1
|
Lesur I, Rogier O, Sow MD, Boury C, Duplan A, Garnier A, Senhaji-Rachik A, Civan P, Daron J, Delaunay A, Duvaux L, Benoit V, Guichoux E, Le Provost G, Sanou E, Ambroise C, Plomion C, Salse J, Segura V, Tost J, Maury S. A strategy for studying epigenetic diversity in natural populations: proof of concept in poplar and oak. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5568-5584. [PMID: 38889253 DOI: 10.1093/jxb/erae266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
In the last 20 years, several techniques have been developed for quantifying DNA methylation, the most studied epigenetic marks in eukaryotes, including the gold standard method, whole-genome bisulfite sequencing (WGBS). WGBS quantifies genome-wide DNA methylation but has several inconveniences rendering it less suitable for population-scale epigenetic studies. The high cost of deep sequencing and the large amounts of data generated prompted us to seek an alternative approach. Restricting studies to parts of the genome would be a satisfactory alternative had there not been a major limitation: the need to select upstream targets corresponding to differentially methylated regions as targets. Given the need to study large numbers of samples, we propose a strategy for investigating DNA methylation variation in natural populations, taking into account the structural complexity of genomes, their size, and their content in unique coding regions versus repeated regions as transposable elements. We first identified regions of highly variable DNA methylation in a subset of genotypes representative of the biological diversity in the population by WGBS. We then analysed the variations of DNA methylation in these targeted regions at the population level by sequencing capture bisulfite (SeqCapBis). The entire strategy was then validated by applying it to another species. Our strategy was developed as a proof of concept on natural populations of two forest species: Populus nigra and Quercus petraea.
Collapse
Affiliation(s)
- Isabelle Lesur
- INRAE, Univ. Bordeaux, BIOGECO, F-33610 Cestas, France
- HelixVenture, F-33700 Mérignac, France
| | | | - Mamadou Dia Sow
- INRAE/UCA UMR GDEC 1095. 5 Chemin de Beaulieu, F-63100 Clermont Ferrand, France
- P2e, INRAE, Université d'Orleans, EA 1207 USC 1328, F-45067 Orleans, France
| | | | - Alexandre Duplan
- INRAE, ONF, BioForA, F-45075 Orléans, France
- P2e, INRAE, Université d'Orleans, EA 1207 USC 1328, F-45067 Orleans, France
| | - Abel Garnier
- Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie, François Jacob, Université Paris-Saclay, F-91000 Evry, France
| | | | - Peter Civan
- INRAE/UCA UMR GDEC 1095. 5 Chemin de Beaulieu, F-63100 Clermont Ferrand, France
| | - Josquin Daron
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, F-75724 Paris, France
| | - Alain Delaunay
- P2e, INRAE, Université d'Orleans, EA 1207 USC 1328, F-45067 Orleans, France
| | | | | | | | | | - Edmond Sanou
- LaMME, 23 Bd. de France, F-91037 Évry Cedex, France
| | | | | | - Jérôme Salse
- INRAE/UCA UMR GDEC 1095. 5 Chemin de Beaulieu, F-63100 Clermont Ferrand, France
| | - Vincent Segura
- INRAE, ONF, BioForA, F-45075 Orléans, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, F-34398 Montpellier, France
| | - Jörg Tost
- Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie, François Jacob, Université Paris-Saclay, F-91000 Evry, France
| | - Stéphane Maury
- P2e, INRAE, Université d'Orleans, EA 1207 USC 1328, F-45067 Orleans, France
| |
Collapse
|
2
|
Zhao P, Gu L, Gao Y, Pan Z, Liu L, Li X, Zhou H, Yu D, Han X, Qian L, Liu GE, Fang L, Wang Z. Young SINEs in pig genomes impact gene regulation, genetic diversity, and complex traits. Commun Biol 2023; 6:894. [PMID: 37652983 PMCID: PMC10471783 DOI: 10.1038/s42003-023-05234-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/09/2023] [Indexed: 09/02/2023] Open
Abstract
Transposable elements (TEs) are a major source of genetic polymorphisms and play a role in chromatin architecture, gene regulatory networks, and genomic evolution. However, their functional role in pigs and contributions to complex traits are largely unknown. We created a catalog of TEs (n = 3,087,929) in pigs and found that young SINEs were predominantly silenced by histone modifications, DNA methylation, and decreased accessibility. However, some transcripts from active young SINEs showed high tissue-specificity, as confirmed by analyzing 3570 RNA-seq samples. We also detected 211,067 dimorphic SINEs in 374 individuals, including 340 population-specific ones associated with local adaptation. Mapping these dimorphic SINEs to genome-wide associations of 97 complex traits in pigs, we found 54 candidate genes (e.g., ANK2 and VRTN) that might be mediated by TEs. Our findings highlight the important roles of young SINEs and provide a supplement for genotype-to-phenotype associations and modern breeding in pigs.
Collapse
Affiliation(s)
- Pengju Zhao
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lihong Gu
- Institute of Animal Science & Veterinary Medicine, Hainan Academy of Agricultural Sciences, No. 14 Xingdan Road, Haikou, 571100, China
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Zhangyuan Pan
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Lei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Xingzheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Dongyou Yu
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinyan Han
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lichun Qian
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA.
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8000, Denmark.
| | - Zhengguang Wang
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China.
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
3
|
Yang LL, Zhang XY, Wang LY, Li YG, Li XT, Yang Y, Su Q, Chen N, Zhang YL, Li N, Deng CL, Li SF, Gao WJ. Lineage-specific amplification and epigenetic regulation of LTR-retrotransposons contribute to the structure, evolution, and function of Fabaceae species. BMC Genomics 2023; 24:423. [PMID: 37501164 PMCID: PMC10373317 DOI: 10.1186/s12864-023-09530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Long terminal repeat (LTR)-retrotransposons (LTR-RTs) are ubiquitous and make up the majority of nearly all sequenced plant genomes, whereas their pivotal roles in genome evolution, gene expression regulation as well as their epigenetic regulation are still not well understood, especially in a large number of closely related species. RESULTS Here, we analyzed the abundance and dynamic evolution of LTR-RTs in 54 species from an economically and agronomically important family, Fabaceae, and also selected two representative species for further analysis in expression of associated genes, transcriptional activity and DNA methylation patterns of LTR-RTs. Annotation results revealed highly varied proportions of LTR-RTs in these genomes (5.1%~68.4%) and their correlation with genome size was highly positive, and they were significantly contributed to the variance in genome size through species-specific unique amplifications. Almost all of the intact LTR-RTs were inserted into the genomes 4 Mya (million years ago), and more than 50% of them were inserted in the last 0.5 million years, suggesting that recent amplifications of LTR-RTs were an important force driving genome evolution. In addition, expression levels of genes with intronic, promoter, and downstream LTR-RT insertions of Glycine max and Vigna radiata, two agronomically important crops in Fabaceae, showed that the LTR-RTs located in promoter or downstream regions suppressed associated gene expression. However, the LTR-RTs within introns promoted gene expression or had no contribution to gene expression. Additionally, shorter and younger LTR-RTs maintained higher mobility and transpositional potential. Compared with the transcriptionally silent LTR-RTs, the active elements showed significantly lower DNA methylation levels in all three contexts. The distributions of transcriptionally active and silent LTR-RT methylation varied across different lineages due to the position of LTR-RTs located or potentially epigenetic regulation. CONCLUSION Lineage-specific amplification patterns were observed and higher methylation level may repress the activity of LTR-RTs, further influence evolution in Fabaceae species. This study offers valuable clues into the evolution, function, transcriptional activity and epigenetic regulation of LTR-RTs in Fabaceae genomes.
Collapse
Affiliation(s)
- Long-Long Yang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Xin-Yu Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Li-Ying Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Yan-Ge Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Xiao-Ting Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Yi Yang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Qing Su
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Ning Chen
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Yu-Lan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Ning Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Chuan-Liang Deng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, P. R. China.
| |
Collapse
|
4
|
Yuxiang W, Peretolchina TE, Romanova EV, Sherbakov DY. Comparison of the evolutionary patterns of DNA repeats in ancient and young invertebrate species flocks of Lake Baikal. Vavilovskii Zhurnal Genet Selektsii 2023; 27:349-356. [PMID: 37465187 PMCID: PMC10350863 DOI: 10.18699/vjgb-23-42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 07/20/2023] Open
Abstract
DNA repeat composition of low coverage (0.1-0.5) genomic libraries of four amphipods species endemic to Lake Baikal (East Siberia) and four endemic gastropod species of the fam. Baicaliidae have been compared to each other. In order to do so, a neighbor joining tree was inferred for each quartet of species (amphipods and mollusks) based on the ratio of repeat classes shared in each pair of species. The topology of this tree was compared to the phylogenies inferred for the same species from the concatenated protein-coding mitochondrial nucleotide sequences. In all species analyzed, the fraction of DNA repeats involved circa half of the genome. In relatively more ancient amphipods (most recent common ancestor, MRCA, existed approximately sixty millions years ago), the most abundant were species-specific repeats, while in much younger Baicaliidae (MRCA equal to ca. three millions years) most of the DNA repeats were shared among all four species. If the presence/absence of a repeat is regarded as a separate independent trait, and the ratio of shared to total numbers of repeats in a species pair is used as the measure of distance, the topology of the NJ tree is the same as the quartet phylogeny inferred for the mitogenomes protein coding nucleotide sequences. Meanwhile, in each group of species, a substantial number of repeats were detected pointing to the possibility of non-neutral evolution or a horizontal transfer between species occupying the same biotope. These repeats were shared by non-sister groups while being absent in the sister genomes. On the other hand, in such cases some traits of ecological significance were also shared.
Collapse
Affiliation(s)
- Wang Yuxiang
- Limnological institute of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - T E Peretolchina
- Limnological institute of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - E V Romanova
- Limnological institute of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - D Y Sherbakov
- Limnological institute of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia Novosibirsk State University, Novosibirsk, RussiaIrkutsk State University, Irkutsk, Russia
| |
Collapse
|
5
|
Liu X, Zhang Y, Pu Y, Ma Y, Jiang L. Whole-genome identification of transposable elements reveals the equine repetitive element insertion polymorphism in Chinese horses. Anim Genet 2023; 54:144-154. [PMID: 36464985 DOI: 10.1111/age.13277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Transposable elements (TEs) are diverse, abundant, and complicated in genomes. They not only can drive the genome evolution process but can also act as special resources for adaptation. However, little is known about the evolutionary processes that shaped horses. In this work, 126 horse assemblages involved in most horse breeds in China were used to investigate the patterns of TE variation for the first time. By using RepeatMasker and melt software, we found that the horse-specific short interspersed repetitive elements family, equine repetitive elements (ERE1), exhibited polymorphisms in horse genomes. Phylogenetic analysis based on these ERE1 loci (minor allele frequency ≥0.05) revealed three major horse groups, namely, those in northern China, southern China, and Qinghai-Tibetan, which mirrors the result determined by SNPs to some extent. The present ERE1 family emerged ~0.26 to 1.77 Mya ago, with an activity peak at ~0.49 Mya, which matches the early stage of the horse lineage and decreases after the divergence of Equus caballus and Equus ferus przewalskii. To detect the functional ERE1(s) associated with adaptation, locus-specific branch length, genome-wide association study, and absolute allele frequency difference analyses were conducted and resulted in two common protein-coding genes annotated by candidate ERE1s. They were clustered into the vascular smooth muscle contraction (p = 0.01, EDNRA) and apelin signalling pathways (p = 0.02, NRF1). Notably, ERE1 insertion into the EDNRA gene showed a higher association with adaptation among southern China horses and other horses in 15 populations and 451 individuals (p = 4.55 e-8). Our results provide a comprehensive understanding of TE variations to analyse the phylogenetic relationships and traits relevant to adaptive evolution in horses.
Collapse
Affiliation(s)
- Xuexue Liu
- National Germplasm Centre of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Yanli Zhang
- National Germplasm Centre of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yabin Pu
- National Germplasm Centre of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuehui Ma
- National Germplasm Centre of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Lin Jiang
- National Germplasm Centre of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
6
|
Deng S. The origin of genetic and metabolic systems: Evolutionary structuralinsights. Heliyon 2023; 9:e14466. [PMID: 36967965 PMCID: PMC10036676 DOI: 10.1016/j.heliyon.2023.e14466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
DNA is derived from reverse transcription and its origin is related to reverse transcriptase, DNA polymerase and integrase. The gene structure originated from the evolution of the first RNA polymerase. Thus, an explanation of the origin of the genetic system must also explain the evolution of these enzymes. This paper proposes a polymer structure model, termed the stable complex evolution model, which explains the evolution of enzymes and functional molecules. Enzymes evolved their functions by forming locally tightly packed complexes with specific substrates. A metabolic reaction can therefore be considered to be the result of adaptive evolution in this way when a certain essential molecule is lacking in a cell. The evolution of the primitive genetic and metabolic systems was thus coordinated and synchronized. According to the stable complex model, almost all functional molecules establish binding affinity and specific recognition through complementary interactions, and functional molecules therefore have the nature of being auto-reactive. This is thermodynamically favorable and leads to functional duplication and self-organization. Therefore, it can be speculated that biological systems have a certain tendency to maintain functional stability or are influenced by an inherent selective power. The evolution of dormant bacteria may support this hypothesis, and inherent selectivity can be unified with natural selection at the molecular level.
Collapse
Affiliation(s)
- Shaojie Deng
- Chongqing (Fengjie) Municipal Bureau of Planning and Natural Resources, China
| |
Collapse
|
7
|
Di Stefano L. All Quiet on the TE Front? The Role of Chromatin in Transposable Element Silencing. Cells 2022; 11:cells11162501. [PMID: 36010577 PMCID: PMC9406493 DOI: 10.3390/cells11162501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that constitute a sizeable portion of many eukaryotic genomes. Through their mobility, they represent a major source of genetic variation, and their activation can cause genetic instability and has been linked to aging, cancer and neurodegenerative diseases. Accordingly, tight regulation of TE transcription is necessary for normal development. Chromatin is at the heart of TE regulation; however, we still lack a comprehensive understanding of the precise role of chromatin marks in TE silencing and how chromatin marks are established and maintained at TE loci. In this review, I discuss evidence documenting the contribution of chromatin-associated proteins and histone marks in TE regulation across different species with an emphasis on Drosophila and mammalian systems.
Collapse
Affiliation(s)
- Luisa Di Stefano
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
8
|
Lerat E. Recent Bioinformatic Progress to Identify Epigenetic Changes Associated to Transposable Elements. Front Genet 2022; 13:891194. [PMID: 35646069 PMCID: PMC9140218 DOI: 10.3389/fgene.2022.891194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Transposable elements (TEs) are recognized for their great impact on the functioning and evolution of their host genomes. They are associated to various deleterious effects, which has led to the evolution of regulatory epigenetic mechanisms to control their activity. Despite these negative effects, TEs are also important actors in the evolution of genomes by promoting genetic diversity and new regulatory elements. Consequently, it is important to study the epigenetic modifications associated to TEs especially at a locus-specific level to determine their individual influence on gene functioning. To this aim, this short review presents the current bioinformatic tools to achieve this task.
Collapse
Affiliation(s)
- Emmanuelle Lerat
- Univ Lyon, Univ Lyon 1, CNRS, VetAgro Sup, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| |
Collapse
|
9
|
Do Ty3/Gypsy Transposable Elements Play Preferential Roles in Sex Chromosome Differentiation? Life (Basel) 2022; 12:life12040522. [PMID: 35455013 PMCID: PMC9025612 DOI: 10.3390/life12040522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/13/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) comprise a substantial portion of eukaryotic genomes. They have the unique ability to integrate into new locations and serve as the main source of genomic novelties by mediating chromosomal rearrangements and regulating portions of functional genes. Recent studies have revealed that TEs are abundant in sex chromosomes. In this review, we propose evolutionary relationships between specific TEs, such as Ty3/Gypsy, and sex chromosomes in different lineages based on the hypothesis that these elements contributed to sex chromosome differentiation processes. We highlight how TEs can drive the dynamics of sex-determining regions via suppression recombination under a selective force to affect the organization and structural evolution of sex chromosomes. The abundance of TEs in the sex-determining regions originates from TE-poor genomic regions, suggesting a link between TE accumulation and the emergence of the sex-determining regions. TEs are generally considered to be a hallmark of chromosome degeneration. Finally, we outline recent approaches to identify TEs and study their sex-related roles and effects in the differentiation and evolution of sex chromosomes.
Collapse
|
10
|
Transposable Elements and Human Diseases: Mechanisms and Implication in the Response to Environmental Pollutants. Int J Mol Sci 2022; 23:ijms23052551. [PMID: 35269693 PMCID: PMC8910135 DOI: 10.3390/ijms23052551] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Transposable elements (TEs) are recognized as major players in genome plasticity and evolution. The high abundance of TEs in the human genome, especially the Alu and Long Interspersed Nuclear Element-1 (LINE-1) repeats, makes them responsible for the molecular origin of several diseases. This involves several molecular mechanisms that are presented in this review: insertional mutation, DNA recombination and chromosomal rearrangements, modification of gene expression, as well as alteration of epigenetic regulations. This literature review also presents some of the more recent and/or more classical examples of human diseases in which TEs are involved. Whether through insertion of LINE-1 or Alu elements that cause chromosomal rearrangements, or through epigenetic modifications, TEs are widely implicated in the origin of human cancers. Many other human diseases can have a molecular origin in TE-mediated chromosomal recombination or alteration of gene structure and/or expression. These diseases are very diverse and include hemoglobinopathies, metabolic and neurological diseases, and common diseases. Moreover, TEs can also have an impact on aging. Finally, the exposure of individuals to stresses and environmental contaminants seems to have a non-negligible impact on the epigenetic derepression and mobility of TEs, which can lead to the development of diseases. Thus, improving our knowledge of TEs may lead to new potential diagnostic markers of diseases.
Collapse
|
11
|
Wang C, Liang C. The insertion and dysregulation of transposable elements in osteosarcoma and their association with patient event-free survival. Sci Rep 2022; 12:377. [PMID: 35013466 PMCID: PMC8748539 DOI: 10.1038/s41598-021-04208-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
The dysregulation of transposable elements (TEs) has been explored in a variety of cancers. However, TE activities in osteosarcoma (OS) have not been extensively studied yet. By integrative analysis of RNA-seq, whole-genome sequencing (WGS), and methylation data, we showed aberrant TE activities associated with dysregulations of TEs in OS tumors. Specifically, expression levels of LINE-1 and Alu of different evolutionary ages, as well as subfamilies of SVA and HERV-K, were significantly up-regulated in OS tumors, accompanied by enhanced DNA repair responses. We verified the characteristics of LINE-1 mediated TE insertions, including target site duplication (TSD) length (centered around 15 bp) and preferential insertions into intergenic and AT-rich regions as well as intronic regions of longer genes. By filtering polymorphic TE insertions reported in 1000 genome project (1KGP), besides 148 tumor-specific somatic TE insertions, we found most OS patient-specific TE insertions (3175 out of 3326) are germline insertions, which are associated with genes involved in neuronal processes or with transcription factors important for cancer development. In addition to 68 TE-affected cancer genes, we found recurrent germline TE insertions in 72 non-cancer genes with high frequencies among patients. We also found that +/− 500 bps flanking regions of transcription start sites (TSS) of LINE-1 (young) and Alu showed lower methylation levels in OS tumor samples than controls. Interestingly, by incorporating patient clinical data and focusing on TE activities in OS tumors, our data analysis suggested that higher TE insertions in OS tumors are associated with a longer event-free survival time.
Collapse
Affiliation(s)
- Chao Wang
- Department of Biology, Miami University, Oxford, Ohio, 45056, USA.
| | - Chun Liang
- Department of Biology, Miami University, Oxford, Ohio, 45056, USA.
| |
Collapse
|
12
|
The Dynamism of Transposon Methylation for Plant Development and Stress Adaptation. Int J Mol Sci 2021; 22:ijms222111387. [PMID: 34768817 PMCID: PMC8583499 DOI: 10.3390/ijms222111387] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Plant development processes are regulated by epigenetic alterations that shape nuclear structure, gene expression, and phenotypic plasticity; these alterations can provide the plant with protection from environmental stresses. During plant growth and development, these processes play a significant role in regulating gene expression to remodel chromatin structure. These epigenetic alterations are mainly regulated by transposable elements (TEs) whose abundance in plant genomes results in their interaction with genomes. Thus, TEs are the main source of epigenetic changes and form a substantial part of the plant genome. Furthermore, TEs can be activated under stress conditions, and activated elements cause mutagenic effects and substantial genetic variability. This introduces novel gene functions and structural variation in the insertion sites and primarily contributes to epigenetic modifications. Altogether, these modifications indirectly or directly provide the ability to withstand environmental stresses. In recent years, many studies have shown that TE methylation plays a major role in the evolution of the plant genome through epigenetic process that regulate gene imprinting, thereby upholding genome stability. The induced genetic rearrangements and insertions of mobile genetic elements in regions of active euchromatin contribute to genome alteration, leading to genomic stress. These TE-mediated epigenetic modifications lead to phenotypic diversity, genetic variation, and environmental stress tolerance. Thus, TE methylation is essential for plant evolution and stress adaptation, and TEs hold a relevant military position in the plant genome. High-throughput techniques have greatly advanced the understanding of TE-mediated gene expression and its associations with genome methylation and suggest that controlled mobilization of TEs could be used for crop breeding. However, development application in this area has been limited, and an integrated view of TE function and subsequent processes is lacking. In this review, we explore the enormous diversity and likely functions of the TE repertoire in adaptive evolution and discuss some recent examples of how TEs impact gene expression in plant development and stress adaptation.
Collapse
|
13
|
Thind AS, Monga I, Thakur PK, Kumari P, Dindhoria K, Krzak M, Ranson M, Ashford B. Demystifying emerging bulk RNA-Seq applications: the application and utility of bioinformatic methodology. Brief Bioinform 2021; 22:6330938. [PMID: 34329375 DOI: 10.1093/bib/bbab259] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
Significant innovations in next-generation sequencing techniques and bioinformatics tools have impacted our appreciation and understanding of RNA. Practical RNA sequencing (RNA-Seq) applications have evolved in conjunction with sequence technology and bioinformatic tools advances. In most projects, bulk RNA-Seq data is used to measure gene expression patterns, isoform expression, alternative splicing and single-nucleotide polymorphisms. However, RNA-Seq holds far more hidden biological information including details of copy number alteration, microbial contamination, transposable elements, cell type (deconvolution) and the presence of neoantigens. Recent novel and advanced bioinformatic algorithms developed the capacity to retrieve this information from bulk RNA-Seq data, thus broadening its scope. The focus of this review is to comprehend the emerging bulk RNA-Seq-based analyses, emphasizing less familiar and underused applications. In doing so, we highlight the power of bulk RNA-Seq in providing biological insights.
Collapse
Affiliation(s)
- Amarinder Singh Thind
- University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Isha Monga
- Columbia University, New York City, NY, USA
| | | | - Pallawi Kumari
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Kiran Dindhoria
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | | | - Marie Ranson
- University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Bruce Ashford
- University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| |
Collapse
|
14
|
Voisin AS, Suarez Ulloa V, Stockwell P, Chatterjee A, Silvestre F. Genome-wide DNA methylation of the liver reveals delayed effects of early-life exposure to 17-α-ethinylestradiol in the self-fertilizing mangrove rivulus. Epigenetics 2021; 17:473-497. [PMID: 33892617 DOI: 10.1080/15592294.2021.1921337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Organisms exposed to endocrine disruptors in early life can show altered phenotype later in adulthood. Although the mechanisms underlying these long-term effects remain poorly understood, an increasing body of evidence points towards the potential role of epigenetic processes. In the present study, we exposed hatchlings of an isogenic lineage of the self-fertilizing fish mangrove rivulus for 28 days to 4 and 120 ng/L of 17-α-ethinylestradiol. After a recovery period of 140 days, reduced representation bisulphite sequencing (RRBS) was performed on the liver in order to assess the hepatic genome-wide methylation landscape. Across all treatment comparisons, a total of 146 differentially methylated fragments (DMFs) were reported, mostly for the group exposed to 4 ng/L, suggesting a non-monotonic effect of EE2 exposure. Gene ontology analysis revealed networks involved in lipid metabolism, cellular processes, connective tissue function, molecular transport and inflammation. The highest effect was reported for nipped-B-like protein B (NIPBL) promoter region after exposure to 4 ng/L EE2 (+ 21.9%), suggesting that NIPBL could be an important regulator for long-term effects of EE2. Our results also suggest a significant role of DNA methylation in intergenic regions and potentially in transposable elements. These results support the ability of early exposure to endocrine disruptors of inducing epigenetic alterations during adulthood, providing plausible mechanistic explanations for long-term phenotypic alteration. Additionally, this work demonstrates the usefulness of isogenic lineages of the self-fertilizing mangrove rivulus to better understand the biological significance of long-term alterations of DNA methylation by diminishing the confounding factor of genetic variability.
Collapse
Affiliation(s)
- Anne-Sophie Voisin
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
| | - Victoria Suarez Ulloa
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
| | - Peter Stockwell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Frédéric Silvestre
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
| |
Collapse
|
15
|
Giraud D, Lima O, Rousseau-Gueutin M, Salmon A, Aïnouche M. Gene and Transposable Element Expression Evolution Following Recent and Past Polyploidy Events in Spartina (Poaceae). Front Genet 2021; 12:589160. [PMID: 33841492 PMCID: PMC8027259 DOI: 10.3389/fgene.2021.589160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Gene expression dynamics is a key component of polyploid evolution, varying in nature, intensity, and temporal scales, most particularly in allopolyploids, where two or more sub-genomes from differentiated parental species and different repeat contents are merged. Here, we investigated transcriptome evolution at different evolutionary time scales among tetraploid, hexaploid, and neododecaploid Spartina species (Poaceae, Chloridoideae) that successively diverged in the last 6-10 my, at the origin of differential phenotypic and ecological traits. Of particular interest are the recent (19th century) hybridizations between the two hexaploids Spartina alterniflora (2n = 6x = 62) and S. maritima (2n = 6x = 60) that resulted in two sterile F1 hybrids: Spartina × townsendii (2n = 6x = 62) in England and Spartina × neyrautii (2n = 6x = 62) in France. Whole genome duplication of S. × townsendii gave rise to the invasive neo-allododecaploid species Spartina anglica (2n = 12x = 124). New transcriptome assemblies and annotations for tetraploids and the enrichment of previously published reference transcriptomes for hexaploids and the allododecaploid allowed identifying 42,423 clusters of orthologs and distinguishing 21 transcribed transposable element (TE) lineages across the seven investigated Spartina species. In 4x and 6x mesopolyploids, gene and TE expression changes were consistent with phylogenetic relationships and divergence, revealing weak expression differences in the tetraploid sister species Spartina bakeri and Spartina versicolor (<2 my divergence time) compared to marked transcriptome divergence between the hexaploids S. alterniflora and S. maritima that diverged 2-4 mya. Differentially expressed genes were involved in glycolysis, post-transcriptional protein modifications, epidermis development, biosynthesis of carotenoids. Most detected TE lineages (except SINE elements) were found more expressed in hexaploids than in tetraploids, in line with their abundance in the corresponding genomes. Comparatively, an astonishing (52%) expression repatterning and deviation from parental additivity were observed following recent reticulate evolution (involving the F1 hybrids and the neo-allododecaploid S. anglica), with various patterns of biased homoeologous gene expression, including genes involved in epigenetic regulation. Downregulation of TEs was observed in both hybrids and accentuated in the neo-allopolyploid. Our results reinforce the view that allopolyploidy represents springboards to new regulatory patterns, offering to worldwide invasive species, such as S. anglica, the opportunity to colonize stressful and fluctuating environments on saltmarshes.
Collapse
Affiliation(s)
- Delphine Giraud
- UMR CNRS 6553 Ecosystèmes, Biodiversité, Evolution (ECOBIO), Université de Rennes 1, Rennes, France
| | - Oscar Lima
- UMR CNRS 6553 Ecosystèmes, Biodiversité, Evolution (ECOBIO), Université de Rennes 1, Rennes, France
| | | | - Armel Salmon
- UMR CNRS 6553 Ecosystèmes, Biodiversité, Evolution (ECOBIO), Université de Rennes 1, Rennes, France
| | - Malika Aïnouche
- UMR CNRS 6553 Ecosystèmes, Biodiversité, Evolution (ECOBIO), Université de Rennes 1, Rennes, France
| |
Collapse
|
16
|
Peona V, Blom MPK, Xu L, Burri R, Sullivan S, Bunikis I, Liachko I, Haryoko T, Jønsson KA, Zhou Q, Irestedt M, Suh A. Identifying the causes and consequences of assembly gaps using a multiplatform genome assembly of a bird-of-paradise. Mol Ecol Resour 2021; 21:263-286. [PMID: 32937018 PMCID: PMC7757076 DOI: 10.1111/1755-0998.13252] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 01/09/2023]
Abstract
Genome assemblies are currently being produced at an impressive rate by consortia and individual laboratories. The low costs and increasing efficiency of sequencing technologies now enable assembling genomes at unprecedented quality and contiguity. However, the difficulty in assembling repeat-rich and GC-rich regions (genomic "dark matter") limits insights into the evolution of genome structure and regulatory networks. Here, we compare the efficiency of currently available sequencing technologies (short/linked/long reads and proximity ligation maps) and combinations thereof in assembling genomic dark matter. By adopting different de novo assembly strategies, we compare individual draft assemblies to a curated multiplatform reference assembly and identify the genomic features that cause gaps within each assembly. We show that a multiplatform assembly implementing long-read, linked-read and proximity sequencing technologies performs best at recovering transposable elements, multicopy MHC genes, GC-rich microchromosomes and the repeat-rich W chromosome. Telomere-to-telomere assemblies are not a reality yet for most organisms, but by leveraging technology choice it is now possible to minimize genome assembly gaps for downstream analysis. We provide a roadmap to tailor sequencing projects for optimized completeness of both the coding and noncoding parts of nonmodel genomes.
Collapse
Affiliation(s)
- Valentina Peona
- Department of Ecology and Genetics—Evolutionary BiologyScience for Life LaboratoriesUppsala UniversityUppsalaSweden
- Department of Organismal Biology—Systematic BiologyScience for Life LaboratoriesUppsala UniversityUppsalaSweden
| | - Mozes P. K. Blom
- Department of Bioinformatics and GeneticsSwedish Museum of Natural HistoryStockholmSweden
- Museum für NaturkundeLeibniz Institut für Evolutions‐ und BiodiversitätsforschungBerlinGermany
| | - Luohao Xu
- Department of Neurosciences and Developmental BiologyUniversity of ViennaViennaAustria
| | - Reto Burri
- Department of Population EcologyInstitute of Ecology and EvolutionFriedrich‐Schiller‐University JenaJenaGermany
| | | | - Ignas Bunikis
- Department of Immunology, Genetics and PathologyScience for Life LaboratoryUppsala Genome CenterUppsala UniversityUppsalaSweden
| | | | - Tri Haryoko
- Research Centre for BiologyMuseum Zoologicum BogorienseIndonesian Institute of Sciences (LIPI)CibinongIndonesia
| | - Knud A. Jønsson
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
| | - Qi Zhou
- Department of Neurosciences and Developmental BiologyUniversity of ViennaViennaAustria
- MOE Laboratory of Biosystems Homeostasis & ProtectionLife Sciences InstituteZhejiang UniversityHangzhouChina
- Center for Reproductive MedicineThe 2nd Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Martin Irestedt
- Department of Bioinformatics and GeneticsSwedish Museum of Natural HistoryStockholmSweden
| | - Alexander Suh
- Department of Ecology and Genetics—Evolutionary BiologyScience for Life LaboratoriesUppsala UniversityUppsalaSweden
- Department of Organismal Biology—Systematic BiologyScience for Life LaboratoriesUppsala UniversityUppsalaSweden
- School of Biological Sciences—Organisms and the EnvironmentUniversity of East AngliaNorwichUK
| |
Collapse
|
17
|
The Epigenetics Dilemma. Genes (Basel) 2019; 11:genes11010023. [PMID: 31878110 PMCID: PMC7016732 DOI: 10.3390/genes11010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 11/16/2022] Open
|