1
|
Lin H, Wei S, Huang S, Tang Z, Mo Z. Gender difference in the association of OSBPL8 polymorphisms with nephrolithiasis within a Chinese cohort. Gene 2025; 942:149218. [PMID: 39761801 DOI: 10.1016/j.gene.2025.149218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/17/2024] [Accepted: 01/02/2025] [Indexed: 01/21/2025]
Abstract
BACKGROUND Kidney stone disease (KSD) is a common disorder of the urinary system and is closely related to genetic polymorphisms. However, the relationship between OSBPL8 polymorphisms and kidney stones has not been thoroughly investigated. METHODS Six OSBPL8 polymorphisms (rs17042391,rs17042409,rs4761431,rs7303892,rs4761434, and rs17042390) were analyzed in a Chinese case-control cohort containing 923 nephrolithiasis patients and 945 healthy controls.The association of these OSBPL8 gene polymorphisms with KSD susceptibility was analyzed using logistic regression, and examined by calculating the odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS The OSBPL8 polymorphisms (GG for rs17042391, rs17042409, rs4761431, rs7303892; AA for rs4761434; and G for rs17042390) were significantly associated with a decreased risk of KSD in females.The protected alleles (G allele of rs17042391, G allele of rs17042409, G allele of rs4761431, A allele of rs4761434, and G allele of rs17042390) were related to decreased BMI levels in KSD patients; female patients with these alleles also exhibited lower BMI, HDL, and LDL levels,the G allele of rs7303892 was linked to reduced serum cholesterol levels in these females.Additionally, the haplotype ACAAGA was associated with decreased KSD risk in females, but haplotype GGGGAG presented an opposing effect. CONCLUSION Our research shows that the OSBPL8 gene polymorphisms reduced the risk of KSD in females, and were also associated with lipid-related metabolic traits.
Collapse
Affiliation(s)
- Haisong Lin
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi 530021, China; Departments of Urology, The Second Nanning People's Hospital, Nanning, Guangxi 530021, China; Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Suchun Wei
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi 530021, China; Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region, 545005, China
| | - Shengzhu Huang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhen Tang
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi 530021, China; Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Departments of Urology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi Zhuang Autonomous Region, 545005, China
| | - Zengnan Mo
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi 530021, China; Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
2
|
Ma G, Tan X, Yan Y, Zhang T, Wang J, Chen X, Xu J. A genome-wide association study identified candidate regions and genes for commercial traits in a Landrace population. Front Genet 2025; 15:1505197. [PMID: 39834545 PMCID: PMC11743953 DOI: 10.3389/fgene.2024.1505197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Backfat thickness (BFT) and feed conversion ratio (FCR) are important commercial traits in the pig industry. With the increasing demand for human health and meat production, identifying functional genomic regions and genes associated with these commercial traits is critical for enhancing production efficiency. In this research, we conducted a genome-wide association study (GWAS) on a Landrace population comprising 4,295 individuals with chip data for BFT and FCR. Our analysis revealed a total of 118 genome-wide significant signals located on chromosomes SSC1, SSC2, SSC7, SSC12, and SSC13, respectively. Furthermore, we identified 10 potential regions associated with the two traits and annotated the genes within these regions. In addition, enrichment analysis was also performed. Notably, candidate genes such as SHANK2, KCNQ1, and ABL1 were found to be associated with BFT, whereas NAP1L4, LSP1, and PPFIA1 genes were related to the FCR. Our findings provide valuable insights into the genetic architecture of these two traits and offer guidance for future pig breeding efforts.
Collapse
Affiliation(s)
- Guojian Ma
- Breeding Department, Wuhan COFCO Meat Co., Ltd., Wuhan, Hubei, China
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Xihong Tan
- Breeding Department, Wuhan COFCO Meat Co., Ltd., Wuhan, Hubei, China
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Ying Yan
- Breeding Department, Wuhan COFCO Meat Co., Ltd., Wuhan, Hubei, China
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Tianyang Zhang
- Breeding Department, Wuhan COFCO Meat Co., Ltd., Wuhan, Hubei, China
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Jianhua Wang
- Breeding Department, Wuhan COFCO Meat Co., Ltd., Wuhan, Hubei, China
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Xiaoling Chen
- Breeding Department, Wuhan COFCO Meat Co., Ltd., Wuhan, Hubei, China
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Jingya Xu
- Breeding Department, Wuhan COFCO Meat Co., Ltd., Wuhan, Hubei, China
- COFCO Nutrition and Health Research Institute, Beijing, China
| |
Collapse
|
3
|
Lv J, Yang F, Li Y, Gao N, Zeng Q, Ma H, He J, Zhang Y. Characterization and Function Analysis of miRNA Editing during Fat Deposition in Chinese Indigenous Ningxiang Pigs. Vet Sci 2024; 11:183. [PMID: 38668450 PMCID: PMC11054885 DOI: 10.3390/vetsci11040183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
This study aimed to identify active miRNA editing sites during adipose development in Ningxiang pigs and analyze their characteristics and functions. Based on small RNA-seq data from the subcutaneous adipose tissues of Ningxiang pigs at four stages-30 days (piglet), 90 days (nursery), 150 days (early fattening), and 210 days (late fattening)-we constructed a developmental map of miRNA editing in the adipose tissues of Ningxiang pigs. A total of 505 miRNA editing sites were identified using the revised pipeline, with C-to-U editing types being the most prevalent, followed by U-to-C, A-to-G, and G-to-U. Importantly, these four types of miRNA editing exhibited base preferences. The number of editing sites showed obvious differences among age groups, with the highest occurrence of miRNA editing events observed at 90 days of age and the lowest at 150 days of age. A total of nine miRNA editing sites were identified in the miRNA seed region, with significant differences in editing levels (p < 0.05) located in ssc-miR-23a, ssc-miR-27a, ssc-miR-30b-5p, ssc-miR-15a, ssc-miR-497, ssc-miR-15b, and ssc-miR-425-5p, respectively. Target gene prediction and KEGG enrichment analyses indicated that the editing of miR-497 might potentially regulate fat deposition by inhibiting adipose synthesis via influencing target binding. These results provide new insights into the regulatory mechanism of pig fat deposition.
Collapse
Affiliation(s)
- Jiayu Lv
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.L.); (F.Y.); (Y.L.); (N.G.); (Q.Z.); (H.M.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410000, China
| | - Fang Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.L.); (F.Y.); (Y.L.); (N.G.); (Q.Z.); (H.M.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410000, China
| | - Yiyang Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.L.); (F.Y.); (Y.L.); (N.G.); (Q.Z.); (H.M.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410000, China
| | - Ning Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.L.); (F.Y.); (Y.L.); (N.G.); (Q.Z.); (H.M.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410000, China
| | - Qinghua Zeng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.L.); (F.Y.); (Y.L.); (N.G.); (Q.Z.); (H.M.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410000, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.L.); (F.Y.); (Y.L.); (N.G.); (Q.Z.); (H.M.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410000, China
| | - Jun He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.L.); (F.Y.); (Y.L.); (N.G.); (Q.Z.); (H.M.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410000, China
| | - Yuebo Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.L.); (F.Y.); (Y.L.); (N.G.); (Q.Z.); (H.M.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410000, China
| |
Collapse
|
4
|
Wu F, Chen Z, Zhang Z, Wang Z, Zhang Z, Wang Q, Pan Y. The Role of SOCS3 in Regulating Meat Quality in Jinhua Pigs. Int J Mol Sci 2023; 24:10593. [PMID: 37445769 DOI: 10.3390/ijms241310593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Meat quality is an important economic trait that influences the development of the pig industry. Skeletal muscle development and glycolytic potential (GP) are two crucial aspects that significantly impact meat quality. It has been reported that abnormal skeletal muscle development and high glycogen content results in low meat quality. However, the genetic mechanisms underlying these factors are still unclear. Compared with intensive pig breeds, Chinese indigenous pig breeds, such as the Jinhua pig, express superior meat quality characteristics. The differences in the meat quality traits between Jinhua and intensive pig breeds make them suitable for uncovering the genetic mechanisms that regulate meat quality traits. In this study, the Jinhua pig breed and five intensive pig breeds, including Duroc, Landrace, Yorkshire, Berkshire, and Pietrain pig breeds, were selected as experimental materials. First, the FST and XP-EHH methods were used to screen the selective signatures on the genome in the Jinhua population. Then, combined with RNA-Seq data, the study further confirmed that SOCS3 could be a key candidate gene that influences meat quality by mediating myoblast proliferation and glycometabolism because of the down-regulated expression of SOCS3 in Jinhua pigs compared with Landrace pigs. Finally, through SOCS3 knockout (KO) and overexpression (OE) experiments in mouse C2C12 cells, the results showed that SOCS3 regulated the cell proliferation of myoblasts. Moreover, SOCS3 is involved in regulating glucose uptake by the IRS1/PI3K/AKT signaling pathway. Overall, these findings provide a basis for the genetic improvement of meat quality traits in the pig industry.
Collapse
Affiliation(s)
- Fen Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zitao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenyang Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhe Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qishan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Yuchun Pan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| |
Collapse
|
5
|
Tobler R, Souilmi Y, Huber CD, Bean N, Turney CSM, Grey ST, Cooper A. The role of genetic selection and climatic factors in the dispersal of anatomically modern humans out of Africa. Proc Natl Acad Sci U S A 2023; 120:e2213061120. [PMID: 37220274 PMCID: PMC10235988 DOI: 10.1073/pnas.2213061120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/14/2023] [Indexed: 05/25/2023] Open
Abstract
The evolutionarily recent dispersal of anatomically modern humans (AMH) out of Africa (OoA) and across Eurasia provides a unique opportunity to examine the impacts of genetic selection as humans adapted to multiple new environments. Analysis of ancient Eurasian genomic datasets (~1,000 to 45,000 y old) reveals signatures of strong selection, including at least 57 hard sweeps after the initial AMH movement OoA, which have been obscured in modern populations by extensive admixture during the Holocene. The spatiotemporal patterns of these hard sweeps provide a means to reconstruct early AMH population dispersals OoA. We identify a previously unsuspected extended period of genetic adaptation lasting ~30,000 y, potentially in the Arabian Peninsula area, prior to a major Neandertal genetic introgression and subsequent rapid dispersal across Eurasia as far as Australia. Consistent functional targets of selection initiated during this period, which we term the Arabian Standstill, include loci involved in the regulation of fat storage, neural development, skin physiology, and cilia function. Similar adaptive signatures are also evident in introgressed archaic hominin loci and modern Arctic human groups, and we suggest that this signal represents selection for cold adaptation. Surprisingly, many of the candidate selected loci across these groups appear to directly interact and coordinately regulate biological processes, with a number associated with major modern diseases including the ciliopathies, metabolic syndrome, and neurodegenerative disorders. This expands the potential for ancestral human adaptation to directly impact modern diseases, providing a platform for evolutionary medicine.
Collapse
Affiliation(s)
- Raymond Tobler
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
- Environment Institute, The University of Adelaide, Adelaide, SA5005, Australia
| | - Christian D. Huber
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
| | - Nigel Bean
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, The University of Adelaide, Adelaide, SA5005, Australia
- School of Mathematical Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | - Chris S. M. Turney
- Division of Research, University of Technology Sydney, Ultimo, NSW2007, Australia
| | - Shane T. Grey
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW2052, Australia
- Transplantation Immunology Group, Translation Science Pillar, Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
| | - Alan Cooper
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
- Blue Sky Genetics, Ashton, SA5137, Australia
| |
Collapse
|
6
|
Wang H, Wang X, Li M, Sun H, Chen Q, Yan D, Dong X, Pan Y, Lu S. Genome-wide association study reveals genetic loci and candidate genes for meat quality traits in a four-way crossbred pig population. Front Genet 2023; 14:1001352. [PMID: 36814900 PMCID: PMC9939654 DOI: 10.3389/fgene.2023.1001352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Meat quality traits (MQTs) have gained more attention from breeders due to their increasing economic value in the commercial pig industry. In this genome-wide association study (GWAS), 223 four-way intercross pigs were genotyped using the specific-locus amplified fragment sequencing (SLAF-seq) and phenotyped for PH at 45 min post mortem (PH45), meat color score (MC), marbling score (MA), water loss rate (WL), drip loss (DL) in the longissimus muscle, and cooking loss (CL) in the psoas major muscle. A total of 227, 921 filtered single nucleotide polymorphisms (SNPs) evenly distributed across the entire genome were detected to perform GWAS. A total of 64 SNPs were identified for six meat quality traits using the mixed linear model (MLM), of which 24 SNPs were located in previously reported QTL regions. The phenotypic variation explained (PVE) by the significant SNPs was from 2.43% to 16.32%. The genomic heritability estimates based on SNP for six meat-quality traits were low to moderate (0.07-0.47) being the lowest for CL and the highest for DL. A total of 30 genes located within 10 kb upstream or downstream of these significant SNPs were found. Furthermore, several candidate genes for MQTs were detected, including pH45 (GRM8), MC (ANKRD6), MA (MACROD2 and ABCG1), WL (TMEM50A), CL (PIP4K2A) and DL (CDYL2, CHL1, ABCA4, ZAG and SLC1A2). This study provided substantial new evidence for several candidate genes to participate in different pork quality traits. The identification of these SNPs and candidate genes provided a basis for molecular marker-assisted breeding and improvement of pork quality traits.
Collapse
Affiliation(s)
- Huiyu Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China,Faculty of Animal Science, Xichang University, Xichang, Sichuan, China
| | - Xiaoyi Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Mingli Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Hao Sun
- Faculty of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Dawei Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xinxing Dong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yuchun Pan
- Faculty of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Yuchun Pan, ; Shaoxiong Lu,
| | - Shaoxiong Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China,*Correspondence: Yuchun Pan, ; Shaoxiong Lu,
| |
Collapse
|
7
|
Shi L, Wang L, Fang L, Li M, Tian J, Wang L, Zhao F. Integrating genome-wide association studies and population genomics analysis reveals the genetic architecture of growth and backfat traits in pigs. Front Genet 2022; 13:1078696. [PMID: 36506319 PMCID: PMC9732542 DOI: 10.3389/fgene.2022.1078696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022] Open
Abstract
Growth and fat deposition are complex traits, which can affect economical income in the pig industry. Due to the intensive artificial selection, a significant genetic improvement has been observed for growth and fat deposition in pigs. Here, we first investigated genomic-wide association studies (GWAS) and population genomics (e.g., selection signature) to explore the genetic basis of such complex traits in two Large White pig lines (n = 3,727) with the GeneSeek GGP Porcine HD array (n = 50,915 SNPs). Ten genetic variants were identified to be associated with growth and fatness traits in two Large White pig lines from different genetic backgrounds by performing both within-population GWAS and cross-population GWAS analyses. These ten significant loci represented eight candidate genes, i.e., NRG4, BATF3, IRS2, ANO1, ANO9, RNF152, KCNQ5, and EYA2. One of them, ANO1 gene was simultaneously identified for both two lines in BF100 trait. Compared to single-population GWAS, cross-population GWAS was less effective for identifying SNPs with population-specific effect, but more powerful for detecting SNPs with population-shared effects. We further detected genomic regions specifically selected in each of two populations, but did not observe a significant enrichment for the heritability of growth and backfat traits in such regions. In summary, the candidate genes will provide an insight into the understanding of the genetic architecture of growth-related traits and backfat thickness, and may have a potential use in the genomic breeding programs in pigs.
Collapse
Affiliation(s)
- Liangyu Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Ligang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Mianyan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingjing Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixian Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Lixian Wang, ; Fuping Zhao,
| | - Fuping Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Lixian Wang, ; Fuping Zhao,
| |
Collapse
|
8
|
Mo J, Lu Y, GangYan, Wang Y, Zhang K, Zhang S, Wang M, Chen X, Lan G, Liang J. Identifying selection signatures for litter size in Guangxi Bama Xiang pigs. Reprod Domest Anim 2022; 57:1536-1543. [PMID: 35989556 DOI: 10.1111/rda.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022]
Abstract
Litter size is an important economic trait in pig production. However, the genetic mechanisms underlying varying litter size in Guangxi Bama Xiang pigs remain unknown. To identify selection signatures for litter size in Guangxi Bama Xiang pigs, we obtained 297 Illumina PorcineSNP50 BeadChip array data and the average born number (ABN) from parity one to nine in Guangxi Bama Xiang pigs. Fixation index (Fst) methods were used to identify the selection signature of the litter size, and three phenotypic gradient differential population pairs (according to the ABN) in individuals were used to reduce the false positives of signature selections. Single nucleotide polymorphisms (SNPs) were identified in the VEGFA promoter and exons. The general linear model was used to analyse the differences in distinct genotypes after they were typed using three-round multiplex PCR technology. Finally, the transcriptome factor and CpG island in the VEGFA promoter were predicted. A total of 328, 328 and 317 significant loci were identified in the 1st, 2nd and 3rd population pairs, respectively. After removing the false positives, 25 SNPs were defined as the selection signatures in relation to litter size. Ten (VEGFA, USP49, USP25, SRPK1, SLC26A8, RPL10A, PPARD, MAPK14, HMGA1 and CHRDL2) out of 52 genes in the selection regions were annotated as the candidate genes of litter size, respectively, VEGFA. There were no SNPs in the VEGFA exon region, but we obtained three SNPs (rs786889605, rs343769603 and rs323942424) in the VEGFA promoter regions. The ABN in CC was significantly higher than that in TT in rs786889605, and the ABN in TT was significantly lower than that in GG in rs323942424. Meanwhile, the mutation of the VEGFA promoter result in the loss of Sp1 and NF-1 and the formation of Oct-1. In summary, we obtained ten candidate genes, and two mutations in the VEGFA promoter that could be important potential molecular biomarkers for litter size in Bama Xiang pigs.
Collapse
Affiliation(s)
- Jiayuan Mo
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Yujie Lu
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - GangYan
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Yubing Wang
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Kun Zhang
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Shuai Zhang
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Mengying Wang
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Xingfa Chen
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Ganqiu Lan
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Jing Liang
- College of Animal Science & Technology, Guangxi University, Nanning, China
| |
Collapse
|
9
|
Liu Z, Yang J, Li H, Zhong Z, Huang J, Fu J, Zhao H, Liu X, Jiang S. Identifying Candidate Genes for Short Gestation Length Trait in Chinese Qingping Pigs by Whole-Genome Resequencing and RNA Sequencing. Front Genet 2022; 13:857705. [PMID: 35664295 PMCID: PMC9159352 DOI: 10.3389/fgene.2022.857705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
Gestation length is a complex polygenic trait that affects pig fetal development. The Qingping (QP) pig, a Chinese native black pig breed, is characterized by short gestation length. However, the genetic architecture of short gestation length is still not clear. The present study aimed to explore the genetic architecture of short gestation length in QP pigs. In this study, selective sweep analyses were performed to detect selective sweep signatures for short gestation length traits between 100 QP pigs and 219 pigs from 15 other breeds. In addition, differentially expressed genes for the short gestation length between QP pigs and Large White pigs were detected by RNA sequencing. Comparing candidate genes from these methods with known genes for preterm birth in the database, we obtained 111 candidate genes that were known preterm birth genes. Prioritizing other candidate genes, 839 novel prioritized candidate genes were found to have significant functional similarity to preterm birth genes. In particular, we highlighted EGFR, which was the most prioritized novel candidate relative to preterm birth genes. Experimental validations in placental and porcine trophectoderm cells suggest that EGFR is highly expressed in the QP pigs with short gestation length and could regulate the NF-κΒ pathway and downstream expression of PTGS2. These findings comprehensively identified candidate genes for short gestation length trait at the genomic and transcriptomic levels. These candidate genes provide an important new resource for further investigation and genetic improvement of gestation length.
Collapse
Affiliation(s)
- Zezhang Liu
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jun Yang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Hong Li
- Novogene Bioinformatics Institute, Beijing, China
| | - Zhuxia Zhong
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Huang
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jie Fu
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hucheng Zhao
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaolei Liu
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University Hubei Hongshan Laboratory, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- *Correspondence: Xiaolei Liu, ; Siwen Jiang,
| | - Siwen Jiang
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- *Correspondence: Xiaolei Liu, ; Siwen Jiang,
| |
Collapse
|
10
|
Shen Y, Wang H, Xie J, Wang Z, Ma Y. Trait-specific Selection Signature Detection Reveals Novel Loci of Meat Quality in Large White Pigs. Front Genet 2021; 12:761252. [PMID: 34868241 PMCID: PMC8635012 DOI: 10.3389/fgene.2021.761252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022] Open
Abstract
In past decades, meat quality traits have been shaped by human-driven selection in the process of genetic improvement programs. Exploring the potential genetic basis of artificial selection and mapping functional candidate genes for economic traits are of great significance in genetic improvement of pigs. In this study, we focus on investigating the genetic basis of five meat quality traits, including intramuscular fat content (IMF), drip loss, water binding capacity, pH at 45 min (pH45min), and ultimate pH (pH24h). Through making phenotypic gradient differential population pairs, Wright’s fixation index (FST) and the cross-population extended haplotype homozogysity (XPEHH) were applied to detect selection signatures for these five traits. Finally, a total of 427 and 307 trait-specific selection signatures were revealed by FST and XPEHH, respectively. Further bioinformatics analysis indicates that some genes, such as USF1, NDUFS2, PIGM, IGSF8, CASQ1, and ACBD6, overlapping with the trait-specific selection signatures are responsible for the phenotypes including fat metabolism and muscle development. Among them, a series of promising trait-specific selection signatures that were detected in the high IMF subpopulation are located in the region of 93544042-95179724bp on SSC4, and the genes harboring in this region are all related to lipids and muscle development. Overall, these candidate genes of meat quality traits identified in this analysis may provide some fundamental information for further exploring the genetic basis of this complex trait.
Collapse
Affiliation(s)
- Yu Shen
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Haiyan Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Jiahao Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Zixuan Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Yunlong Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Li D, Huang M, Zhuang Z, Ding R, Gu T, Hong L, Zheng E, Li Z, Cai G, Wu Z, Yang J. Genomic Analyses Revealed the Genetic Difference and Potential Selection Genes of Growth Traits in Two Duroc Lines. Front Vet Sci 2021; 8:725367. [PMID: 34557543 PMCID: PMC8453014 DOI: 10.3389/fvets.2021.725367] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/03/2021] [Indexed: 01/02/2023] Open
Abstract
Duroc pigs are famous for their high growth rate, feed conversion efficiency, and lean meat percentage. Given that they have been subjected to artificial selection and breeding in multiple countries, various lines with obvious differences in production performance have formed. In this study, we genotyped 3,770 American Duroc (AD) pigs and 2,098 Canadian Duroc (CD) pigs using the GeneSeek Porcine SNP50 Beadchip to dissect the genetic differences and potential selection genes of growth traits in these two Duroc pig lines. Population structure detection showed that there were significant genetic differences between the two Duroc pig lines. Hence, we performed F ST and cross-population extended haplotype homozygosity (XP-EHH) analyses between the two lines. As a result, we identified 38 annotated genes that were significantly enriched in the gland development pathway in the AD line, and 61 annotated genes that were significantly enriched in the immune-related pathway in the CD line. For three growth traits including backfat thickness (BFT), loin muscle depth (LMD), and loin muscle area (LMA), we then performed selection signature detection at 5 and 10% levels within the line and identified different selected regions and a series of candidate genes that are involved in lipid metabolism and skeletal muscle development or repair, such as IRX3, EBF2, WNT10B, TLR2, PITX3, and SGCD. The differences in selected regions and genes between the two lines may be the cause of the differences in growth traits. Our study suggests significant genetic differences between the AD and CD lines, which provide a theoretical basis for selecting different Duroc lines as sires for different needs.
Collapse
Affiliation(s)
- Desen Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Min Huang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Ting Gu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Linjun Hong
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Zicong Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Guo L, Chao X, Huang W, Li Z, Luan K, Ye M, Zhang S, Liu M, Li H, Luo W, Nie Q, Zhang X, Luo Q. Whole Transcriptome Analysis Reveals a Potential Regulatory Mechanism of LncRNA-FNIP2/miR-24-3p/ FNIP2 Axis in Chicken Adipogenesis. Front Cell Dev Biol 2021; 9:653798. [PMID: 34249911 PMCID: PMC8265275 DOI: 10.3389/fcell.2021.653798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/07/2021] [Indexed: 01/20/2023] Open
Abstract
Lipid biosynthesis is a complex process, which is regulated by multiple factors including lncRNA. However, the role of lncRNA in chicken abdominal fat accumulation is still unclear. In this research, we collected liver tissues from six high abdominal fat rate Sanhuang broilers and six low abdominal fat rate Sanhuang broilers to perform lncRNA sequencing and small RNA sequencing. A total of 2,265 lncRNAs, 245 miRNAs, and 5,315 mRNAs were differently expressed. Among of them, 1,136 differently expressed genes were enriched in the metabolic process. A total of 36 differently expressed genes, which were considered as differently expressed lncRNAs' targets, were enriched in the metabolic process. In addition, we also found out that eight differently expressed miRNAs could target 19 differently expressed genes. FNIP2 and PEX5L were shared in a cis-regulatory network and a differently expressed miRNA target relationship network. LncRNA-FNIP2/miR-24-3p/FNIP2 axis was considered as a potential candidate that may participate in lipid synthesis. Experimentally, the objective reality of lncRNA-FNIP2/miR-24-3p/FNIP2 axis was clarified and the regulation effect of lncRNA-FNIP2/miR-24-3p/FNIP2 axis on synthesis was validated. In brief, our study reveals a potential novel regulatory mechanism that lncRNA-FNIP2/miR-24-3p/FNIP2 axis was considered as being involved in lipid synthesis during chicken adipogenesis in liver.
Collapse
Affiliation(s)
- Lijin Guo
- Guangdong Laboratory, Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaohuan Chao
- Guangdong Laboratory, Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Weiling Huang
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Zhenhui Li
- Guangdong Laboratory, Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kang Luan
- Guangdong Laboratory, Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Mao Ye
- Guangdong Laboratory, Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siyu Zhang
- Guangdong Laboratory, Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Manqing Liu
- Guangdong Laboratory, Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hongmei Li
- Guangdong Laboratory, Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wen Luo
- Guangdong Laboratory, Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qinghua Nie
- Guangdong Laboratory, Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- Guangdong Laboratory, Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingbin Luo
- Guangdong Laboratory, Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Karimi K, Farid AH, Myles S, Miar Y. Detection of selection signatures for response to Aleutian mink disease virus infection in American mink. Sci Rep 2021; 11:2944. [PMID: 33536540 PMCID: PMC7859209 DOI: 10.1038/s41598-021-82522-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Aleutian disease (AD) is the most significant health issue for farmed American mink. The objective of this study was to identify the genomic regions subjected to selection for response to infection with Aleutian mink disease virus (AMDV) in American mink using genotyping by sequencing (GBS) data. A total of 225 black mink were inoculated with AMDV and genotyped using a GBS assay based on the sequencing of ApeKI-digested libraries. Five AD-characterized phenotypes were used to assign animals to pairwise groups. Signatures of selection were detected using integrated measurement of fixation index (FST) and nucleotide diversity (θπ), that were validated by haplotype-based (hap-FLK) test. The total of 99 putatively selected regions harbouring 63 genes were detected in different groups. The gene ontology revealed numerous genes related to immune response (e.g. TRAF3IP2, WDR7, SWAP70, CBFB, and GPR65), liver development (e.g. SULF2, SRSF5) and reproduction process (e.g. FBXO5, CatSperβ, CATSPER4, and IGF2R). The hapFLK test supported two strongly selected regions that contained five candidate genes related to immune response, virus–host interaction, reproduction and liver regeneration. This study provided the first map of putative selection signals of response to AMDV infection in American mink, bringing new insights into genomic regions controlling the AD phenotypes.
Collapse
Affiliation(s)
- Karim Karimi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - A Hossain Farid
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Sean Myles
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada.
| |
Collapse
|
14
|
|
15
|
Abstract
An experiment of divergent selection for intramuscular fat was carried out at Universitat Politècnica de València. The high response of selection in intramuscular fat content, after nine generations of selection, and a multidimensional scaling analysis showed a high degree of genomic differentiation between the two divergent populations. Therefore, local genomic differences could link genomic regions, encompassing selective sweeps, to the trait used as selection criterion. In this sense, the aim of this study was to identify genomic regions related to intramuscular fat through three methods for detection of selection signatures and to generate a list of candidate genes. The methods implemented in this study were Wright's fixation index, cross population composite likelihood ratio and cross population - extended haplotype homozygosity. Genomic data came from the 9th generation of the two populations divergently selected, 237 from Low line and 240 from High line. A high single nucleotide polymorphism (SNP) density array, Affymetrix Axiom OrcunSNP Array (around 200k SNPs), was used for genotyping samples. Several genomic regions distributed along rabbit chromosomes (OCU) were identified as signatures of selection (SNPs having a value above cut-off of 1%) within each method. In contrast, 8 genomic regions, harbouring 80 SNPs (OCU1, OCU3, OCU6, OCU7, OCU16 and OCU17), were identified by at least 2 methods and none by the 3 methods. In general, our results suggest that intramuscular fat selection influenced multiple genomic regions which can be a consequence of either only selection effect or the combined effect of selection and genetic drift. In addition, 73 genes were retrieved from the 8 selection signatures. After functional and enrichment analyses, the main genes into the selection signatures linked to energy, fatty acids, carbohydrates and lipid metabolic processes were ACER2, PLIN2, DENND4C, RPS6, RRAGA (OCU1), ST8SIA6, VIM (OCU16), RORA, GANC and PLA2G4B (OCU17). This genomic scan is the first study using rabbits from a divergent selection experiment. Our results pointed out a large polygenic component of the intramuscular fat content. Besides, promising positional candidate genes would be analysed in further studies in order to bear out their contributions to this trait and their feasible implications for rabbit breeding programmes.
Collapse
|