1
|
Zhu S, Miao Q, Chen Q, Tian L, Dong F, Guo Z, Li Q. Synthesis and antioxidant evaluation of coumarin-functionalised chitosan: A potent, non-toxic free radical scavenging compound. Carbohydr Res 2024; 548:109311. [PMID: 39644713 DOI: 10.1016/j.carres.2024.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
In the present study, we designed to link the coumarin molecule to chitosan via a triazole group and synthesized chitosan-coumarin derivatives, which were further quaternized in one step in order to further improve their solubility to obtain a second series of chitosan-coumarin ammonium salt derivatives. The structures of these chitosan derivatives were verified by FT-IR and 1H NMR. They were tested for their antioxidant activities. The experimental results showed that the derivatives had excellent free radical scavenging ability. The introduction of the coumarin moiety significantly improved the antioxidant activity, and the scavenging capacity was much higher than that of the chitosan feedstock in all three antioxidant tests. Overall, the scavenging capacity of chitosan-coumarin ammonium salt derivatives was slightly higher than that of chitosan-coumarin derivatives, with the highest scavenging rates in all three tests. Compound 8B scavenged 98.74 % (0.01 mg/mL) of superoxide anion radicals, compound 8D scavenged 95.5 % (0.3 mg/mL) of DPPH radicals and compound 8A scavenged 92.97 % (0.2 mg/mL) of hydroxyl radicals. Toxicity assays used L929 cells demonstrated that there was no significant toxicity of the derivatives. The results indicated that the chitosan derivatives described herein were safe and non-toxic and have good antioxidant activity.
Collapse
Affiliation(s)
- Siyu Zhu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China; Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Qin Miao
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Qiuhong Chen
- Jiangsu Ocean University, Lianyungang, 222000, China; Shandong Yinuokang Pharmaceutical Co., Ltd., Dongying, 257091, China
| | - Liguang Tian
- Yantai Agricultural Technology Extension Center, Yantai, 264001, China
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
2
|
Ren Y, Wang Q, Xu W, Yang M, Guo W, He S, Liu W. Alginate-based hydrogels mediated biomedical applications: A review. Int J Biol Macromol 2024; 279:135019. [PMID: 39182869 DOI: 10.1016/j.ijbiomac.2024.135019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
With the development in the field of biomaterials, research on alternative biocompatible materials has been initiated, and alginate in polysaccharides has become one of the research hotspots due to its advantages of biocompatibility, biodegradability and low cost. In recent years, with the further understanding of microscopic molecular structure and properties of alginate, various physicochemical methods of cross-linking strategies, as well as organic and inorganic materials, have led to the development of different properties of alginate hydrogels for greatly expanded applications. In view of the potential application prospects of alginate-based hydrogels, this paper reviews the properties and preparation of alginate-based hydrogels and their major achievements in delivery carrier, dressings, tissue engineering and other applications are also summarized. In addition, the combination of alginate-based hydrogel and new technology such as 3D printing are also involved, which will contribute to further research and exploration.
Collapse
Affiliation(s)
- Yazhen Ren
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Qiang Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Wanlin Xu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Mingcheng Yang
- Henan Academy of Sciences Isotope Institute Co., Ltd.7 Songshan South Road, Zhengzhou 450015, People's Republic of China
| | - Wenhui Guo
- Henan Academy of Sciences Isotope Institute Co., Ltd.7 Songshan South Road, Zhengzhou 450015, People's Republic of China
| | - Suqin He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| |
Collapse
|
3
|
Yu YM, Long YZ, Zhu ZQ. Chitosan, a Natural Polymer, is an Excellent Sustained-Release Carrier for Amide Local Anesthetics. J Pain Res 2024; 17:3539-3551. [PMID: 39493932 PMCID: PMC11531737 DOI: 10.2147/jpr.s480926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Local anesthetics, particularly amide types, play a crucial role in perioperative anesthesia to alleviate pain and manage chronic, long-term pain, with their brief effect period remaining a universal challenge that needs resolution. There is a high anticipation for creating materials that maintain prolonged effectiveness of local anesthetics through a straightforward administration technique. Chitosan is the most typical natural amino polymer, which is highly reactive and easy to modify. It has been widely and deeply used in the field of medicine. At present, it is mainly used in tissue regeneration and repair, hemostasis and wound healing, antibacterial and anti-infection, disease diagnosis and treatment detection, and drug delivery. In the field of anesthesia, chitosan is regarded as a potential perfect carrier for the sustained release of amide local anesthetics. This document aims to analyze the current application of chitosan as a prolonged-release substance in amide-type local anesthetics, encapsulate the associated research advancements, and subsequently investigate the practicality and prospects of its medical uses.
Collapse
Affiliation(s)
- Yun-Mei Yu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Yuan-Zhu Long
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Zhao-Qiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| |
Collapse
|
4
|
Iftime MM, Ailiesei GL, Ailincai D. Tuning Antioxidant Function through Dynamic Design of Chitosan-Based Hydrogels. Gels 2024; 10:655. [PMID: 39451308 PMCID: PMC11507920 DOI: 10.3390/gels10100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Dynamic chitosan-based hydrogels with enhanced antioxidant activity were synthesized through the formation of reversible imine linkages with 5-methoxy-salicylaldehyde. These hydrogels exhibited a porous structure and swelling capacity, influenced by the crosslinking degree, as confirmed by SEM and POM analysis. The dynamic nature of the imine bonds was characterized through NMR, swelling studies in various media, and aldehyde release measurements. The hydrogels demonstrated significantly improved antioxidant activity compared to unmodified chitosan, as evaluated by the DPPH method. This research highlights the potential of developing pH-responsive chitosan-based hydrogels for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Manuela Maria Iftime
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (G.L.A.); (D.A.)
| | - Gabriela Liliana Ailiesei
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (G.L.A.); (D.A.)
| | - Daniela Ailincai
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (G.L.A.); (D.A.)
- The Research Institute of the University of Bucharest (ICUB), 90 Sos. Panduri, 050663 Bucharest, Romania
| |
Collapse
|
5
|
Ajormal F, Bikas R, Ghasemzadeh H, Noshiranzadeh N, Kozakiewicz-Piekarz A. Green and recyclable catalyst based on chitosan/CuFe 2O 4 nanocomposite hydrogel for one-step synthesis of 1,2,3-triazoles. RSC Adv 2024; 14:31320-31331. [PMID: 39359334 PMCID: PMC11443811 DOI: 10.1039/d4ra05626d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
The scope of the heterogeneous catalysts has been greatly expanded in last few decades by the development of various catalysts. In this work a new chitosan-based nanocomposite hydrogel (CS/CuFe2O4 NCH) was synthesized as a high-performance heterogeneous catalyst and then, it was utilized for the green synthesis of substituted 1,2,3-triazoles by a multi-component (azide-alkyne-epoxide) cycloaddition reaction. The synthesized nanocomposite hydrogel was investigated by using various instrumental analyses, including FT-IR, XRD, SEM, EDS, HRTEM, DLS, and TGA. The structure of one of the substituted 1,2,3-triazoles was studied by using single-crystal X-ray diffraction analysis. The nanocomposite hydrogel can be easily regenerate after the catalytic reaction. It can be reused frequently without considerable loss of activity. The high catalytic activity, straightforward reaction, easy recyclability, short reaction time, use of a green solvent, and the simple separation of catalyst are the main advantage of the current method, which offers both financial and environmental benefits.
Collapse
Affiliation(s)
- Fatemeh Ajormal
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University Qazvin 34148-96818 Iran
| | - Hossein Ghasemzadeh
- Department of Chemistry, Faculty of Science, Imam Khomeini International University Qazvin 34148-96818 Iran
| | - Nader Noshiranzadeh
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Anna Kozakiewicz-Piekarz
- Department of Biomedical and Polymer Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun Torun 87-100 Poland
| |
Collapse
|
6
|
Roque-Borda CA, Carnero Canales CS, Primo LMDG, Colturato VMM, Polinário G, Di Filippo LD, Duarte JL, Chorilli M, da Silva Barud H, Pavan FR. Cellulose from bacteria as a delivery system for improved treatment of infectious diseases: A review of updates and prospects. Int J Biol Macromol 2024; 277:133831. [PMID: 39084978 DOI: 10.1016/j.ijbiomac.2024.133831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Cellulose from bacteria is a high-purity biomaterial naturally produced by bacteria as part of their metabolic process. Although it inherently lacks antimicrobial activity, its modification with bioactive substances can significantly enhance its efficacy beyond that of the original compounds. This biomaterial features a unique ability to retain substantial quantities of liquids within its three-dimensional network, making it a prime candidate for biomedical applications. Versatile in its properties, it can be utilized across various industries. Previous research has highlighted its capacity to exhibit antimicrobial properties and to encapsulate nanostructured materials, thereby augmenting its antibacterial effectiveness. This review focuses on the use of cellulose from bacteria as a carrier for active compounds, specifically targeting antibacterial activity against drug-resistant strains. We explore its role in innovative bacterial cellulose-based systems, which present a promising solution for tackling bacterial resistance. This review aims to showcase the potential of bacterial cellulose in developing new devices and treatment strategies that address critical concerns in global health.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- Universidad Católica de Santa María, Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Arequipa, Peru.
| | | | | | | | - Giulia Polinário
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | | | - Jonatas L Duarte
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Hernane da Silva Barud
- University of Araraquara (UNIARA), Biopolymers and Biomaterials Laboratory (BIOPOLMAT), Araraquara, São Paulo, Brazil
| | - Fernando R Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil.
| |
Collapse
|
7
|
Roas-Escalona N, Becquart F, Delair T, Dutertre F. Chitosan-based hydrogels: Influence of crosslinking strategy on rheological properties. Carbohydr Polym 2024; 341:122329. [PMID: 38876714 DOI: 10.1016/j.carbpol.2024.122329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/04/2024] [Accepted: 05/25/2024] [Indexed: 06/16/2024]
Abstract
The effect of two crosslink strategies on the preparation of chitosan-based covalent hydrogels was investigated employing the widely used thiol-ene reaction. This versatile "click" chemistry can be activated either photochemically or thermochemically. Initially, well-purified chitosan (CS, DA ∼4 %, Mw ∼580 kg mol-1) was separately functionalized with vinyl (CS-ene) or thiol (CS-SH) groups in aqueous media. Subsequently, two strategies were compared where thiol-ene reaction occurs respectively between: (S1) modified chitosans CS-ene and CS-SH, in a polymer - polymer strategy, and (S2) CS-ene and di(ethylene glycol) dithiol (dEG-(SH)2), in a polymer - molecule strategy. Both crosslinking strategies were evaluated through rheological measurements, starting with entangled chitosan solutions. The difference in diffusion of functional groups, whether attached to polymer chains or to free molecules, leads to faster gelation kinetics with S2. Consequently, stronger gels were obtained with S2, where the modulus was connected with the degree of functionalization, while S1 produced weaker gels closer to the percolation point, where crosslinked density was associated with the entanglement number derived from the initial concentration. Nevertheless, networks formed by both strategies were homogenous with minimal dissipative contributions to their rheological properties, indicating that structural defects are negligible.
Collapse
Affiliation(s)
- Nelmary Roas-Escalona
- Universite Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS UMR 5223, Ingénierie des Matériaux Polymères, F-42023 Saint-Étienne Cédex 2, France
| | - Frederic Becquart
- Universite Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS UMR 5223, Ingénierie des Matériaux Polymères, F-42023 Saint-Étienne Cédex 2, France
| | - Thierry Delair
- Universite Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS UMR 5223, Ingénierie des Matériaux Polymères, F-69622 Villeurbanne Cédex, France
| | - Fabien Dutertre
- Universite Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS UMR 5223, Ingénierie des Matériaux Polymères, F-42023 Saint-Étienne Cédex 2, France.
| |
Collapse
|
8
|
Platon IV, Ghiorghita CA, Lazar MM, Aprotosoaie AC, Gradinaru AC, Nacu I, Verestiuc L, Nicolescu A, Ciocarlan N, Dinu MV. Highly Compressible, Superabsorbent, and Biocompatible Hybrid Cryogel Constructs Comprising Functionalized Chitosan and St. John's Wort Extract. Biomacromolecules 2024; 25:5081-5097. [PMID: 38990059 DOI: 10.1021/acs.biomac.4c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Biobased porous hydrogels enriched with phytocompounds-rich herbal extracts have aroused great interest in recent years, especially in healthcare. In this study, new macroporous hybrid cryogel constructs comprising thiourea-containing chitosan (CSTU) derivative and a Hypericum perforatum L. extract (HYPE), commonly known as St John's wort, were prepared by a facile one-pot ice-templating strategy. Benefiting from the strong interactions between the functional groups of the CSTU matrix and those of polyphenols in HYPE, the hybrid cryogels possess excellent liquid absorption capacity, mechanical resilience, antioxidant performance, and a broad spectrum of antibacterial activity simultaneously. Thus, owing to their design, the hybrid constructs exhibit an interconnected porous architecture with the ability to absorb over 33 and 136 times their dry weight, respectively, when contacted with a phosphate buffer solution (pH 7.4) and an acidic aqueous solution (pH 2). These cryogel constructs have extremely high compressive strengths ranging from 839 to 1045 kPa and withstand elevated strains of over 70% without developing fractures. Moreover, the water-swollen hybrid cryogels with the highest HYPE content revealed a complete and instant shape recovery after uniaxial compression. The incorporation of HYPE into CSTU cryogels enabled substantial improvement in scavenging reactive oxygen species and an expanded antibacterial spectrum toward multiple pathogens, including Gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis), Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), and fungi (Candida albicans). Cell viability experiments demonstrated the cytocompatibility of the 3D cryogel constructs, which did not induce changes in the fibroblast morphology. This work showcases a simple and effective strategy to immobilize HYPE extracts on CSTU 3D networks, allowing the development of novel multifunctional platforms with promising potential in hemostasis, wound dressing, and dermal regeneration scaffolds.
Collapse
Affiliation(s)
- Ioana-Victoria Platon
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, Iasi 700487, Romania
| | | | - Maria Marinela Lazar
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, Iasi 700487, Romania
| | - Ana Clara Aprotosoaie
- Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, Universitatii Street 16, Iasi 700115, Romania
| | - Adina Catinca Gradinaru
- Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, Universitatii Street 16, Iasi 700115, Romania
| | - Isabella Nacu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, Iasi 700487, Romania
- Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Liliana Verestiuc
- Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Alina Nicolescu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, Iasi 700487, Romania
| | - Nina Ciocarlan
- Botanical Garden, Academy of Sciences of Moldova, Padurii Street 18, Chisinau 2002, Republic of Moldova
| | - Maria Valentina Dinu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, Iasi 700487, Romania
| |
Collapse
|
9
|
Zhu J, Cheng H, Zhang Z, Chen K, Zhang Q, Zhang C, Gao W, Zheng Y. Antibacterial Hydrogels for Wound Dressing Applications: Current Status, Progress, Challenges, and Trends. Gels 2024; 10:495. [PMID: 39195024 DOI: 10.3390/gels10080495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Bacterial infection treatment for chronic wounds has posed a major medical threat and challenge. Bacteria at the wounded sites can compete with the immune system and subsequently invade live tissues, leading to more severe tissue damage. Therefore, there is an urgent demand for wound dressings with antibacterial and anti-inflammatory properties. Considering the concept of moist healing, hydrogels with a three-dimensional (3D) network structure are widely used as wound dressings due to their excellent hydrophilicity, water retention properties, and biocompatibility. Developing antibacterial hydrogels for the treatment of infected wounds has been receiving extensive attention recently. This article categorizes antibacterial hydrogels according to their materials and antibacterial modes, and introduces the recent findings and progress regarding their status. More importantly, with the development of emerging technologies, new therapies are utilized to prepare antibacterial hydrogels such as nanoenzymes, photothermal therapy (PTT), photodynamic therapy (PDT), metal-organic frameworks (MOFs), and other external stimuli-responsive methods. Therefore, this review also examines their progress, challenges, and future trends as wound dressings. In the following studies, there will still be a focus on antibacterial hydrogels that have a high performance, multi-functions, and intelligence, especially biocompatibility, a high and long-lasting antibacterial property, responsiveness, and on-demand therapeutic ability.
Collapse
Affiliation(s)
- Jie Zhu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Hongju Cheng
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zixian Zhang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Kaikai Chen
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Qinchen Zhang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Chen Zhang
- Shanghai Science and Technology Exchange Center, Shanghai 200030, China
| | - Weihong Gao
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yuansheng Zheng
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
10
|
Qiao E, Fulmore CA, Schaffer DV, Kumar S. Substrate stress relaxation regulates neural stem cell fate commitment. Proc Natl Acad Sci U S A 2024; 121:e2317711121. [PMID: 38968101 PMCID: PMC11252819 DOI: 10.1073/pnas.2317711121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/17/2024] [Indexed: 07/07/2024] Open
Abstract
Adult neural stem cells (NSCs) reside in the dentate gyrus of the hippocampus, and their capacity to generate neurons and glia plays a role in learning and memory. In addition, neurodegenerative diseases are known to be caused by a loss of neurons and glial cells, resulting in a need to better understand stem cell fate commitment processes. We previously showed that NSC fate commitment toward a neuronal or glial lineage is strongly influenced by extracellular matrix stiffness, a property of elastic materials. However, tissues in vivo are not purely elastic and have varying degrees of viscous character. Relatively little is known about how the viscoelastic properties of the substrate impact NSC fate commitment. Here, we introduce a polyacrylamide-based cell culture platform that incorporates mismatched DNA oligonucleotide-based cross-links as well as covalent cross-links. This platform allows for tunable viscous stress relaxation properties via variation in the number of mismatched base pairs. We find that NSCs exhibit increased astrocytic differentiation as the degree of stress relaxation is increased. Furthermore, culturing NSCs on increasingly stress-relaxing substrates impacts cytoskeletal dynamics by decreasing intracellular actin flow rates and stimulating cyclic activation of the mechanosensitive protein RhoA. Additionally, inhibition of motor-clutch model components such as myosin II and focal adhesion kinase partially or completely reverts cells to lineage distributions observed on elastic substrates. Collectively, our results introduce a unique system for controlling matrix stress relaxation properties and offer insight into how NSCs integrate viscoelastic cues to direct fate commitment.
Collapse
Affiliation(s)
- Eric Qiao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
| | - Camille A. Fulmore
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - David V. Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Department of Bioengineering, University of California, Berkeley, CA94720
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Department of Bioengineering, University of California, Berkeley, CA94720
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA94143
| |
Collapse
|
11
|
Patel R, Patel D. Injectable Hydrogels in Cardiovascular Tissue Engineering. Polymers (Basel) 2024; 16:1878. [PMID: 39000733 PMCID: PMC11244148 DOI: 10.3390/polym16131878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024] Open
Abstract
Heart problems are quite prevalent worldwide. Cardiomyocytes and stem cells are two examples of the cells and supporting matrix that are used in the integrated process of cardiac tissue regeneration. The objective is to create innovative materials that can effectively replace or repair damaged cardiac muscle. One of the most effective and appealing 3D/4D scaffolds for creating an appropriate milieu for damaged tissue growth and healing is hydrogel. In order to successfully regenerate heart tissue, bioactive and biocompatible hydrogels are required to preserve cells in the infarcted region and to bid support for the restoration of myocardial wall stress, cell survival and function. Heart tissue engineering uses a variety of hydrogels, such as natural or synthetic polymeric hydrogels. This article provides a quick overview of the various hydrogel types employed in cardiac tissue engineering. Their benefits and drawbacks are discussed. Hydrogel-based techniques for heart regeneration are also addressed, along with their clinical application and future in cardiac tissue engineering.
Collapse
Affiliation(s)
- Raj Patel
- Banas Medical College and Research Institute, Palanpur 385001, India;
| | - Dhruvi Patel
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
12
|
Gao Y, Zhao Y, Wang T. Preparation and Characterization of Chitosan/Hydroxypropyl Methylcellulose Temperature-Sensitive Hydrogel Containing Inorganic Salts for Forest Fire Suppression. Gels 2024; 10:390. [PMID: 38920936 PMCID: PMC11202437 DOI: 10.3390/gels10060390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Effective forest fire suppression remains a critical challenge, necessitating innovative solutions. Temperature-sensitive hydrogels represent a promising avenue in this endeavor. Traditional firefighting methods often struggle to address forest fires efficiently while mitigating ecological harm and optimizing resource utilization. In this study, a novel intelligent temperature-sensitive hydrogel was prepared specially for forest fire extinguishment. Utilizing a one-pot synthesis approach, this material demonstrates exceptional fluidity at ambient temperatures, facilitating convenient application and transport. Upon exposure to elevated temperatures, it undergoes a phase transition to form a solid, barrier-like structure essential for containing forest fires. The incorporation of environmentally friendly phosphorus salts into the chitosan/hydroxypropyl methylcellulose gel system enhances the formation of temperature-sensitive hydrogels, thereby enhancing their structural integrity and firefighting efficacy. Morphological and thermal stability analyses elucidate the outstanding performance, with the hydrogel forming a dense carbonized layer that acts as a robust barrier against the spread of forest fires. Additionally, comprehensive evaluations employing rheological tests, cone calorimeter tests, a swelling test, and infrared thermography reveal the multifaceted roles of temperature-sensitive hydrogels in forest fire prevention and suppression strategies.
Collapse
Affiliation(s)
- Yanni Gao
- Aulin College, Northeastern Forestry University, Harbin 150040, China; (Y.G.); (Y.Z.)
| | - Yuzhou Zhao
- Aulin College, Northeastern Forestry University, Harbin 150040, China; (Y.G.); (Y.Z.)
| | - Ting Wang
- Aulin College, Northeastern Forestry University, Harbin 150040, China; (Y.G.); (Y.Z.)
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
13
|
Rao S, Jia C, Lu X, Yu Y, Wang Z, Yang Z. Acid-Heat-Induced Fabrication of Nisin-Loaded Egg White Protein Nanoparticles: Enhanced Structural and Antibacterial Stability. Foods 2024; 13:1741. [PMID: 38890971 PMCID: PMC11172011 DOI: 10.3390/foods13111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
As a natural cationic peptide, Nisin is capable of widely inhibiting the growth of Gram-positive bacteria. However, it also has drawbacks such as its antimicrobial activity being susceptible to environmental factors. Nano-encapsulation can improve the defects of nisin in food applications. In this study, nisin-loaded egg white protein nanoparticles (AH-NEn) were prepared in fixed ultrasound-mediated under pH 3.0 and 90 °C. Compared with the controls, AH-NEn exhibited smaller particle size (112.5 ± 2.85 nm), smaller PDI (0.25 ± 0.01), larger Zeta potential (24 ± 1.18 mV), and higher encapsulation efficiency (91.82%) and loading capacity (45.91%). The turbidity and Fourier transform infrared spectroscopy (FTIR) results indicated that there are other non-covalent bonding interactions between the molecules of AH-NEn besides the electrostatic forces, which accounts for the fact that it is structurally more stable than the controls. In addition, by the results of fluorescence intensity, differential scanning calorimetry (DSC), and X-ray diffraction (XRD), it was shown that thermal induction could improve the solubility, heat resistance, and encapsulation of nisin in the samples. In terms of antimicrobial function, acid-heat induction did not recede the antimicrobial activity of nisin encapsulated in egg white protein (EWP). Compared with free nisin, the loss rate of bactericidal activity of AH-NEn was reduced by 75.0% and 14.0% following treatment with trypsin or a thermal treatment at 90 °C for 30 min, respectively.
Collapse
Affiliation(s)
- Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
| | - Caochen Jia
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
| | - Xiangning Lu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
| | - Yisheng Yu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
| | - Zhirong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| |
Collapse
|
14
|
Kruczkowska W, Gałęziewska J, Grabowska K, Liese G, Buczek P, Kłosiński KK, Kciuk M, Pasieka Z, Kałuzińska-Kołat Ż, Kołat D. Biomedical Trends in Stimuli-Responsive Hydrogels with Emphasis on Chitosan-Based Formulations. Gels 2024; 10:295. [PMID: 38786212 PMCID: PMC11121652 DOI: 10.3390/gels10050295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Biomedicine is constantly evolving to ensure a significant and positive impact on healthcare, which has resulted in innovative and distinct requisites such as hydrogels. Chitosan-based formulations stand out for their versatile utilization in drug encapsulation, transport, and controlled release, which is complemented by their biocompatibility, biodegradability, and non-immunogenic nature. Stimuli-responsive hydrogels, also known as smart hydrogels, have strictly regulated release patterns since they respond and adapt based on various external stimuli. Moreover, they can imitate the intrinsic tissues' mechanical, biological, and physicochemical properties. These characteristics allow stimuli-responsive hydrogels to provide cutting-edge, effective, and safe treatment. Constant progress in the field necessitates an up-to-date summary of current trends and breakthroughs in the biomedical application of stimuli-responsive chitosan-based hydrogels, which was the aim of this review. General data about hydrogels sensitive to ions, pH, redox potential, light, electric field, temperature, and magnetic field are recapitulated. Additionally, formulations responsive to multiple stimuli are mentioned. Focusing on chitosan-based smart hydrogels, their multifaceted utilization was thoroughly described. The vast application spectrum encompasses neurological disorders, tumors, wound healing, and dermal infections. Available data on smart chitosan hydrogels strongly support the idea that current approaches and developing novel solutions are worth improving. The present paper constitutes a valuable resource for researchers and practitioners in the currently evolving field.
Collapse
Affiliation(s)
- Weronika Kruczkowska
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Julia Gałęziewska
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Katarzyna Grabowska
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Gabriela Liese
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Paulina Buczek
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Karol Kamil Kłosiński
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Żaneta Kałuzińska-Kołat
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Damian Kołat
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
15
|
Singh A, Sharma JJ, Mohanta B, Sood A, Han SS, Sharma A. Synthetic and biopolymers-based antimicrobial hybrid hydrogels: a focused review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:675-716. [PMID: 37943320 DOI: 10.1080/09205063.2023.2278814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
The constantly accelerating occurrence of microbial infections and their antibiotic resistance has spurred advancement in the field of material sciences and has guided the development of novel materials with anti-bacterial properties. To address the clinical exigencies, the material of choice should be biodegradable, biocompatible, and able to offer prolonged antibacterial effects. As an attractive option, hydrogels have been explored globally as a potent biomaterial platform that can furnish essential antibacterial attributes owing to its three-dimensional (3D) hydrophilic polymeric network, adequate biocompatibility, and cellular adhesion. The current review focuses on the utilization of different antimicrobial hydrogels based on their sources (natural and synthetic). Further, the review also highlights the strategies for the generation of hydrogels with their advantages and disadvantages and their applications in different biomedical fields. Finally, the prospects in the development of hydrogels-based antimicrobial biomaterials are discussed along with some key challenges encountered during their development and clinical translation.
Collapse
Affiliation(s)
- Anand Singh
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Janmay Jai Sharma
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Billeswar Mohanta
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Anirudh Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
16
|
Mohan A, Santhamoorthy M, Phan TTV, Kim SC. pNIPAm-Based pH and Thermoresponsive Copolymer Hydrogel for Hydrophobic and Hydrophilic Drug Delivery. Gels 2024; 10:184. [PMID: 38534602 DOI: 10.3390/gels10030184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
The regulated and targeted administration of hydrophobic and hydrophilic drugs is both promising and challenging in the field of drug delivery. Developing a hydrogel which is responsive to dual stimuli is considered a promising and exciting research area of study. In this work, melamine functionalized poly-N-isopropyl acrylamide-co-glycidyl methacrylate copolymer has been developed by copolymerizing glycidyl methacrylate (GMA) monomer with N-isopropyl acrylamide (NIPAm) and further functionalized with melamine units (pNIPAm-co-pGMA-Mela). The prepared pNIPAm-co-pGMA-Mela copolymer hydrogel was characterized using various characterization techniques, including 1H NMR, FTIR, SEM, zeta potential, and particle size analysis. A hydrophobic drug (ibuprofen, Ibu) and hydrophilic drug (5-fluorouracil, 5-Fu) were selected as model drugs. Dual pH and temperature stimuli-responsive drug release behavior of the pNIPAm-co-pGMA-Mela hydrogel was evaluated under different pH (pH 7.4 and 4.0) and temperature (25 °C, 37 °C, and 45 °C) conditions. Furthermore, the in vitro biocompatibility of the developed pNIPAm-co-pGMA-Mela copolymer hydrogel was determined on MDA-MB-231 cells. The pH and temperature-responsive drug delivery study results reveal that the pNIPAm-co-pGMA-Mela hydrogel system is responsive to both pH and temperature stimuli and exhibits about ~100% of Ibu and 5-Fu, respectively, released at pH 4.0/45 °C. Moreover, the MTT assay and hemocompatibility analysis results proved that the pNIPAm-co-pGMA-Mela hydrogel system is biocompatible and hemocompatible, suggesting that that it could be used for drug delivery applications. The experimental results suggest that the proposed pNIPAm-co-pGMA-Mela hydrogel system is responsive to dual pH and temperature stimuli, and could be a promising drug carrier system for both hydrophilic and hydrophobic drug delivery applications.
Collapse
Affiliation(s)
- Anandhu Mohan
- Department of Nano Science and Technology Convergence, General Graduate School, Gachon University, 1342 Seongnam-Daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Madhappan Santhamoorthy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
17
|
Priya S, Choudhari M, Tomar Y, Desai VM, Innani S, Dubey SK, Singhvi G. Exploring polysaccharide-based bio-adhesive topical film as a potential platform for wound dressing application: A review. Carbohydr Polym 2024; 327:121655. [PMID: 38171676 DOI: 10.1016/j.carbpol.2023.121655] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Wound dressings act as a physical barrier between the wound site and the external environment, preventing additional harm; choosing suitable wound dressings is essential for the healing process. Polysaccharide biopolymers have demonstrated encouraging findings and therapeutic prospects in recent decades about wound therapy. Additionally, polysaccharides have bioactive qualities like anti-inflammatory, antibacterial, and antioxidant capabilities that can help the process of healing. Due to their excellent tissue adhesion, swelling, water absorption, bactericidal, and immune-regulating properties, polysaccharide-based bio-adhesive films have recently been investigated as intriguing alternatives in wound management. These films also mimic the structure of the skin and stimulate the regeneration of the skin. This review presented several design standards and functions of suitable bio-adhesive films for the healing of wounds. Additionally, the most recent developments in the use of bio-adhesive films as wound dressings based on polysaccharides, including hyaluronic acid, chondroitin sulfate, dextran, alginate, chitosan, cellulose, konjac glucomannan, gellan gum, xanthan gum, pectin, guar gum, heparin, arabinogalactans, carrageen, and tragacanth gum, are thoroughly discussed. Lastly, to create a road map for the function of polysaccharide-based bio-adhesive films in advanced wound care, their clinical performances and future challenges in making bio-adhesive films by three-dimensional bioprinting are summarized.
Collapse
Affiliation(s)
- Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Manisha Choudhari
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Yashika Tomar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Vaibhavi Meghraj Desai
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Srinath Innani
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | | | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
18
|
Elizalde-Cárdenas A, Ribas-Aparicio RM, Rodríguez-Martínez A, Leyva-Gómez G, Ríos-Castañeda C, González-Torres M. Advances in chitosan and chitosan derivatives for biomedical applications in tissue engineering: An updated review. Int J Biol Macromol 2024; 262:129999. [PMID: 38331080 DOI: 10.1016/j.ijbiomac.2024.129999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/19/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
In recent years, chitosan (CS) has received much attention as a functional biopolymer for various applications, especially in the biomedical field. It is a natural polysaccharide created by the chemical deacetylation of chitin (CT) that is nontoxic, biocompatible, and biodegradable. This natural polymer is difficult to process; however, chemical modification of the CS backbone allows improved use of functional derivatives. CS and its derivatives are used to prepare hydrogels, membranes, scaffolds, fibers, foams, and sponges, primarily for regenerative medicine. Tissue engineering (TE), currently one of the fastest-growing fields in the life sciences, primarily aims to restore or replace lost or damaged organs and tissues using supports that, combined with cells and biomolecules, generate new tissue. In this sense, the growing interest in the application of biomaterials based on CS and some of its derivatives is justifiable. This review aims to summarize the most important recent advances in developing biomaterials based on CS and its derivatives and to study their synthesis, characterization, and applications in the biomedical field, especially in the TE area.
Collapse
Affiliation(s)
- Alejandro Elizalde-Cárdenas
- Conahcyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra", Ciudad de México 14389, Mexico; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Rosa María Ribas-Aparicio
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Aurora Rodríguez-Martínez
- Conahcyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra", Ciudad de México 14389, Mexico; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Camilo Ríos-Castañeda
- Dirección de investigación, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra", Ciudad de México 14389, Mexico
| | - Maykel González-Torres
- Conahcyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra", Ciudad de México 14389, Mexico.
| |
Collapse
|
19
|
Keppanan R, Karuppannasamy A, Nagaraja BC, Thiruvengadam V, Kesavan S, Dhawane YA, Ramasamy A. Effectiveness of chitosan nanohydrogel mediated encapsulation of EcR dsRNA against the whitefly, Bemisia tabaci Asia-I (Gennedius) (Hemiptera: Aleyordidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105712. [PMID: 38225070 DOI: 10.1016/j.pestbp.2023.105712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/19/2023] [Accepted: 11/26/2023] [Indexed: 01/17/2024]
Abstract
Bemisia tabaci is a global invasive pest causing substantial loss on several economically important crops and has developed a very high level of resistance to insecticides making current management practices ineffective. Thus, the novel pest management strategy like RNA interference (RNAi) has emerged as a potential molecular tool in the management of insect pests particularly B. tabaci. The present study investigated RNAi mediated silencing of the Ecdysone Receptor (EcR) gene in B. tabaci Asia-I using biodegradable Chitosan Nanoparticles (CNPs) hydrogel containing EcR dsRNA. The formation of nanohydrogel and dsRNA loading were characterized by gel retardation assay, scanning electron microscopy (SEM); transmission electron microscopy (TEM) and Fourier transform infrared microscopy (FTIR). The stability of CNPs/dsRNA was assessed by exposure to direct sunlight and UV light for different time periods. The CNPs/dsRNA exhibited increased stability over the untreated control and further confirmed by bioassay studies which yielded mortality over 80% and effectively down regulated the expression of the EcR gene as confirmed by qRT-PCR analysis. These investigations provide potential avenues for advancing innovative pest management strategies using biopolymer CNPs hydrogel, which can enhance the efficiency of dsRNA as a safe and targeted solution in the management of whiteflies.
Collapse
Affiliation(s)
- Ravindran Keppanan
- ICAR - Indian Institute of Horticultural Research, Bengaluru 560089, India
| | - Ashok Karuppannasamy
- ICAR - Indian Institute of Horticultural Research, Bengaluru 560089, India; Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India; Tata Institute for Genetics and Society, Bengaluru 560065, Karnataka, India.
| | - Bhargava Chikmagalur Nagaraja
- ICAR - Indian Institute of Horticultural Research, Bengaluru 560089, India; University of Agricultural Sciences, Bengaluru 560065, Karnataka, India
| | | | - Subaharan Kesavan
- ICAR - National Bureau of Agricultural Insect Resources, Bengaluru 560024, Karnataka, India
| | - Yogi Arun Dhawane
- ICAR - Indian Institute of Horticultural Research, Bengaluru 560089, India
| | - Asokan Ramasamy
- ICAR - Indian Institute of Horticultural Research, Bengaluru 560089, India.
| |
Collapse
|
20
|
Zhao L, Zhou Y, Zhang J, Liang H, Chen X, Tan H. Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications. Pharmaceutics 2023; 15:2514. [PMID: 37896274 PMCID: PMC10610124 DOI: 10.3390/pharmaceutics15102514] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Hydrogels prepared from natural polymer have attracted extensive attention in biomedical fields such as drug delivery, wound healing, and regenerative medicine due to their good biocompatibility, degradability, and flexibility. This review outlines the commonly used natural polymer in hydrogel preparation, including cellulose, chitosan, collagen/gelatin, alginate, hyaluronic acid, starch, guar gum, agarose, and dextran. The polymeric structure and process/synthesis of natural polymers are illustrated, and natural polymer-based hydrogels including the hydrogel formation and properties are elaborated. Subsequently, the biomedical applications of hydrogels based on natural polymer in drug delivery, tissue regeneration, wound healing, and other biomedical fields are summarized. Finally, the future perspectives of natural polymers and hydrogels based on them are discussed. For natural polymers, novel technologies such as enzymatic and biological methods have been developed to improve their structural properties, and the development of new natural-based polymers or natural polymer derivatives with high performance is still very important and challenging. For natural polymer-based hydrogels, novel hydrogel materials, like double-network hydrogel, multifunctional composite hydrogels, and hydrogel microrobots have been designed to meet the advanced requirements in biomedical applications, and new strategies such as dual-cross-linking, microfluidic chip, micropatterning, and 3D/4D bioprinting have been explored to fabricate advanced hydrogel materials with designed properties for biomedical applications. Overall, natural polymeric hydrogels have attracted increasing interest in biomedical applications, and the development of novel natural polymer-based materials and new strategies/methods for hydrogel fabrication are highly desirable and still challenging.
Collapse
Affiliation(s)
- Lingling Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yifan Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jiaying Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children’s Hospital, Shenzhen 518038, China
| | - Hongze Liang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xianwu Chen
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315211, China
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children’s Hospital, Shenzhen 518038, China
| |
Collapse
|
21
|
Yeh YY, Lin YY, Wang TT, Yeh YJ, Chiu TH, Wang R, Bai MY, Yeh YC. Fabrication of versatile poly(xylitol sebacate)-co-poly(ethylene glycol) hydrogels through multifunctional crosslinkers and dynamic bonds for wound healing. Acta Biomater 2023; 170:344-359. [PMID: 37607615 DOI: 10.1016/j.actbio.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
Poly(polyol sebacate) (PPS) polymer family has been recognized as promising biomaterials for biomedical applications with their characteristics of easy production, elasticity, biodegradation, and cytocompatibility. Poly(xylitol sebacate)-co-poly(ethylene glycol) (PXS-co-PEG) has been developed to fabricate PPS-based hydrogels; however, current PXS-co-PEG hydrogels presented limited properties and functions due to the limitations of the crosslinkers and crosslinking chemistry used in the hydrogel formation. Here, we fabricate a new type of PXS-co-PEG hydrogels through the use of multifunctional crosslinkers as well as dynamic bonds. In our design, polyethyleneimine-polydopamine (PEI-PDA) macromers are utilized to crosslink aldehyde-functionalized PXS-co-PEG (APP) through imine bonds and hydrogen bonds. PEI-PDA/APP hydrogels present multiple functional properties (e.g., fluorescent, elastomeric, biodegradable, self-healing, bioadhesive, antioxidant, and antibacterial behaviors). These properties of PEI-PDA/APP hydrogels can be fine-tuned by changing the PDA grafting degrees in the PEI-PDA crosslinkers. Most importantly, PEI-PDA/APP hydrogels are considered promising wound dressings to promote tissue remodeling and prevent bacterial infection in vivo. Taken together, PEI-PDA/APP hydrogels have been demonstrated as versatile biomaterials to provide multiple tailorable properties and desirable functions to expand the utility of PPS-based hydrogels for advanced biomedical applications. STATEMENT OF SIGNIFICANCE: Various strategies have been developed to fabricate poly(polyol sebacate) (PPS)-based hydrogels. However, current PPS-based hydrogels present limited properties and functions due to the limitations of the crosslinkers and crosslinking chemistry used in the hydrogel formation. This work describes that co-engineering crosslinkers and interfacial crosslinking is a promising approach to synthesizing a new type of poly(xylitol sebacate)-co-poly(ethylene glycol) (PXS-co-PEG) hydrogels as multifunctional hydrogels to expand the utility of PPS-based hydrogels for advanced biomedical applications. The fabricated hydrogels present multiple functional properties (e.g., fluorescent, biodegradable, elastomeric, self-healing, bioadhesive, antioxidative, and antibacterial), and these properties can be fine-tuned by the defined crosslinkers. The fabricated hydrogels are also used as promising wound dressing biomaterials to exhibit promoted tissue remodeling and prevent bacterial infection in vivo.
Collapse
Affiliation(s)
- Ying-Yu Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Yi-Yun Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ting-Teng Wang
- Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yu-Jia Yeh
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan
| | - Ting-Hsiang Chiu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Reuben Wang
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan; Master of Public Health (MPH) Program, National Taiwan University, Taipei, Taiwan; GIP-TRIAD Master's Degree in Agro-Biomedical Science, National Taiwan University, Taipei, Taiwan
| | - Meng-Yi Bai
- Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan; Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; Adjunct Appointment to the Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan.
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
22
|
Chelu M, Musuc AM, Popa M, Calderon Moreno JM. Chitosan Hydrogels for Water Purification Applications. Gels 2023; 9:664. [PMID: 37623119 PMCID: PMC10453846 DOI: 10.3390/gels9080664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Chitosan-based hydrogels have gained significant attention for their potential applications in water treatment and purification due to their remarkable properties such as bioavailability, biocompatibility, biodegradability, environmental friendliness, high pollutants adsorption capacity, and water adsorption capacity. This article comprehensively reviews recent advances in chitosan-based hydrogel materials for water purification applications. The synthesis methods, structural properties, and water purification performance of chitosan-based hydrogels are critically analyzed. The incorporation of various nanomaterials into chitosan-based hydrogels, such as nanoparticles, graphene, and metal-organic frameworks, has been explored to enhance their performance. The mechanisms of water purification, including adsorption, filtration, and antimicrobial activity, are also discussed in detail. The potential of chitosan-based hydrogels for the removal of pollutants, such as heavy metals, organic contaminants, and microorganisms, from water sources is highlighted. Moreover, the challenges and future perspectives of chitosan-based hydrogels in water treatment and water purification applications are also illustrated. Overall, this article provides valuable insights into the current state of the art regarding chitosan-based hydrogels for water purification applications and highlights their potential for addressing global water pollution challenges.
Collapse
Affiliation(s)
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.C.); (M.P.)
| | | | - Jose M. Calderon Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.C.); (M.P.)
| |
Collapse
|
23
|
Laganà A, Facciolà A, Iannazzo D, Celesti C, Polimeni E, Biondo C, Di Pietro A, Visalli G. Promising Materials in the Fight against Healthcare-Associated Infections: Antibacterial Properties of Chitosan-Polyhedral Oligomeric Silsesquioxanes Hybrid Hydrogels. J Funct Biomater 2023; 14:428. [PMID: 37623672 PMCID: PMC10456118 DOI: 10.3390/jfb14080428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
New technologies and materials could help in this fight against healthcare-associated infections. As the majority of these infections are caused by antibiotic-resistant bacteria, the development of materials with intrinsic antibacterial properties is a promising field of research. We combined chitosan (CS), with antibacterial properties, with polyhedral oligomeric silsesquioxanes (POSS), a biocompatible polymer with physico-chemical, mechanical, and rheological properties, creating a hydrogel using cross-linking agent genipin. The antibacterial properties of CS and CS-POSS hydrogels were investigated against nosocomial Gram-positive and Gram-negative bacteria both in terms of membrane damage and surface charge variations, and finally, the anti-biofilm property was studied through confocal microscopy. Both materials showed a good antibacterial capacity against all analyzed strains, both in suspension, with % decreases between 36.36 and 73.58 for CS and 29.86 and 66.04 for CS-POSS, and in plates with % decreases between 55.29 and 78.32 and 17.00 and 53.99 for CS and CS-POSS, respectively. The treated strains compared to the baseline condition showed an important membrane damage, which also determined a variation of surface charges, and finally, for both hydrogels, a remarkable anti-biofilm property was highlighted. Our findings showed a possible future use of these biocompatible materials in the manufacture of medical and surgical devices with intrinsic antibacterial and anti-biofilm properties.
Collapse
Affiliation(s)
- Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (A.L.); (A.F.); (A.D.P.)
- Istituto Clinico Polispecialistico C.O.T., Cure Ortopediche Traumatologiche s.p.a., 98124 Messina, Italy
| | - Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (A.L.); (A.F.); (A.D.P.)
| | - Daniela Iannazzo
- Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, 98166 Messina, Italy; (D.I.); (C.C.)
| | - Consuelo Celesti
- Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, 98166 Messina, Italy; (D.I.); (C.C.)
| | - Evelina Polimeni
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (E.P.); (C.B.)
| | - Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (E.P.); (C.B.)
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (A.L.); (A.F.); (A.D.P.)
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (A.L.); (A.F.); (A.D.P.)
| |
Collapse
|
24
|
Getya D, Gitsov I. Synthesis and Applications of Hybrid Polymer Networks Based on Renewable Natural Macromolecules. Molecules 2023; 28:6030. [PMID: 37630282 PMCID: PMC10458063 DOI: 10.3390/molecules28166030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Macromolecules obtained from renewable natural sources are gaining increasing attention as components for a vast variety of sustainable polymer-based materials. Natural raw materials can facilitate continuous-flow production due to their year-round availability and short replenishment period. They also open new opportunities for chemists and biologists to design and create "bioreplacement" and "bioadvantaged" polymers, where complex structures produced by nature are being modified, upgraded, and utilized to create novel materials. Bio-based macromonomers are expected not only to compete with but to replace some petroleum-based analogs, as well. The development of novel sustainable materials is an ongoing and very dynamic process. There are multiple strategies for transforming natural macromolecules into sophisticated value-added products. Some methods include chemical modification of macromolecules, while others include blending several components into one new system. One of the most promising approaches for incorporating renewable macromolecules into new products is the synthesis of hybrid networks based on one or more natural components. Each one has unique characteristics, so its incorporation into a network brings new sustainable materials with properties that can be tuned according to their end-use. This article reviews the current state-of-the-art and future potential of renewable natural macromolecules as sustainable building blocks for the synthesis and use of hybrid polymer networks. The most recent advancements and applications that involve polymers, such as cellulose, chitin, alginic acid, gellan gum, lignin, and their derivatives, are discussed.
Collapse
Affiliation(s)
- Dariya Getya
- Department of Chemistry, State University of New York—ESF, Syracuse, NY 13210, USA;
- The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
| | - Ivan Gitsov
- Department of Chemistry, State University of New York—ESF, Syracuse, NY 13210, USA;
- The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
- The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
25
|
Mohite P, Rahayu P, Munde S, Ade N, Chidrawar VR, Singh S, Jayeoye TJ, Prajapati BG, Bhattacharya S, Patel RJ. Chitosan-Based Hydrogel in the Management of Dermal Infections: A Review. Gels 2023; 9:594. [PMID: 37504473 PMCID: PMC10379151 DOI: 10.3390/gels9070594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
The main objective of this review is to provide a comprehensive overview of the current evidence regarding the use of chitosan-based hydrogels to manage skin infections. Chitosan, a naturally occurring polysaccharide derived from chitin, possesses inherent antimicrobial properties, making it a promising candidate for treating various dermal infections. This review follows a systematic approach to analyze relevant studies that have investigated the effectiveness of chitosan-based hydrogels in the context of dermal infections. By examining the available evidence, this review aims to evaluate these hydrogels' overall efficacy, safety, and potential applications for managing dermal infections. This review's primary focus is to gather and analyze data from different recent studies about chitosan-based hydrogels combating dermal infections; this includes assessing their ability to inhibit the growth of microorganisms and reduce infection-related symptoms. Furthermore, this review also considers the safety profile of chitosan-based hydrogels, examining any potential adverse effects associated with their use. This evaluation is crucial to ensure that these hydrogels can be safely utilized in the management of dermal infections without causing harm to patients. The review aims to provide healthcare professionals and researchers with a comprehensive understanding of the current evidence regarding the use of chitosan-based hydrogels for dermal infection management. The findings from this review can contribute to informed decision-making and the development of potential treatment strategies in this field.
Collapse
Affiliation(s)
- Popat Mohite
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Pudji Rahayu
- Department of Pharmacy of Tanjung Karang State Health Polytechnic, Soekarno-Hatta, Bandar Lampung 35145, Lampung, Indonesia
| | - Shubham Munde
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Nitin Ade
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Vijay R Chidrawar
- SVKM's NMIMS School of Pharmacy and Technology Management, Jadcharla 509301, Telangana, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titilope J Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS Deemed-to-be-University, Shirpur 425405, Maharashtra, India
| | - Ravish J Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand 388421, Gujarat, India
| |
Collapse
|
26
|
Yasin SNN, Said Z, Halib N, Rahman ZA, Mokhzani NI. Polymer-Based Hydrogel Loaded with Honey in Drug Delivery System for Wound Healing Applications. Polymers (Basel) 2023; 15:3085. [PMID: 37514474 PMCID: PMC10383286 DOI: 10.3390/polym15143085] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 07/30/2023] Open
Abstract
Excellent wound dressings should have crucial components, including high porosity, non-toxicity, high water absorption, and the ability to retain a humid environment in the wound area and facilitate wound healing. Unfortunately, current wound dressings hamper the healing process, with poor antibacterial, anti-inflammatory, and antioxidant activity, frequent dressing changes, low biodegradability, and poor mechanical properties. Hydrogels are crosslinked polymer chains with three-dimensional (3D) networks that have been applicable as wound dressings. They could retain a humid environment on the wound site, provide a protective barrier against pathogenic infections, and provide pain relief. Hydrogel can be obtained from natural, synthetic, or hybrid polymers. Honey is a natural substance that has demonstrated several therapeutic efficacies, including anti-inflammatory, antibacterial, and antioxidant activity, which makes it beneficial for wound treatment. Honey-based hydrogel wound dressings demonstrated excellent characteristics, including good biodegradability and biocompatibility, stimulated cell proliferation and reepithelization, inhibited bacterial growth, and accelerated wound healing. This review aimed to demonstrate the potential of honey-based hydrogel in wound healing applications and complement the studies accessible regarding implementing honey-based hydrogel dressing for wound healing.
Collapse
Affiliation(s)
- Siti Nor Najihah Yasin
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, Kuala Lumpur 55100, Malaysia
| | - Zulfahmi Said
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, Kuala Lumpur 55100, Malaysia
| | - Nadia Halib
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, Kuala Lumpur 55100, Malaysia
| | - Zulaiha A Rahman
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, Kuala Lumpur 55100, Malaysia
| | - Noor Izzati Mokhzani
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, Kuala Lumpur 55100, Malaysia
| |
Collapse
|
27
|
Budai L, Budai M, Fülöpné Pápay ZE, Vilimi Z, Antal I. Rheological Considerations of Pharmaceutical Formulations: Focus on Viscoelasticity. Gels 2023; 9:469. [PMID: 37367140 DOI: 10.3390/gels9060469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Controlling rheological properties offers the opportunity to gain insight into the physical characteristics, structure, stability and drug release rate of formulations. To better understand the physical properties of hydrogels, not only rotational but also oscillatory experiments should be performed. Viscoelastic properties, including elastic and viscous properties, are measured using oscillatory rheology. The gel strength and elasticity of hydrogels are of great importance for pharmaceutical development as the application of viscoelastic preparations has considerably expanded in recent decades. Viscosupplementation, ophthalmic surgery and tissue engineering are just a few examples from the wide range of possible applications of viscoelastic hydrogels. Hyaluronic acid, alginate, gellan gum, pectin and chitosan are remarkable representatives of gelling agents that attract great attention applied in biomedical fields. This review provides a brief summary of rheological properties, highlighting the viscoelasticity of hydrogels with great potential in biomedicine.
Collapse
Affiliation(s)
- Lívia Budai
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | - Marianna Budai
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | | | - Zsófia Vilimi
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| |
Collapse
|
28
|
Ye R, Liu S, Zhu W, Li Y, Huang L, Zhang G, Zhang Y. Synthesis, Characterization, Properties, and Biomedical Application of Chitosan-Based Hydrogels. Polymers (Basel) 2023; 15:2482. [PMID: 37299281 PMCID: PMC10255636 DOI: 10.3390/polym15112482] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The prospective applications of chitosan-based hydrogels (CBHs), a category of biocompatible and biodegradable materials, in biomedical disciplines such as tissue engineering, wound healing, drug delivery, and biosensing have garnered great interest. The synthesis and characterization processes used to create CBHs play a significant role in determining their characteristics and effectiveness. The qualities of CBHs might be greatly influenced by tailoring the manufacturing method to get certain traits, including porosity, swelling, mechanical strength, and bioactivity. Additionally, characterization methods aid in gaining access to the microstructures and properties of CBHs. Herein, this review provides a comprehensive assessment of the state-of-the-art with a focus on the affiliation between particular properties and domains in biomedicine. Moreover, this review highlights the beneficial properties and wide application of stimuli-responsive CBHs. The main obstacles and prospects for the future of CBH development for biomedical applications are also covered in this review.
Collapse
Affiliation(s)
- Ruixi Ye
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
| | - Siyu Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
| | - Wenkai Zhu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
| | - Yurong Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Long Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, 299 Bayi Road, Wuhan 430072, China;
| | - Guozheng Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yeshun Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
- Zhenjiang Zhongnong Biotechnology Co., Ltd., Zhenjiang 212121, China
| |
Collapse
|
29
|
Supernak M, Makurat-Kasprolewicz B, Kaczmarek-Szczepańska B, Pałubicka A, Sakowicz-Burkiewicz M, Ronowska A, Wekwejt M. Chitosan-Based Membranes as Gentamicin Carriers for Biomedical Applications-Influence of Chitosan Molecular Weight. MEMBRANES 2023; 13:542. [PMID: 37367746 DOI: 10.3390/membranes13060542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023]
Abstract
Over the past decade, much attention has been paid to chitosan as a potential drug carrier because of its non-toxicity, biocompatibility, biodegradability and antibacterial properties. The effect of various chitosan characteristics on its ability to carry different antibiotics is discussed in the literature. In this work, we evaluated the influence of the different molecular weights of this polymer on its potential as an antibacterial membrane after adding gentamicin (1% w/w). Three types of chitosan membranes without and with antibiotic were prepared using a solvent casting process. Their microstructures were analyzed with a 4K digital microscope, and their chemical bonds were studied using FTIR spectroscopy. Furthermore, cytocompatibility on human osteoblasts and fibroblasts as well as antibacterial activity against Staphylococcus aureus (S. aureus.) and Escherichia coli (E. coli) were assessed. We observed that the membrane prepared from medium-molecular-weight chitosan exhibited the highest contact angle (≈85°) and roughness (10.96 ± 0.21 µm) values, and its antibacterial activity was unfavorable. The maximum tensile strength and Young's modulus of membranes improved and elongation decreased with an increase in the molecular weight of chitosan. Membranes prepared with high-molecular-weight chitosan possessed the best antibacterial activity, but mainly against S. aureus. For E. coli, is not advisable to add gentamicin to the chitosan membrane, or it is suggested to deplete its content. None of the fabricated membranes exhibited a full cytotoxic effect on osteoblastic and fibroblast cells. Based on our results, the most favorable membrane as a gentamicin carrier was obtained from high-molecular-weight chitosan.
Collapse
Affiliation(s)
- Milena Supernak
- Institute of Naval Architecture and Ocean Engineering, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Balbina Makurat-Kasprolewicz
- Department of Materials Science and Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
| | - Anna Pałubicka
- Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, 83-400 Kościerzyna, Poland
| | | | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Marcin Wekwejt
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| |
Collapse
|
30
|
Santhamoorthy M, Vanaraj R, Thirupathi K, Ulagesan S, Nam TJ, Phan TTV, Kim SC. L-Lysine-Modified pNIPAm-co-GMA Copolymer Hydrogel for pH- and Temperature-Responsive Drug Delivery and Fluorescence Imaging Applications. Gels 2023; 9:gels9050363. [PMID: 37232955 DOI: 10.3390/gels9050363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
The development of dual-stimuli-responsive hydrogels attracts much research interest owing to its unique stimuli-responsive characteristics. In this study, a poly-N-isopropyl acrylamide-co-glycidyl methacrylate-based copolymer was synthesized by incorporating N-isopropyl acrylamide (NIPAm) and a glycidyl methacrylate (GMA) monomer. The synthesized copolymer, pNIPAm-co-GMA was further modified with L-lysine (Lys) functional units and further conjugated with fluorescent isothiocyanate (FITC) to produce a fluorescent copolymer pNIPAAm-co-GMA-Lys hydrogel (HG). The in vitro drug loading and dual pH- and temperature-stimuli-responsive drug release behavior of the pNIPAAm-co-GMA-Lys HG was investigated at different pH (pH 7.4, 6.2, and 4.0) and temperature (25 °C, 37 °C, and 45 °C) conditions, respectively, using curcumin (Cur) as a model anticancer drug. The Cur drug-loaded pNIPAAm-co-GMA-Lys/Cur HG showed a relatively slow drug release behavior at a physiological pH (pH 7.4) and low temperature (25 °C) condition, whereas enhanced drug release was achieved at acidic pH (pH 6.2 and 4.0) and higher temperature (37 °C and 45 °C) conditions. Furthermore, the in vitro biocompatibility and intracellular fluorescence imaging were examined using the MDA-MB-231 cell line. Therefore, we demonstrate that the synthesized pNIPAAm-co-GMA-Lys HG system with temperature- and pH-stimuli-responsive features could be promising for various applications in biomedical fields, including drug delivery, gene delivery, tissue engineering, diagnosis, antibacterial/antifouling material, and implantable devices.
Collapse
Affiliation(s)
| | - Ramkumar Vanaraj
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Kokila Thirupathi
- Department of Physics, Government Arts and Science College for Women, Karimangalam 635111, Dharmapuri, Tamil Nadu, India
| | - Selvakumari Ulagesan
- Division of Fisheries Life Sciences, Pukyong National University, Nam-gu, Busan 48513, Republic of Korea
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Gijang-gun, Busan 46041, Republic of Korea
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|