1
|
Zhang Z, Shan M, Yang L, Cao S, Wang J, Li W, Guo Y. Identification of transcription factors associated with leaf senescence in tobacco. Sci Rep 2024; 14:21556. [PMID: 39285198 PMCID: PMC11405391 DOI: 10.1038/s41598-024-71941-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Leaf senescence represents the final stage of leaf development, involving transcription factors (TFs)-mediated genetic reprogramming events. The timing of crop leaf senescence has a major influence on the yield and quality of crop in agricultural production. As important regulator of plant growth, the significance of TFs in the regulation of leaf senescence have been highlighted in various plant species by recent advances in genetics. However, studies on underlying molecular mechanisms are still not adequately explained. In this study, for analyzing the regulation of TFs on senescence of tobacco leaves, we combined gene differential expression analysis with weighted gene co-expression network analysis (WGCNA) to analyze the time-series gene expression profiles in senescing tobacco leaf. Among 3517 TF genes expressed in tobacco leaves, we identified 21, 35, and 183 TFs that were associated with early, middle, and late stages of tobacco leaf senescence, respectively. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation results reveal that these senescence response TFs are correlated with several biological pathways such as plant hormone signal transduction, ubiquitin mediated proteolysis and MAPK signaling pathway, indicating the roles of TFs in regulating leaf senescence. Our results provide implications for future studies of the potential regulatory mechanisms of TFs involved in senescence of tobacco leaves.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Keyuanjing Forth Road, Qingdao, 266101, Shandong, China
- Department of Plant Physiology, Wageningen University & Research, Wageningen, The Netherlands
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Muhammad Shan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Keyuanjing Forth Road, Qingdao, 266101, Shandong, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liyu Yang
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetic & Breeding, Ministry of Agriculture and Rural Affairs, Qingdao, Shandong, China
| | - Songxiao Cao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Keyuanjing Forth Road, Qingdao, 266101, Shandong, China
| | - Jie Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Keyuanjing Forth Road, Qingdao, 266101, Shandong, China
| | - Wei Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Keyuanjing Forth Road, Qingdao, 266101, Shandong, China.
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Keyuanjing Forth Road, Qingdao, 266101, Shandong, China.
| |
Collapse
|
2
|
Omelyanchuk NA, Lavrekha VV, Bogomolov AG, Dolgikh VA, Sidorenko AD, Zemlyanskaya EV. Computational Reconstruction of the Transcription Factor Regulatory Network Induced by Auxin in Arabidopsis thaliana L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1905. [PMID: 39065433 PMCID: PMC11280061 DOI: 10.3390/plants13141905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
In plant hormone signaling, transcription factor regulatory networks (TFRNs), which link the master transcription factors to the biological processes under their control, remain insufficiently characterized despite their crucial function. Here, we identify a TFRN involved in the response to the key plant hormone auxin and define its impact on auxin-driven biological processes. To reconstruct the TFRN, we developed a three-step procedure, which is based on the integrated analysis of differentially expressed gene lists and a representative collection of transcription factor binding profiles. Its implementation is available as a part of the CisCross web server. With the new method, we distinguished two transcription factor subnetworks. The first operates before auxin treatment and is switched off upon hormone application, the second is switched on by the hormone. Moreover, we characterized the functioning of the auxin-regulated TFRN in control of chlorophyll and lignin biosynthesis, abscisic acid signaling, and ribosome biogenesis.
Collapse
Affiliation(s)
- Nadya A. Omelyanchuk
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
| | - Viktoriya V. Lavrekha
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Anton G. Bogomolov
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
| | - Vladislav A. Dolgikh
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Aleksandra D. Sidorenko
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena V. Zemlyanskaya
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Li C, Wang L, Su J, Li W, Tang Y, Zhao N, Lou L, Ou X, Jia D, Jiang J, Chen S, Chen F. A group VIIIa ethylene-responsive factor, CmERF4, negatively regulates waterlogging tolerance in chrysanthemum. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1479-1492. [PMID: 37952115 DOI: 10.1093/jxb/erad451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Ethylene-responsive factors (ERF) play an important role in plant responses to waterlogging stress. However, the function and mechanism of action of ERFVIII in response to waterlogging stress remain poorly understood. In this study, we found that expression of the ERF VIIIa gene CmERF4 in chrysanthemum was induced by waterlogging stress. CmERF4 localized to the nucleus when expressed in tobacco leaves. Yeast two-hybrid and luciferase assays showed that CmERF4 is a transcriptional inhibitor. CmERF4 overexpression in chrysanthemum reduced plant waterlogging tolerance, whereas overexpression of the chimeric activator CmERF4-VP64 reversed its transcriptional activity, promoting higher waterlogging tolerance than that observed in wild-type plants, indicating that CmERF4 negatively regulates waterlogging tolerance. Transcriptome profiling showed that energy metabolism and reactive oxygen species (ROS) pathway-associated genes were differentially expressed between CmERF4-VP64 and wild-type plants. RT-qPCR analysis of selected energy metabolism and reactive oxygen species-related genes showed that the gene expression patterns were consistent with the expression levels obtained from RNA-seq analysis. Overall, we identified new functions of CmERF4 in negatively regulating chrysanthemum waterlogging tolerance by modulating energy metabolism and ROS pathway genes.
Collapse
Affiliation(s)
- Chuanwei Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Likai Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jiangshuo Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Wenjie Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yun Tang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Nan Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - La Lou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xiaoli Ou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Diwen Jia
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
4
|
Yang Q, Tan S, Wang HL, Wang T, Cao J, Liu H, Sha Y, Zhao Y, Xia X, Guo H, Li Z. Spliceosomal protein U2B″ delays leaf senescence by enhancing splicing variant JAZ9β expression to attenuate jasmonate signaling in Arabidopsis. THE NEW PHYTOLOGIST 2023; 240:1116-1133. [PMID: 37608617 DOI: 10.1111/nph.19198] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/23/2023] [Indexed: 08/24/2023]
Abstract
The regulatory framework of leaf senescence is gradually becoming clearer; however, the fine regulation of this process remains largely unknown. Here, genetic analysis revealed that U2 small nuclear ribonucleoprotein B (U2B″), a component of the spliceosome, is a negative regulator of leaf senescence. Mutation of U2B″ led to precocious leaf senescence, whereas overexpression of U2B″ extended leaf longevity. Transcriptome analysis revealed that the jasmonic acid (JA) signaling pathway was activated in the u2b″ mutant. U2B″ enhances the generation of splicing variant JASMONATE ZIM-DOMAIN 9β (JAZ9β) with an intron retention in the Jas motif, which compromises its interaction with CORONATINE INSENSITIVE1 and thus enhances the stability of JAZ9β protein. Moreover, JAZ9β could interact with MYC2 and obstruct its activity, thereby attenuating JA signaling. Correspondingly, overexpression of JAZ9β rescued the early senescence phenotype of the u2b″ mutant. Furthermore, JA treatment promoted expression of U2B″ that was found to be a direct target of MYC2. Overexpression of MYC2 in the u2b″ mutant resulted in a more pronounced premature senescence than that in wild-type plants. Collectively, our findings reveal that the spliceosomal protein U2B″ fine-tunes leaf senescence by enhancing the expression of JAZ9β and thereby attenuating JA signaling.
Collapse
Affiliation(s)
- Qi Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shuya Tan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hou-Ling Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ting Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jie Cao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hairong Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yueqi Sha
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yaning Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hongwei Guo
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Zhonghai Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
5
|
Genome-Wide Analysis of AP2/ERF Gene Superfamily in Ramie ( Boehmeria nivea L.) Revealed Their Synergistic Roles in Regulating Abiotic Stress Resistance and Ramet Development. Int J Mol Sci 2022; 23:ijms232315117. [PMID: 36499437 PMCID: PMC9736067 DOI: 10.3390/ijms232315117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
AP2/ERF transcription factors (TFs) are one of the largest superfamilies in plants, and play vital roles in growth and response to biotic/abiotic stresses. Although the AP2/ERF family has been extensively characterized in many species, very little is known about this family in ramie (Boehmeria nivea L.). In this study, 138 AP2/ERF TFs were identified from the ramie genome and were grouped into five subfamilies, including the AP2 (19), RAV (5), Soloist (1), ERF (77), and DREB (36). Unique motifs were found in the DREB/ERF subfamily members, implying significance to the AP2/ERF TF functions in these evolutionary branches. Segmental duplication events were found to play predominant roles in the BnAP2/ERF TF family expansion. Light-, stress-, and phytohormone-responsive elements were identified in the promoter region of BnAP2/ERF genes, with abscisic acid response elements (ABRE), methyl jasmonate response elements, and the dehydration response element (DRE) being dominant. The integrated transcriptome and quantitative real-time PCR (qPCR) revealed 12 key BnAP2/ERF genes positively responding to waterlogging. Five of the genes are also involved in ramet development, with two (BnERF-30 and BnERF-32) further showing multifunctional roles. The protein interaction prediction analysis further verified their crosstalk mechanism in coordinating waterlogging resistance and ramet development. Our study provides new insights into the presence of AP2/ERF TFs in ramie, and provides candidate AP2/ERF TFs for further studies on breeding varieties with coupling between water stress tolerance and high yield.
Collapse
|
6
|
Guo H, Bi X, Wang Z, Jiang D, Cai M, An M, Xia Z, Wu Y. Reactive oxygen species-related genes participate in resistance to cucumber green mottle mosaic virus infection regulated by boron in Nicotiana benthamiana and watermelon. FRONTIERS IN PLANT SCIENCE 2022; 13:1027404. [PMID: 36438146 PMCID: PMC9691971 DOI: 10.3389/fpls.2022.1027404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Cucumber green mottle mosaic virus (CGMMV) infection causes acidification and rot of watermelon flesh, resulting in serious economic losses. It is widely reported the interaction relationship between boron and reactive oxygen species (ROS) in regulating normal growth and disease resistance in plants. Our previous results demonstrated that exogenous boron could improve watermelon resistance to CGMMV infection. However, the roles of ROS-related genes regulated by boron in resistance to CGMMV infection are unclear. Here, we demonstrated that CGMMV symptoms were alleviated, and viral accumulations were decreased by boron application in Nicotiana benthamiana, indicating that boron contributed to inhibiting CGMMV infection. Meanwhile, we found that a number of differentially expressed genes (DEGs) associated with inositol biosynthesis, ethylene synthesis, Ca2+ signaling transduction and ROS scavenging system were up-regulated, while many DEGs involved in ABA catabolism, GA signal transduction and ascorbic acid metabolism were down-regulated by boron application under CGMMV infection. Additionally, we individually silenced nine ROS-related genes to explore their anti-CGMMV roles using a tobacco rattle virus (TRV) vector. The results showed that NbCat1, NbGME1, NbGGP and NbPrx Q were required for CGMMV infection, while NbGST and NbIPS played roles in resistance to CGMMV infection. The similar results were obtained in watermelon by silencing of ClCat, ClPrx or ClGST expression using a pV190 vector. This study proposed a new strategy for improving plant resistance to CGMMV infection by boron-regulated ROS pathway and provided several target genes for watermelon disease resistance breeding.
Collapse
Affiliation(s)
- Huiyan Guo
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xinyue Bi
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zhiping Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Dong Jiang
- Green Agricultural Technology Center of Liaoning Province, Shenyang, China
| | - Ming Cai
- Green Agricultural Technology Center of Liaoning Province, Shenyang, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zihao Xia
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
7
|
Hunt AG. Review: Mechanisms underlying alternative polyadenylation in plants - looking in the right places. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111430. [PMID: 36007628 DOI: 10.1016/j.plantsci.2022.111430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/01/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Recent years have seen an explosion of interest in the subject of alternative polyadenylation in plants. Connections between the polyadenylation complex and numerous developmental and stress responses are well-established. However, those that link stimuli with the functioning of the polyadenylation complex are less well understood. To this end, it is imperative to clearly delineate the roles of the polyadenylation complex in both plant growth AND alternative polyadenylation. It is also necessary to understand the ways by which other molecular processes may contribute to alternative polyadenylation. This review discusses these issues, with a focus on instances that reveal mechanisms by which mRNA polyadenylation may be regulated. Insights from from characterizations of mutants affected in the polyadenylation complex are discussed, as are the limitations of such characterizations when it comes to teasing out cause and effect. These limitations encourage explorations to other processes that are beyond the core polyadenylation complex. Two such processes that sculpt the plant transcriptome - transcription termination and the epigenetic control of transposon activity - also contribute to regulated poly(A) site choice. These subjects define "the right places" - molecular mechanisms that contribute to the wide-ranging control of gene expression via mRNA polyadenylation.
Collapse
Affiliation(s)
- Arthur G Hunt
- Department of Plant and Soil Sciences, University of Kentucky, 301A Plant Science Building, 1405 Veterans Road, Lexington, KY 40546-0312, USA.
| |
Collapse
|
8
|
Somta P, Laosatit K, Yuan X, Chen X. Thirty Years of Mungbean Genome Research: Where Do We Stand and What Have We Learned? FRONTIERS IN PLANT SCIENCE 2022; 13:944721. [PMID: 35909762 PMCID: PMC9335052 DOI: 10.3389/fpls.2022.944721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Mungbean is a socioeconomically important legume crop in Asia that is currently in high demand by consumers and industries both as dried beans and in plant-based protein foods. Marker-assisted and genomics-assisted breeding are promising approaches to efficiently and rapidly develop new cultivars with improved yield, quality, and resistance to biotic and abiotic stresses. Although mungbean was at the forefront of research at the dawn of the plant genomics era 30 years ago, the crop is a "slow runner" in genome research due to limited genomic resources, especially DNA markers. Significant progress in mungbean genome research was achieved only within the last 10 years, notably after the release of the VC1973A draft reference genome constructed using next-generation sequencing technology, which enabled fast and efficient DNA marker development, gene mapping, and identification of candidate genes for complex traits. Resistance to biotic stresses has dominated mungbean genome research to date; however, research is on the rise. In this study, we provide an overview of the past progress and current status of mungbean genomics research. We also discuss and evaluate some research results to provide a better understanding of mungbean genomics.
Collapse
Affiliation(s)
- Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
9
|
Wen B, Gong X, Tan Q, Zhao W, Chen X, Li D, Li L, Xiao W. MdNAC4 Interacts With MdAPRR2 to Regulate Nitrogen Deficiency-Induced Leaf Senescence in Apple ( Malus domestica). FRONTIERS IN PLANT SCIENCE 2022; 13:925035. [PMID: 35845636 PMCID: PMC9280364 DOI: 10.3389/fpls.2022.925035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/13/2022] [Indexed: 06/02/2023]
Abstract
Nitrogen (N) is one of the important macronutrients in plants, and N deficiency induces leaf senescence. However, the molecular mechanism underlying how N deficiency affects leaf senescence is unclear. Here, we report an apple NAC TF, MdNAC4, that participates in N deficiency-induced leaf senescence. The senescence phenotype of apple leaves overexpressing MdNAC4 was enhanced after N deficiency. Consistently, the chlorophyll content of transgenic leaves was significantly lower than that in the WT control leaves, the expression of chlorophyll catabolism-related genes (MdNYC1, MdPAO, and MdSGR1) was significantly higher than that in the WT controls, and the expression of chlorophyll synthesis-related genes (MdHEMA, MdCHLI, and MdCHLM) was significantly lower than that in the WT control leaves. Furthermore, MdNAC4 was found to directly activate the transcription of the chlorophyll catabolism-related genes MdNYC1 and MdPAO. Additionally, MdNAC4 was proven to interact with MdAPRR2 proteins both in vitro and in vivo, and overexpression of MdAPRR2 seemed to delay N deficiency-induced leaf senescence. Correspondingly, the chlorophyll loss of MdAPRR2-overexpressing (MdAPRR2-OE) lines was significantly lower than in WT control plants. Although downregulated, the expression of the chlorophyll synthesis-related genes MdHEMA, MdCHLI, and MdCHLM in the transgenic plants was more than twice that in the WT control plants. Taken together, our results enrich the regulatory network of leaf senescence induced by N deficiency through the interaction between MdNAC4 and MdAPRR2.
Collapse
|
10
|
Yu Z, Hong L, Li QQ. Signatures of mRNA Alternative Polyadenylation in Arabidopsis Leaf Development. Front Genet 2022; 13:863253. [PMID: 35559042 PMCID: PMC9086830 DOI: 10.3389/fgene.2022.863253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022] Open
Abstract
Alternative polyadenylation (APA) of pre-mRNA is an important co-transcriptional mechanism that modulates gene expression, leading to transcriptomic and functional diversities. The role of APA in Arabidopsis leaf development, however, remains elusive. We applied a poly(A)-tag sequencing (PAT-seq) technique to characterize APA-mediated regulation events in cotyledon and in five stages of true leaf development. Over 60% APA was identified in genes expressed in leaves, consistent with the results in previous publications. However, a reduced APA level was detected in younger leaves, reaching 44% in the 18th true leaf. Importantly, we also found that >70% of the poly(A) site usages were altered in the second true leaf relative to the cotyledon. Compared with the cotyledon, more genes in the second true leaf tended to use the distal site of 3′UTR, but this was not found in pairwise comparison among other true leaves. In addition, a significant APA gene was found to be decreased in a pairwise comparison among true leaves, including differentially expressed genes. The APA genes identified herein were associated with specific biological processes, including metabolic and cellular processes and response to stimuli and hormones. These results provide a new insight into the regulation of Arabidopsis leaf development through APA.
Collapse
Affiliation(s)
- Zhibo Yu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Liwei Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, China.,Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
11
|
Lan W, Qiu Y, Xu Y, Liu Y, Miao Y. Ubiquitination and Ubiquitin-Like Modifications as Mediators of Alternative Pre-mRNA Splicing in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:869870. [PMID: 35646014 PMCID: PMC9134077 DOI: 10.3389/fpls.2022.869870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Alternative splicing (AS) is a common post-transcriptional regulatory process in eukaryotes. AS has an irreplaceable role during plant development and in response to environmental stress as it evokes differential expression of downstream genes or splicing factors (e.g., serine/arginine-rich proteins). Numerous studies have reported that loss of AS capacity leads to defects in plant growth and development, and induction of stress-sensitive phenotypes. A role for post-translational modification (PTM) of AS components has emerged in recent years. These modifications are capable of regulating the activity, stability, localization, interaction, and folding of spliceosomal proteins in human cells and yeast, indicating that PTMs represent another layer of AS regulation. In this review, we summarize the recent reports concerning ubiquitin and ubiquitin-like modification of spliceosome components and analyze the relationship between spliceosome and the ubiquitin/26S proteasome pathway in plants. Based on the totality of the evidence presented, we further speculate on the roles of protein ubiquitination mediated AS in plant development and environmental response.
Collapse
|
12
|
Guo Y, Ren G, Zhang K, Li Z, Miao Y, Guo H. Leaf senescence: progression, regulation, and application. MOLECULAR HORTICULTURE 2021; 1:5. [PMID: 37789484 PMCID: PMC10509828 DOI: 10.1186/s43897-021-00006-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/11/2021] [Indexed: 05/24/2023]
Abstract
Leaf senescence, the last stage of leaf development, is a type of postmitotic senescence and is characterized by the functional transition from nutrient assimilation to nutrient remobilization which is essential for plants' fitness. The initiation and progression of leaf senescence are regulated by a variety of internal and external factors such as age, phytohormones, and environmental stresses. Significant breakthroughs in dissecting the molecular mechanisms underpinning leaf senescence have benefited from the identification of senescence-altered mutants through forward genetic screening and functional assessment of hundreds of senescence-associated genes (SAGs) via reverse genetic research in model plant Arabidopsis thaliana as well as in crop plants. Leaf senescence involves highly complex genetic programs that are tightly tuned by multiple layers of regulation, including chromatin and transcription regulation, post-transcriptional, translational and post-translational regulation. Due to the significant impact of leaf senescence on photosynthesis, nutrient remobilization, stress responses, and productivity, much effort has been made in devising strategies based on known senescence regulatory mechanisms to manipulate the initiation and progression of leaf senescence, aiming for higher yield, better quality, or improved horticultural performance in crop plants. This review aims to provide an overview of leaf senescence and discuss recent advances in multi-dimensional regulation of leaf senescence from genetic and molecular network perspectives. We also put forward the key issues that need to be addressed, including the nature of leaf age, functional stay-green trait, coordination between different regulatory pathways, source-sink relationship and nutrient remobilization, as well as translational researches on leaf senescence.
Collapse
Affiliation(s)
- Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101 Shandong China
| | - Guodong Ren
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Kewei Zhang
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004 Zhejiang China
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083 China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Hongwei Guo
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055 Guangdong China
| |
Collapse
|
13
|
Ding A, Tang X, Yang D, Wang M, Ren A, Xu Z, Hu R, Zhou G, O’Neill M, Kong Y. ERF4 and MYB52 transcription factors play antagonistic roles in regulating homogalacturonan de-methylesterification in Arabidopsis seed coat mucilage. THE PLANT CELL 2021; 33:381-403. [PMID: 33709105 PMCID: PMC8136884 DOI: 10.1093/plcell/koaa031] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/17/2020] [Indexed: 05/05/2023]
Abstract
Homogalacturonan (HG), a component of pectin, is synthesized in the Golgi apparatus in its fully methylesterified form. It is then secreted into the apoplast where it is typically de-methylesterified by pectin methylesterases (PME). Secretion and de-esterification are critical for normal pectin function, yet the underlying transcriptional regulation mechanisms remain largely unknown. Here, we uncovered a mechanism that fine-tunes the degree of HG de-methylesterification (DM) in the mucilage that surrounds Arabidopsis thaliana seeds. We demonstrate that the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor (TF) ERF4 is a transcriptional repressor that positively regulates HG DM. ERF4 expression is confined to epidermal cells in the early stages of seed coat development. The adhesiveness of the erf4 mutant mucilage was decreased as a result of an increased DM caused by a decrease in PME activity. Molecular and genetic analyses revealed that ERF4 positively regulates HG DM by suppressing the expression of three PME INHIBITOR genes (PMEIs) and SUBTILISIN-LIKE SERINE PROTEASE 1.7 (SBT1.7). ERF4 shares common targets with the TF MYB52, which also regulates pectin DM. Nevertheless, the erf4-2 myb52 double mutant seeds have a wild-type mucilage phenotype. We provide evidence that ERF4 and MYB52 regulate downstream gene expression in an opposite manner by antagonizing each other's DNA-binding ability through a physical interaction. Together, our findings reveal that pectin DM in the seed coat is fine-tuned by an ERF4-MYB52 transcriptional complex.
Collapse
Affiliation(s)
- Anming Ding
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, China
| | - Xianfeng Tang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao 266101, China
| | - Dahai Yang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Meng Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Angyan Ren
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, China
| | - Zongchang Xu
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, China
| | - Ruibo Hu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao 266101, China
| | - Gongke Zhou
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257000, China
| | - Malcolm O’Neill
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Yingzhen Kong
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
14
|
Dvořák P, Krasylenko Y, Zeiner A, Šamaj J, Takáč T. Signaling Toward Reactive Oxygen Species-Scavenging Enzymes in Plants. FRONTIERS IN PLANT SCIENCE 2021; 11:618835. [PMID: 33597960 PMCID: PMC7882706 DOI: 10.3389/fpls.2020.618835] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/11/2020] [Indexed: 05/26/2023]
Abstract
Reactive oxygen species (ROS) are signaling molecules essential for plant responses to abiotic and biotic stimuli as well as for multiple developmental processes. They are produced as byproducts of aerobic metabolism and are affected by adverse environmental conditions. The ROS content is controlled on the side of their production but also by scavenging machinery. Antioxidant enzymes represent a major ROS-scavenging force and are crucial for stress tolerance in plants. Enzymatic antioxidant defense occurs as a series of redox reactions for ROS elimination. Therefore, the deregulation of the antioxidant machinery may lead to the overaccumulation of ROS in plants, with negative consequences both in terms of plant development and resistance to environmental challenges. The transcriptional activation of antioxidant enzymes accompanies the long-term exposure of plants to unfavorable environmental conditions. Fast ROS production requires the immediate mobilization of the antioxidant defense system, which may occur via retrograde signaling, redox-based modifications, and the phosphorylation of ROS detoxifying enzymes. This review aimed to summarize the current knowledge on signaling processes regulating the enzymatic antioxidant capacity of plants.
Collapse
|
15
|
Zhang YM, Guo P, Xia X, Guo H, Li Z. Multiple Layers of Regulation on Leaf Senescence: New Advances and Perspectives. FRONTIERS IN PLANT SCIENCE 2021; 12:788996. [PMID: 34938309 PMCID: PMC8685244 DOI: 10.3389/fpls.2021.788996] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/03/2021] [Indexed: 05/22/2023]
Abstract
Leaf senescence is the last stage of leaf development and is an orderly biological process accompanied by degradation of macromolecules and nutrient recycling, which contributes to plant fitness. Forward genetic mutant screening and reverse genetic studies of senescence-associated genes (SAGs) have revealed that leaf senescence is a genetically regulated process, and the initiation and progression of leaf senescence are influenced by an array of internal and external factors. Recently, multi-omics techniques have revealed that leaf senescence is subjected to multiple layers of regulation, including chromatin, transcriptional and post-transcriptional, as well as translational and post-translational levels. Although impressive progress has been made in plant senescence research, especially the identification and functional analysis of a large number of SAGs in crop plants, we still have not unraveled the mystery of plant senescence, and there are some urgent scientific questions in this field, such as when plant senescence is initiated and how senescence signals are transmitted. This paper reviews recent advances in the multiple layers of regulation on leaf senescence, especially in post-transcriptional regulation such as alternative splicing.
Collapse
Affiliation(s)
- Yue-Mei Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Pengru Guo
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongwei Guo
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zhonghai Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Zhonghai Li,
| |
Collapse
|
16
|
Wu J, Deng Y, Hu J, Jin C, Zhu X, Li D. Genome-wide analyses of direct target genes of an ERF11 transcription factor involved in plant defense against bacterial pathogens. Biochem Biophys Res Commun 2020; 532:76-81. [PMID: 32828541 DOI: 10.1016/j.bbrc.2020.07.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/23/2022]
Abstract
Ethylene responsive factor ERF11 containing the ERF-associated amphiphilic repression (EAR) motif enhances plant resistance to bacterial pathogens. However, the underlying molecular mechanisms regulated by transcription factor ERF11 are poorly understood, in tobacco or other model plants. Here, we revealed the genome-wide binding landscape of BrERF11b in Nicotiana benthamian by conducting chromatin immunoprecipitation experiments followed by high-throughput sequencing (ChIP-seq) and bioinformatic analyses. Our results also revealed a GCCbox-like consensus BrERF11b-binding DNA motif: VCGCCGCC. By further integrative analysis of ChIP-seq and RNA-seq data, and the confirmation of electrophoretic mobility shift assay (EMSA), we screened three direct target genes NbNIMIN2, NbTAF15b and NbERF4. These results suggest that ERF11 may be involved in NPR1-mediated systemic acquired resistance (SAR), nucleotide-binding leucine-rich repeat immune receptors (NLR) -mediated autoimmunity, and H2O2 generation, by direct transcriptional repression of NIM1-INTERACTING2 (NIMIN2), and transcriptional activation of TATA-binding protein-associated factor 15b (TAF15b) and ERF4. Our findings provide insightful information and valuable gene resource in unraveling the regulatory networks of plant defense responses to bacterial pathogens.
Collapse
Affiliation(s)
- Juan Wu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China; Institute of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 41700, China
| | - Yong Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Junhe Hu
- Institute of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 41700, China
| | - Chenzhong Jin
- Institute of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 41700, China
| | - Xiwu Zhu
- Institute of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 41700, China.
| | - Defang Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| |
Collapse
|
17
|
Chakrabarti M, de Lorenzo L, Abdel-Ghany SE, Reddy ASN, Hunt AG. Wide-ranging transcriptome remodelling mediated by alternative polyadenylation in response to abiotic stresses in Sorghum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:916-930. [PMID: 31909843 DOI: 10.1111/tpj.14671] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/14/2019] [Accepted: 01/02/2020] [Indexed: 05/28/2023]
Abstract
Alternative polyadenylation (APA) regulates diverse developmental and physiological processes through its effects on gene expression, mRNA stability, translatability, and transport. Sorghum is a major cereal crop in the world and, despite its importance, not much is known about the role of post-transcriptional regulation in mediating responses to abiotic stresses in Sorghum. A genome-wide APA analysis unveiled widespread occurrence of APA in Sorghum in response to drought, heat, and salt stress. Abiotic stress treatments incited changes in poly(A) site choice in a large number of genes. Interestingly, abiotic stresses led to the re-directing of transcriptional output into non-productive pathways defined by the class of poly(A) site utilized. This result revealed APA to be part of a larger global response of Sorghum to abiotic stresses that involves the re-direction of transcriptional output into non-productive transcriptional and translational pathways. Large numbers of stress-inducible poly(A) sites could not be linked with known, annotated genes, suggestive of the existence of numerous unidentified genes whose expression is strongly regulated by abiotic stresses. Furthermore, we uncovered a novel stress-specific cis-element in intronic poly(A) sites used in drought- and heat-stressed plants that might play an important role in non-canonical poly(A) site choice in response to abiotic stresses.
Collapse
Affiliation(s)
- Manohar Chakrabarti
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Laura de Lorenzo
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Salah E Abdel-Ghany
- Department of Biology, and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Anireddy S N Reddy
- Department of Biology, and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Arthur G Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| |
Collapse
|
18
|
Zentgraf U, Doll J. Arabidopsis WRKY53, a Node of Multi-Layer Regulation in the Network of Senescence. PLANTS (BASEL, SWITZERLAND) 2019; 8:E578. [PMID: 31817659 PMCID: PMC6963213 DOI: 10.3390/plants8120578] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022]
Abstract
Leaf senescence is an integral part of plant development aiming at the remobilization of nutrients and minerals out of the senescing tissue into developing parts of the plant. Sequential as well as monocarpic senescence maximize the usage of nitrogen, mineral, and carbon resources for plant growth and the sake of the next generation. However, stress-induced premature senescence functions as an exit strategy to guarantee offspring under long-lasting unfavorable conditions. In order to coordinate this complex developmental program with all kinds of environmental input signals, complex regulatory cues have to be in place. Major changes in the transcriptome imply important roles for transcription factors. Among all transcription factor families in plants, the NAC and WRKY factors appear to play central roles in senescence regulation. In this review, we summarize the current knowledge on the role of WRKY factors with a special focus on WRKY53. In contrast to a holistic multi-omics view we want to exemplify the complexity of the network structure by summarizing the multilayer regulation of WRKY53 of Arabidopsis.
Collapse
Affiliation(s)
- Ulrike Zentgraf
- Center for Plant Molecular Biology (ZMBP), University of Tuebingen, Auf der Morgenstelle 32, 72076 Tuebingen, Germany;
| | | |
Collapse
|
19
|
Yu Z, Lin J, Li QQ. Transcriptome Analyses of FY Mutants Reveal Its Role in mRNA Alternative Polyadenylation. THE PLANT CELL 2019; 31:2332-2352. [PMID: 31427469 PMCID: PMC6790095 DOI: 10.1105/tpc.18.00545] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/15/2019] [Accepted: 08/19/2019] [Indexed: 05/10/2023]
Abstract
A crucial step for mRNA polyadenylation is poly(A) signal recognition by trans-acting factors. The mammalian cleavage and polyadenylation specificity factor (CPSF) complex components CPSF30 and WD repeat-containing protein33 (WDR33) recognize the canonical AAUAAA for polyadenylation. In Arabidopsis (Arabidopsis thaliana), the flowering time regulator FY is the homolog of WDR33. However, its role in mRNA polyadenylation is poorly understood. Using poly(A) tag sequencing, we found that >50% of alternative polyadenylation (APA) events are altered in fy single mutants or double mutants with oxt6 (a null mutant of AtCPSF30), but mutation of the FY WD40-repeat has a stronger effect than deletion of the plant-unique Pro-Pro-Leu-Pro-Pro (PPLPP) domain. fy mutations disrupt AAUAAA or AAUAAA-like poly(A) signal recognition. Notably, A-rich signal usage is suppressed in the WD40-repeat mutation but promoted in PPLPP-domain deficiency. However, fy mutations do not aggravate the altered signal usage in oxt6 Furthermore, the WD40-repeat mutation shows a preference for 3' untranslated region shortening, but the PPLPP-domain deficiency shows a preference for lengthening. Interestingly, the WD40-repeat mutant exhibits shortened primary roots and late flowering with alteration of APA of related genes. Importantly, the long transcripts of two APA genes affected in fy are related to abiotic stress responses. These results reveal a conserved and specific role of FY in mRNA polyadenylation.
Collapse
Affiliation(s)
- Zhibo Yu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China 361102
| | - Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China 361102
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California 91766
| | - Qingshun Quinn Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China 361102
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California 91766
| |
Collapse
|