free therapy. As exosomes are extracellular vesicles, their effective delivery necessitates the use of carriers. Consequently, the selection of hydrogel materials as scaffolds for exosome delivery has become a focal point of contemporary research. The diversity of hydrogel scaffolds, which can take various forms such as injectable types, dressings, microneedles, and capsules, leads to differing choices among researchers for treating diseases within the same domain. This variability in hydrogel materials poses challenges for the translation of findings into clinical practice. The review highlights the potential of hydrogel-loaded exosomes in different fields and introduces the advantages and disadvantages of different forms of hydrogel applications. It aims to provide a multifunctional and highly recognized hydrogel scaffold option for tissue regeneration at specific sites, improve clinical translation efficiency, and benefit the majority of patients.
Collapse
Affiliation(s)
- Xinyao Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Yi Liang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Dongmei Luo
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Peiwen Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Yurou Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Xinyu Fu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Yingge Yue
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Ruxia Hou
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Junyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China.
| | - Xiangyu Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China.
| |
Collapse
|
3
|
Gama Cavalcante AL, Dari DN, Izaias da Silva Aires F, Carlos de Castro E, Moreira Dos Santos K, Sousa Dos Santos JC. Advancements in enzyme immobilization on magnetic nanomaterials: toward sustainable industrial applications. RSC Adv 2024; 14:17946-17988. [PMID: 38841394 PMCID: PMC11151160 DOI: 10.1039/d4ra02939a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
Enzymes are widely used in biofuels, food, and pharmaceuticals. The immobilization of enzymes on solid supports, particularly magnetic nanomaterials, enhances their stability and catalytic activity. Magnetic nanomaterials are chosen for their versatility, large surface area, and superparamagnetic properties, which allow for easy separation and reuse in industrial processes. Researchers focus on the synthesis of appropriate nanomaterials tailored for specific purposes. Immobilization protocols are predefined and adapted to both enzymes and support requirements for optimal efficiency. This review provides a detailed exploration of the application of magnetic nanomaterials in enzyme immobilization protocols. It covers methods, challenges, advantages, and future perspectives, starting with general aspects of magnetic nanomaterials, their synthesis, and applications as matrices for solid enzyme stabilization. The discussion then delves into existing enzymatic immobilization methods on magnetic nanomaterials, highlighting advantages, challenges, and potential applications. Further sections explore the industrial use of various enzymes immobilized on these materials, the development of enzyme-based bioreactors, and prospects for these biocatalysts. In summary, this review provides a concise comparison of the use of magnetic nanomaterials for enzyme stabilization, highlighting potential industrial applications and contributing to manufacturing optimization.
Collapse
Affiliation(s)
- Antônio Luthierre Gama Cavalcante
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
| | - Dayana Nascimento Dari
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - Francisco Izaias da Silva Aires
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - Erico Carlos de Castro
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
| | - Kaiany Moreira Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - José Cleiton Sousa Dos Santos
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará Campus do Pici, Bloco 940 Fortaleza CEP 60455760 CE Brazil
| |
Collapse
|
4
|
Chenani H, Saeidi M, Rastkhiz MA, Bolghanabadi N, Aghaii AH, Orouji M, Hatamie A, Simchi A. Challenges and Advances of Hydrogel-Based Wearable Electrochemical Biosensors for Real-Time Monitoring of Biofluids: From Lab to Market. A Review. Anal Chem 2024; 96:8160-8183. [PMID: 38377558 DOI: 10.1021/acs.analchem.3c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Affiliation(s)
- Hossein Chenani
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Mohsen Saeidi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - MahsaSadat Adel Rastkhiz
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Nafiseh Bolghanabadi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Amir Hossein Aghaii
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Mina Orouji
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Amir Hatamie
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, PO Box 45195-1159, Zanjan 45137-66731, Iran
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
- Center for Bioscience and Technology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
5
|
Lu A, Williams RO, Maniruzzaman M. 3D printing of biologics-what has been accomplished to date? Drug Discov Today 2024; 29:103823. [PMID: 37949427 DOI: 10.1016/j.drudis.2023.103823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Three-dimensional (3D) printing is a promising approach for the stabilization and delivery of non-living biologics. This versatile tool builds complex structures and customized resolutions, and has significant potential in various industries, especially pharmaceutics and biopharmaceutics. Biologics have become increasingly prevalent in the field of medicine due to their diverse applications and benefits. Stability is the main attribute that must be achieved during the development of biologic formulations. 3D printing could help to stabilize biologics by entrapment, support binding, or crosslinking. Furthermore, gene fragments could be transited into cells during co-printing, when the pores on the membrane are enlarged. This review provides: (i) an introduction to 3D printing technologies and biologics, covering genetic elements, therapeutic proteins, antibodies, and bacteriophages; (ii) an overview of the applications of 3D printing of biologics, including regenerative medicine, gene therapy, and personalized treatments; (iii) information on how 3D printing could help to stabilize and deliver biologics; and (iv) discussion on regulations, challenges, and future directions, including microneedle vaccines, novel 3D printing technologies and artificial-intelligence-facilitated research and product development. Overall, the 3D printing of biologics holds great promise for enhancing human health by providing extended longevity and enhanced quality of life, making it an exciting area in the rapidly evolving field of biomedicine.
Collapse
Affiliation(s)
- Anqi Lu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mohammed Maniruzzaman
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
6
|
Antezana PE, Municoy S, Ostapchuk G, Catalano PN, Hardy JG, Evelson PA, Orive G, Desimone MF. 4D Printing: The Development of Responsive Materials Using 3D-Printing Technology. Pharmaceutics 2023; 15:2743. [PMID: 38140084 PMCID: PMC10747900 DOI: 10.3390/pharmaceutics15122743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Additive manufacturing, widely known as 3D printing, has revolutionized the production of biomaterials. While conventional 3D-printed structures are perceived as static, 4D printing introduces the ability to fabricate materials capable of self-transforming their configuration or function over time in response to external stimuli such as temperature, light, or electric field. This transformative technology has garnered significant attention in the field of biomedical engineering due to its potential to address limitations associated with traditional therapies. Here, we delve into an in-depth review of 4D-printing systems, exploring their diverse biomedical applications and meticulously evaluating their advantages and disadvantages. We emphasize the novelty of this review paper by highlighting the latest advancements and emerging trends in 4D-printing technology, particularly in the context of biomedical applications.
Collapse
Affiliation(s)
- Pablo Edmundo Antezana
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires 1428, Argentina;
| | - Sofia Municoy
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
| | - Gabriel Ostapchuk
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Nodo Constituyentes, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina; (G.O.); (P.N.C.)
- Departamento de Micro y Nanotecnología, Gerencia de Desarrollo Tecnológico y Proyectos Especiales, Gerencia de Área de Investigación, Desarrollo e Innovación, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina
| | - Paolo Nicolás Catalano
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Nodo Constituyentes, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina; (G.O.); (P.N.C.)
- Departamento de Micro y Nanotecnología, Gerencia de Desarrollo Tecnológico y Proyectos Especiales, Gerencia de Área de Investigación, Desarrollo e Innovación, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica Instrumental, Junín 954, Buenos Aires 1113, Argentina
| | - John G. Hardy
- Materials Science Institute, Lancaster University, Lancaster LA1 4YB, UK;
- Department of Chemistry, Faraday Building, Lancaster University, Lancaster LA1 4YB, UK
| | - Pablo Andrés Evelson
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires 1428, Argentina;
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
| | - Martin Federico Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
| |
Collapse
|
7
|
Zhang Y. 3D Printing for Cancer Diagnosis: What Unique Advantages Are Gained? ACS MATERIALS AU 2023; 3:620-635. [PMID: 38089653 PMCID: PMC10636786 DOI: 10.1021/acsmaterialsau.3c00046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/20/2024]
Abstract
Cancer is a complex disease with global significance, necessitating continuous advancements in diagnostics and treatment. 3D printing technology has emerged as a revolutionary tool in cancer diagnostics, offering immense potential in detection and monitoring. Traditional diagnostic methods have limitations in providing molecular and genetic tumor information that is crucial for personalized treatment decisions. Biomarkers have become invaluable in cancer diagnostics, but their detection often requires specialized facilities and resources. 3D printing technology enables the fabrication of customized sensor arrays, enhancing the detection of multiple biomarkers specific to different types of cancer. These 3D-printed arrays offer improved sensitivity, allowing the detection of low levels of biomarkers, even in complex samples. Moreover, their specificity can be fine-tuned, reducing false-positive and false-negative results. The streamlined and cost-effective fabrication process of 3D printing makes these sensor arrays accessible, potentially improving cancer diagnostics on a global scale. By harnessing 3D printing, researchers and clinicians can enhance early detection, monitor treatment response, and improve patient outcomes. The integration of 3D printing in cancer diagnostics holds significant promise for the future of personalized cancer care.
Collapse
Affiliation(s)
- Yu Zhang
- Division
of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78705, United States
- Pharmaceutics
and Drug Delivery, School of Pharmacy, The
University of Mississippi, Oxford, Mississippi 38677-1848, United States
| |
Collapse
|
8
|
Yuan Y, Shen J, Salmon S. Developing Enzyme Immobilization with Fibrous Membranes: Longevity and Characterization Considerations. MEMBRANES 2023; 13:membranes13050532. [PMID: 37233593 DOI: 10.3390/membranes13050532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/14/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Fibrous membranes offer broad opportunities to deploy immobilized enzymes in new reactor and application designs, including multiphase continuous flow-through reactions. Enzyme immobilization is a technology strategy that simplifies the separation of otherwise soluble catalytic proteins from liquid reaction media and imparts stabilization and performance enhancement. Flexible immobilization matrices made from fibers have versatile physical attributes, such as high surface area, light weight, and controllable porosity, which give them membrane-like characteristics, while simultaneously providing good mechanical properties for creating functional filters, sensors, scaffolds, and other interface-active biocatalytic materials. This review examines immobilization strategies for enzymes on fibrous membrane-like polymeric supports involving all three fundamental mechanisms of post-immobilization, incorporation, and coating. Post-immobilization offers an infinite selection of matrix materials, but may encounter loading and durability issues, while incorporation offers longevity but has more limited material options and may present mass transfer obstacles. Coating techniques on fibrous materials at different geometric scales are a growing trend in making membranes that integrate biocatalytic functionality with versatile physical supports. Biocatalytic performance parameters and characterization techniques for immobilized enzymes are described, including several emerging techniques of special relevance for fibrous immobilized enzymes. Diverse application examples from the literature, focusing on fibrous matrices, are summarized, and biocatalyst longevity is emphasized as a critical performance parameter that needs increased attention to advance concepts from lab scale to broader utilization. This consolidation of fabrication, performance measurement, and characterization techniques, with guiding examples highlighted, is intended to inspire future innovations in enzyme immobilization with fibrous membranes and expand their uses in novel reactors and processes.
Collapse
Affiliation(s)
- Yue Yuan
- Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Fiber and Polymer Science Program, Department of Textile Engineering Chemistry & Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Jialong Shen
- Fiber and Polymer Science Program, Department of Textile Engineering Chemistry & Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sonja Salmon
- Fiber and Polymer Science Program, Department of Textile Engineering Chemistry & Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
9
|
Shen J, Zhang S, Fang X, Salmon S. Carbonic Anhydrase Enhanced UV-Crosslinked PEG-DA/PEO Extruded Hydrogel Flexible Filaments and Durable Grids for CO 2 Capture. Gels 2023; 9:gels9040341. [PMID: 37102953 PMCID: PMC10137505 DOI: 10.3390/gels9040341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
In this study, poly (ethylene glycol) diacrylate/poly (ethylene oxide) (PEG-DA/PEO) interpenetrating polymer network hydrogels (IPNH) were extruded into 1D filaments and 2D grids. The suitability of this system for enzyme immobilization and CO2 capture application was validated. IPNH chemical composition was verified spectroscopically using FTIR. The extruded filament had an average tensile strength of 6.5 MPa and elongation at break of 80%. IPNH filament can be twisted and bent and therefore is suitable for further processing using conventional textile fabrication methods. Initial activity recovery of the entrapped carbonic anhydrase (CA) calculated from esterase activity, showed a decrease with an increase in enzyme dose, while activity retention of high enzyme dose samples was over 87% after 150 days of repeated washing and testing. IPNH 2D grids that were assembled into spiral roll structured packings exhibited increased CO2 capture efficiency with increasing enzyme dose. Long-term CO2 capture performance of the CA immobilized IPNH structured packing was tested in a continuous solvent recirculation experiment for 1032 h, where 52% of the initial CO2 capture performance and 34% of the enzyme contribution were retained. These results demonstrate the feasibility of using rapid UV-crosslinking to form enzyme-immobilized hydrogels by a geometrically-controllable extrusion process that uses analogous linear polymers for both viscosity enhancement and chain entanglement purposes, and achieves high activity retention and performance stability of the immobilized CA. Potential uses for this system extend to 3D printing inks and enzyme immobilization matrices for such diverse applications as biocatalytic reactors and biosensor fabrication.
Collapse
Affiliation(s)
- Jialong Shen
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27695-8301, USA
| | - Sen Zhang
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27695-8301, USA
| | - Xiaomeng Fang
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27695-8301, USA
| | - Sonja Salmon
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27695-8301, USA
| |
Collapse
|
10
|
Aghababaie M, Foroushani ES, Changani Z, Gunani Z, Mobarakeh MS, Hadady H, Khedri M, Maleki R, Asadnia M, Razmjou A. Recent Advances In the development of enzymatic paper-based microfluidic biosensors. Biosens Bioelectron 2023; 226:115131. [PMID: 36804663 DOI: 10.1016/j.bios.2023.115131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Using microfluidic paper-based analytical devices has attracted considerable attention in recent years. This is mainly due to their low cost, availability, portability, simple design, high selectivity, and sensitivity. Owing to their specific substrates and catalytic functions, enzymes are the most commonly used bioactive agents in μPADs. Enzymatic μPADs are various in design, fabrication, and detection methods. This paper provides a comprehensive review of the development of enzymatic μPADs by considering the methods of detection and fabrication. Particularly, techniques for mass production of these enzymatic μPADs for use in different fields such as medicine, environment, agriculture, and food industries are critically discussed. This paper aims to provide a critical review of μPADs and discuss different fabrication methods as the central parts of the μPADs production categorized into printable and non-printable methods. In addition, state-of-the-art technologies such as fully printed enzymatic μPADs for rapid, low-cost, and mass production and improvement have been considered.
Collapse
Affiliation(s)
- Marzieh Aghababaie
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1010, New Zealand; Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Elnaz Sarrami Foroushani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Zinat Changani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran; School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Zahra Gunani
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, FInland.
| | - Mahsa Salehi Mobarakeh
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran; Department of Mechanical and Aerospace Engineering, Carleton University, Colonel by Drive, Ottawa, ON, K1S 5B6, Canada.
| | - Hanieh Hadady
- Cell Science Research Centre, Royan Institute of Biotechnology, Isfahan, Iran.
| | - Mohammad Khedri
- Department of Chemical Engineering, Amirkabir University of Technology, 424 Hafez Avenue, Tehran, Iran.
| | - Reza Maleki
- Department of Chemical Engineering, Shiraz University, Shiraz, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Amir Razmjou
- Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
11
|
Shen J, Salmon S. Biocatalytic Membranes for Carbon Capture and Utilization. MEMBRANES 2023; 13:membranes13040367. [PMID: 37103794 PMCID: PMC10146961 DOI: 10.3390/membranes13040367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 05/12/2023]
Abstract
Innovative carbon capture technologies that capture CO2 from large point sources and directly from air are urgently needed to combat the climate crisis. Likewise, corresponding technologies are needed to convert this captured CO2 into valuable chemical feedstocks and products that replace current fossil-based materials to close the loop in creating viable pathways for a renewable economy. Biocatalytic membranes that combine high reaction rates and enzyme selectivity with modularity, scalability, and membrane compactness show promise for both CO2 capture and utilization. This review presents a systematic examination of technologies under development for CO2 capture and utilization that employ both enzymes and membranes. CO2 capture membranes are categorized by their mode of action as CO2 separation membranes, including mixed matrix membranes (MMM) and liquid membranes (LM), or as CO2 gas-liquid membrane contactors (GLMC). Because they selectively catalyze molecular reactions involving CO2, the two main classes of enzymes used for enhancing membrane function are carbonic anhydrase (CA) and formate dehydrogenase (FDH). Small organic molecules designed to mimic CA enzyme active sites are also being developed. CO2 conversion membranes are described according to membrane functionality, the location of enzymes relative to the membrane, which includes different immobilization strategies, and regeneration methods for cofactors. Parameters crucial for the performance of these hybrid systems are discussed with tabulated examples. Progress and challenges are discussed, and perspectives on future research directions are provided.
Collapse
|
12
|
Sánchez-Fernández JA. Structural Strategies for Supramolecular Hydrogels and Their Applications. Polymers (Basel) 2023; 15:1365. [PMID: 36987146 PMCID: PMC10052692 DOI: 10.3390/polym15061365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/05/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Supramolecular structures are of great interest due to their applicability in various scientific and industrial fields. The sensible definition of supramolecular molecules is being set by investigators who, because of the different sensitivities of their methods and observational timescales, may have different views on as to what constitutes these supramolecular structures. Furthermore, diverse polymers have been found to offer unique avenues for multifunctional systems with properties in industrial medicine applications. Aspects of this review provide different conceptual strategies to address the molecular design, properties, and potential applications of self-assembly materials and the use of metal coordination as a feasible and useful strategy for constructing complex supramolecular structures. This review also addresses systems that are based on hydrogel chemistry and the enormous opportunities to design specific structures for applications that demand enormous specificity. According to the current research status on supramolecular hydrogels, the central ideas in the present review are classic topics that, however, are and will be of great importance, especially the hydrogels that have substantial potential applications in drug delivery systems, ophthalmic products, adhesive hydrogels, and electrically conductive hydrogels. The potential interest shown in the technology involving supramolecular hydrogels is clear from what we can retrieve from the Web of Science.
Collapse
Affiliation(s)
- José Antonio Sánchez-Fernández
- Procesos de Polimerización, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, Saltillo 25294, Mexico
| |
Collapse
|
13
|
Degórska O, Szada D, Jesionowski T, Zdarta J. A biocatalytic approach for resolution of 3-hydroxy-3-phenylpropanonitrile with the use of immobilized enzymes stabilized with ionic liquids. Comput Struct Biotechnol J 2023; 21:1593-1597. [PMID: 36874162 PMCID: PMC9974985 DOI: 10.1016/j.csbj.2023.02.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Due to the growing importance of synthesizing active pharmaceutical ingredients (APIs) in enantiomerically pure form, new methods of asymmetric synthesis are being sought. Biocatalysis is a promising technique that can lead to enantiomerically pure products. In this study, lipase from Pseudomonas fluorescens, immobilized on modified silica nanoparticles, was used for the kinetic resolution (via transesterification) of a racemic mixture of 3-hydroxy-3-phenylpropanonitrile (3H3P), where the obtaining of a pure (S)-enantiomer of 3H3P is a crucial step in the fluoxetine synthesis pathway. For additional stabilization of the enzyme and enhanced process efficiency, ionic liquids (ILs) were used. It was found that the most suitable IL was [BMIM]Cl; a process efficiency of 97.4 % and an enantiomeric excess (ee%) of 79.5 % were obtained when 1 % (w/v) of that IL in hexane was applied and the process was catalyzed by lipase immobilized on amine-modified silica.
Collapse
|