1
|
Wang W, Tai S, Tao J, Yang L, Cheng X, Zhou J. Innovative hydrogel-based therapies for ischemia-reperfusion injury: bridging the gap between pathophysiology and treatment. Mater Today Bio 2024; 29:101295. [PMID: 39493810 PMCID: PMC11528235 DOI: 10.1016/j.mtbio.2024.101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/21/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) commonly occurs in clinical settings, particularly in medical practices such as organ transplantation, cardiopulmonary resuscitation, and recovery from acute trauma, posing substantial challenges in clinical therapies. Current systemic therapies for IRI are limited by poor drug targeting, short efficacy, and significant side effects. Owing to their exceptional biocompatibility, biodegradability, excellent mechanical properties, targeting capabilities, controlled release potential, and properties mimicking the extracellular matrix (ECM), hydrogels not only serve as superior platforms for therapeutic substance delivery and retention, but also facilitate bioenvironment cultivation and cell recruitment, demonstrating significant potential in IRI treatment. This review explores the pathological processes of IRI and discusses the roles and therapeutic outcomes of various hydrogel systems. By categorizing hydrogel systems into depots delivering therapeutic agents, scaffolds encapsulating mesenchymal stem cells (MSCs), and ECM-mimicking hydrogels, this article emphasizes the selection of polymers and therapeutic substances, and details special crosslinking mechanisms and physicochemical properties, as well as summarizes the application of hydrogel systems for IRI treatment. Furthermore, it evaluates the limitations of current hydrogel treatments and suggests directions for future clinical applications.
Collapse
Affiliation(s)
- Weibo Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Supeng Tai
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Junyue Tao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Lexing Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xi Cheng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Abd El-Lateef HM, Khalaf MM, Alsaeed MA, Abou Taleb MF, Gouda M. Facile fabrication and characterization of carboxymethyl cellulose hydrogel loaded with TiO 2NPs as a promising disinfectant for eliminating the dissemination of waterborne pathogens through wastewater decontamination. Int J Biol Macromol 2024; 282:137410. [PMID: 39528194 DOI: 10.1016/j.ijbiomac.2024.137410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The purpose of this work was to develop and characterize an intriguing hydrogel called TiO₂NPs@CMC hydrogel, which is composed of carboxymethyl cellulose (CMC) loaded with titanium oxide nanoparticles (TiO₂NPs) for effective waterborne pathogen disinfection in wastewater. The TiO₂NPs were synthesized through hydrolysis and peptization. Then, incorporated into CMC matrix, and subsequently cross-linked with calcium chloride (CaCl₂). In this study, TiO2NPs was prepared and affirmed the particle distribution with a small size using TEM. The TiO₂NPs@CMC hydrogel exhibited significant antimicrobial and antibiofilm properties against various pathogens, such as Salmonella typhi, E. coli O157, Shigella dysenteriae, Enterococcus faecalis, Bacillus cereus, and Candida albicans, with highest inhibition zone diameters 29 mm for S. typhi. The inhibitory effect demonstrated that the hydrogel significantly decreased bacterial populations at 100 μg/mL concentrations. The hydrogel demonstrated a 2.7-log reduction in microbial counts in sewage within 120 min, achieving complete inactivation of pathogens at a concentration of 2xMIC within 180 min. The biofilm inhibition rate reached 87.6 % against B. cereus. Toxicity assessments demonstrated significant biocompatibility, with no adverse effects noted in environmental applications. The findings indicate that TiO₂NPs@CMC hydrogel is a viable option for sustainable wastewater treatment, providing an efficient, safe, and environmentally friendly method for removing waterborne pathogens and preventing biofilm formation.
Collapse
Affiliation(s)
- Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt.
| | - Mai M Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Mohammed A Alsaeed
- Fab Lab, Abdulmonem Al Rashed Humanitarian Foundation, Al-Ahsa, Saudi Arabia
| | - Manal F Abou Taleb
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| |
Collapse
|
3
|
Liu H, Deng X, Zhao X, Cao P, Li Y. Preparation and performance study of sodium alginate/bamboo fiber/gelatin ionic conductive self-healing hydrogel. Int J Biol Macromol 2024; 278:134549. [PMID: 39134198 DOI: 10.1016/j.ijbiomac.2024.134549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
This study has been successfully developed the Sodium alginate/Bamboo fiber /Gelatin(SA/BF/Gel)composite conductive hydrogel with adhesive and self-healing properties. Through in-depth research, the influence of Gel content on the tensile, adhesive, self-healing properties, and conductivity of the SA/BF/Gel composite conductive hydrogel was discussed. The sensing performance and sensing mechanism of the material were also investigated, along with a preliminary exploration of its potential applications. An attempt was made to apply the SA/BF/Gel composite conductive hydrogel to 3D printing technology, establishing a connection between the rheological properties of the hydrogel and its printing structure. The addition of Gel significantly improved the flexibility of the hydrogel, with a conductivity of up to 3.12 S/m at a Gel content of 1.5 %. When employed as a sensor, the material exhibited high sensitivity (GF = 2.21) and excellent cyclic stability, rendering it suitable for a wide range of applications in real-time monitoring of bending movements of fingers and wrists, as well as dynamic contact and variations in contact forces on the hydrogel surface. The SA/BF/Gel composite conductive hydrogel has the potential to be utilized in a multitude of applications, including the development of smart wearable devices, the monitoring of individual human beings, and the integration of human beings and machines. Furthermore, the research findings associated with this hydrogel will provide a strong foundation for the advancement of materials science and the integration of smart technologies.
Collapse
Affiliation(s)
- Haoxiang Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xin Deng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Xiuping Zhao
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Peng Cao
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yong Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
4
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
5
|
Zheng Y, Zhang H, Wang Z, Lu A, Yu A, Duan B. Chitin nanofibrils assisted 3D printing all-chitin hydrogels for wound dressing. Carbohydr Polym 2024; 334:122028. [PMID: 38553227 DOI: 10.1016/j.carbpol.2024.122028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
The direct ink writing technique used in 3D printing technology is generally applied to designing biomedical hydrogels. Herein, we proposed a strategy for preparing all-chitin-based inks for wound dressing via direct ink writing technique. The β-chitin nanofibers (MACNF) with a high aspect ratio were applied as a nanofiller to modulate the rheological properties of the alkaline dissolved chitin solution. The printing fidelity significantly depends on the MACNF introduction amount to the composite ink. 5-10 wt% MACNF ratio showed superior printing performance. The printed scaffold showed a uniform micron-sized pore structure and a woven network of nanofibers. Due to the good biocompatibility of chitin and the stereoscopic spatial skeleton, this scaffold showed excellent performance as a wound dressing, which can promote cell proliferation, collagen deposition and the angiogenesis of wounds, demonstrating its potential in biomedical applications. This approach successfully balanced the chitinous printability and biofunctions.
Collapse
Key Words
- 3D printing
- Ammonium hydroxide aqueous solution (NH(4)OH, AR, PubChem CID: 14923)
- Chitin
- Dimethyl sulfoxide (DMSO, AR, PubChem CID: 679), potassium hydroxide (KOH, AR, PubChem CID: 14797)
- Ethanol absolute (C(2)H(6)O, AR, PubChem CID: 702)
- Hydrochloric acid (HCl, AR, PubChem CID: 313)
- Hydrogen peroxide 30 % aqueous solution (H(2)O(2), AR, PubChem CID: 784)
- Maleic anhydride (C(4)H(2)O(3), AR, PubChem CID: 7923)
- Poly (ethylene glycol)-20000 (PEG20000, AR, PubChem SID:473052978)
- Sodium hydroxide (NaOH, AR, PubChem CID: 14798)
- Wound dressing
- tert-Butanol (AR, PubChem CID: 6386)
- β-Chitin nanofiber
Collapse
Affiliation(s)
- Yiran Zheng
- College of Chemistry and Molecular Science, Hubei Engineering Center of Natural Polymer-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, PR China
| | - Hao Zhang
- Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Zhiwei Wang
- Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Ang Lu
- College of Chemistry and Molecular Science, Hubei Engineering Center of Natural Polymer-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, PR China.
| | - Aixi Yu
- Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China.
| | - Bo Duan
- College of Chemistry and Molecular Science, Hubei Engineering Center of Natural Polymer-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, PR China; Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| |
Collapse
|
6
|
Utoiu E, Manoiu VS, Oprita EI, Craciunescu O. Bacterial Cellulose: A Sustainable Source for Hydrogels and 3D-Printed Scaffolds for Tissue Engineering. Gels 2024; 10:387. [PMID: 38920933 PMCID: PMC11203293 DOI: 10.3390/gels10060387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Bacterial cellulose is a biocompatible biomaterial with a unique macromolecular structure. Unlike plant-derived cellulose, bacterial cellulose is produced by certain bacteria, resulting in a sustainable material consisting of self-assembled nanostructured fibers with high crystallinity. Due to its purity, bacterial cellulose is appealing for biomedical applications and has raised increasing interest, particularly in the context of 3D printing for tissue engineering and regenerative medicine applications. Bacterial cellulose can serve as an excellent bioink in 3D printing, due to its biocompatibility, biodegradability, and ability to mimic the collagen fibrils from the extracellular matrix (ECM) of connective tissues. Its nanofibrillar structure provides a suitable scaffold for cell attachment, proliferation, and differentiation, crucial for tissue regeneration. Moreover, its mechanical strength and flexibility allow for the precise printing of complex tissue structures. Bacterial cellulose itself has no antimicrobial activity, but due to its ideal structure, it serves as matrix for other bioactive molecules, resulting in a hybrid product with antimicrobial properties, particularly advantageous in the management of chronic wounds healing process. Overall, this unique combination of properties makes bacterial cellulose a promising material for manufacturing hydrogels and 3D-printed scaffolds, advancing the field of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
| | | | - Elena Iulia Oprita
- National Institute of R&D for Biological Sciences, 296, Splaiul Independentei, 060031 Bucharest, Romania; (E.U.); (V.S.M.); (O.C.)
| | | |
Collapse
|
7
|
Chen Q, Yang Z, Liu H, Man J, Oladejo AO, Ibrahim S, Wang S, Hao B. Novel Drug Delivery Systems: An Important Direction for Drug Innovation Research and Development. Pharmaceutics 2024; 16:674. [PMID: 38794336 PMCID: PMC11124876 DOI: 10.3390/pharmaceutics16050674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The escalating demand for enhanced therapeutic efficacy and reduced adverse effects in the pharmaceutical domain has catalyzed a new frontier of innovation and research in the field of pharmacy: novel drug delivery systems. These systems are designed to address the limitations of conventional drug administration, such as abbreviated half-life, inadequate targeting, low solubility, and bioavailability. As the disciplines of pharmacy, materials science, and biomedicine continue to advance and converge, the development of efficient and safe drug delivery systems, including biopharmaceutical formulations, has garnered significant attention both domestically and internationally. This article presents an overview of the latest advancements in drug delivery systems, categorized into four primary areas: carrier-based and coupling-based targeted drug delivery systems, intelligent drug delivery systems, and drug delivery devices, based on their main objectives and methodologies. Additionally, it critically analyzes the technological bottlenecks, current research challenges, and future trends in the application of novel drug delivery systems.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Zhen Yang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Haoyu Liu
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Jingyuan Man
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Ayodele Olaolu Oladejo
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
- Department of Animal Health Technology, Oyo State College of Agriculture and Technology, Igboora 201003, Nigeria
| | - Sally Ibrahim
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
- Department of Animal Reproduction and AI, Veterinary Research Institute, National Research Centre, Dokki 12622, Egypt
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| |
Collapse
|
8
|
Huniadi M, Nosálová N, Almášiová V, Horňáková Ľ, Valenčáková A, Hudáková N, Cizkova D. Three-Dimensional Cultivation a Valuable Tool for Modelling Canine Mammary Gland Tumour Behaviour In Vitro. Cells 2024; 13:695. [PMID: 38667310 PMCID: PMC11049302 DOI: 10.3390/cells13080695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cell cultivation has been one of the most popular methods in research for decades. Currently, scientists routinely use two-dimensional (2D) and three-dimensional (3D) cell cultures of commercially available cell lines and primary cultures to study cellular behaviour, responses to stimuli, and interactions with their environment in a controlled laboratory setting. In recent years, 3D cultivation has gained more attention in modern biomedical research, mainly due to its numerous advantages compared to 2D cultures. One of the main goals where 3D culture models are used is the investigation of tumour diseases, in both animals and humans. The ability to simulate the tumour microenvironment and design 3D masses allows us to monitor all the processes that take place in tumour tissue created not only from cell lines but directly from the patient's tumour cells. One of the tumour types for which 3D culture methods are often used in research is the canine mammary gland tumour (CMT). The clinically similar profile of the CMT and breast tumours in humans makes the CMT a suitable model for studying the issue not only in animals but also in women.
Collapse
Affiliation(s)
- Mykhailo Huniadi
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Natália Nosálová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Viera Almášiová
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia;
| | - Ľubica Horňáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Alexandra Valenčáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Nikola Hudáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Dasa Cizkova
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| |
Collapse
|
9
|
Olteanu G, Neacșu SM, Joița FA, Musuc AM, Lupu EC, Ioniță-Mîndrican CB, Lupuliasa D, Mititelu M. Advancements in Regenerative Hydrogels in Skin Wound Treatment: A Comprehensive Review. Int J Mol Sci 2024; 25:3849. [PMID: 38612660 PMCID: PMC11012090 DOI: 10.3390/ijms25073849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
This state-of-the-art review explores the emerging field of regenerative hydrogels and their profound impact on the treatment of skin wounds. Regenerative hydrogels, composed mainly of water-absorbing polymers, have garnered attention in wound healing, particularly for skin wounds. Their unique properties make them well suited for tissue regeneration. Notable benefits include excellent water retention, creating a crucially moist wound environment for optimal healing, and facilitating cell migration, and proliferation. Biocompatibility is a key feature, minimizing adverse reactions and promoting the natural healing process. Acting as a supportive scaffold for cell growth, hydrogels mimic the extracellular matrix, aiding the attachment and proliferation of cells like fibroblasts and keratinocytes. Engineered for controlled drug release, hydrogels enhance wound healing by promoting angiogenesis, reducing inflammation, and preventing infection. The demonstrated acceleration of the wound healing process, particularly beneficial for chronic or impaired healing wounds, adds to their appeal. Easy application and conformity to various wound shapes make hydrogels practical, including in irregular or challenging areas. Scar minimization through tissue regeneration is crucial, especially in cosmetic and functional regions. Hydrogels contribute to pain management by creating a protective barrier, reducing friction, and fostering a soothing environment. Some hydrogels, with inherent antimicrobial properties, aid in infection prevention, which is a crucial aspect of successful wound healing. Their flexibility and ability to conform to wound contours ensure optimal tissue contact, enhancing overall treatment effectiveness. In summary, regenerative hydrogels present a promising approach for improving skin wound healing outcomes across diverse clinical scenarios. This review provides a comprehensive analysis of the benefits, mechanisms, and challenges associated with the use of regenerative hydrogels in the treatment of skin wounds. In this review, the authors likely delve into the application of rational design principles to enhance the efficacy and performance of hydrogels in promoting wound healing. Through an exploration of various methodologies and approaches, this paper is poised to highlight how these principles have been instrumental in refining the design of hydrogels, potentially revolutionizing their therapeutic potential in addressing skin wounds. By synthesizing current knowledge and highlighting potential avenues for future research, this review aims to contribute to the advancement of regenerative medicine and ultimately improve clinical outcomes for patients with skin wounds.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Florin Alexandru Joița
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | | | - Elena Carmen Lupu
- Department of Mathematics and Informatics, Faculty of Pharmacy, “Ovidius” University of Constanta, 900001 Constanta, Romania;
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| |
Collapse
|
10
|
Grandjean T, Perumal N, Manicam C, Matthey B, Wu T, Thiem DGE, Stein S, Henrich D, Kämmerer PW, Al-Nawas B, Ritz U, Blatt S. Towards optimized tissue regeneration: a new 3D printable bioink of alginate/cellulose hydrogel loaded with thrombocyte concentrate. Front Bioeng Biotechnol 2024; 12:1363380. [PMID: 38595995 PMCID: PMC11002213 DOI: 10.3389/fbioe.2024.1363380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/06/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Autologous platelet concentrate (APC) are pro-angiogenic and can promote wound healing and tissue repair, also in combination with other biomaterials. However, challenging defect situations remain demanding. 3D bioprinting of an APC based bioink encapsulated in a hydrogel could overcome this limitation with enhanced physio-mechanical interface, growth factor retention/secretion and defect-personalized shape to ultimately enhance regeneration. Methods This study used extrusion-based bioprinting to create a novel bioink of alginate/cellulose hydrogel loaded with thrombocyte concentrate. Chemico-physical testing exhibited an amorphous structure characterized by high shape fidelity. Cytotoxicity assay and incubation of human osteogenic sarcoma cells (SaOs2) exposed excellent biocompatibility. enzyme-linked immunosorbent assay analysis confirmed pro-angiogenic growth factor release of the printed constructs, and co-incubation with HUVECS displayed proper cell viability and proliferation. Chorioallantoic membrane (CAM) assay explored the pro-angiogenic potential of the prints in vivo. Detailed proteome and secretome analysis revealed a substantial amount and homologous presence of pro-angiogenic proteins in the 3D construct. Results This study demonstrated a 3D bioprinting approach to fabricate a novel bioink of alginate/cellulose hydrogel loaded with thrombocyte concentrate with high shape fidelity, biocompatibility, and substantial pro-angiogenic properties. Conclusion This approach may be suitable for challenging physiological and anatomical defect situations when translated into clinical use.
Collapse
Affiliation(s)
- Till Grandjean
- Department of Orthopedics and Traumatology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Natarajan Perumal
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Björn Matthey
- Fraunhofer Institute for Ceramic Technologies and Systems (Fraunhofer IKTS), Dresden, Germany
| | - Tao Wu
- Fraunhofer Institute for Ceramic Technologies and Systems (Fraunhofer IKTS), Dresden, Germany
| | - Daniel G. E. Thiem
- Department of Oral and Maxillofacial Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Stein
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Peer W. Kämmerer
- Department of Oral and Maxillofacial Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopedics and Traumatology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Platform for Biomaterial Research, BiomaTiCS Group, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Blatt
- Department of Oral and Maxillofacial Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Platform for Biomaterial Research, BiomaTiCS Group, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
11
|
Khan SA, Ahmad H, Zhu G, Pang H, Zhang Y. Three-Dimensional Printing of Hydrogels for Flexible Sensors: A Review. Gels 2024; 10:187. [PMID: 38534605 DOI: 10.3390/gels10030187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
The remarkable flexibility and heightened sensitivity of flexible sensors have drawn significant attention, setting them apart from traditional sensor technology. Within this domain, hydrogels-3D crosslinked networks of hydrophilic polymers-emerge as a leading material for the new generation of flexible sensors, thanks to their unique material properties. These include structural versatility, which imparts traits like adhesiveness and self-healing capabilities. Traditional templating-based methods fall short of tailor-made applications in crafting flexible sensors. In contrast, 3D printing technology stands out with its superior fabrication precision, cost-effectiveness, and satisfactory production efficiency, making it a more suitable approach than templating-based strategies. This review spotlights the latest hydrogel-based flexible sensors developed through 3D printing. It begins by categorizing hydrogels and outlining various 3D-printing techniques. It then focuses on a range of flexible sensors-including those for strain, pressure, pH, temperature, and biosensors-detailing their fabrication methods and applications. Furthermore, it explores the sensing mechanisms and concludes with an analysis of existing challenges and prospects for future research breakthroughs in this field.
Collapse
Affiliation(s)
- Suhail Ayoub Khan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Hamza Ahmad
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Guoyin Zhu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yizhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
12
|
Alshehhi JRMH, Wanasingha N, Balu R, Mata J, Shah K, Dutta NK, Choudhury NR. 3D-Printable Sustainable Bioplastics from Gluten and Keratin. Gels 2024; 10:136. [PMID: 38391466 PMCID: PMC10887891 DOI: 10.3390/gels10020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Bioplastic films comprising both plant- and animal-derived proteins have the potential to integrate the optimal characteristics inherent to the specific domain, which offers enormous potential to develop polymer alternatives to petroleum-based plastic. Herein, we present a facile strategy to develop hybrid films comprised of both wheat gluten and wool keratin proteins for the first time, employing a ruthenium-based photocrosslinking strategy. This approach addresses the demand for sustainable materials, reducing the environmental impact by using proteins from renewable and biodegradable sources. Gluten film was fabricated from an alcohol-water mixture soluble fraction, largely comprised of gliadin proteins. Co-crosslinking hydrolyzed low-molecular-weight keratin with gluten enhanced its hydrophilic properties and enabled the tuning of its physicochemical properties. Furthermore, the hierarchical structure of the fabricated films was studied using neutron scattering techniques, which revealed the presence of both hydrophobic and hydrophilic nanodomains, gliadin nanoclusters, and interconnected micropores in the matrix. The films exhibited a largely (>40%) β-sheet secondary structure, with diminishing gliadin aggregate intensity and increasing micropore size (from 1.2 to 2.2 µm) with an increase in keratin content. The hybrid films displayed improved molecular chain mobility, as evidenced by the decrease in the glass-transition temperature from ~179.7 °C to ~173.5 °C. Amongst the fabricated films, the G14K6 hybrid sample showed superior water uptake (6.80% after 30 days) compared to the pristine G20 sample (1.04%). The suitability of the developed system for multilayer 3D printing has also been demonstrated, with the 10-layer 3D-printed film exhibiting >92% accuracy, which has the potential for use in packaging, agricultural, and biomedical applications.
Collapse
Affiliation(s)
| | - Nisal Wanasingha
- Chemical and Environmental Engineering, School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Rajkamal Balu
- Chemical and Environmental Engineering, School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Jitendra Mata
- Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2232, Australia
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Kalpit Shah
- Chemical and Environmental Engineering, School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Naba K Dutta
- Chemical and Environmental Engineering, School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Namita Roy Choudhury
- Chemical and Environmental Engineering, School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|