1
|
Petit A, Tesseraud S, Collin A, Couroussé N, Berri C, Bihan-Duval EL, Métayer-Coustard S. Ontogeny of hepatic metabolism in two broiler lines divergently selected for the ultimate pH of the Pectoralis major muscle. BMC Genomics 2024; 25:438. [PMID: 38698322 PMCID: PMC11067279 DOI: 10.1186/s12864-024-10323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Nutrient availability during early stages of development (embryogenesis and the first week post-hatch) can have long-term effects on physiological functions and bird metabolism. The embryo develops in a closed structure and depends entirely on the nutrients and energy available in the egg. The aim of this study was to describe the ontogeny of pathways governing hepatic metabolism that mediates many physiological functions in the pHu + and pHu- chicken lines, which are divergently selected for the ultimate pH of meat, a proxy for muscle glycogen stores, and which differ in the nutrient content and composition of eggs. RESULTS We identified eight clusters of genes showing a common pattern of expression between embryonic day 12 (E12) and day 8 (D8) post-hatch. These clusters were not representative of a specific metabolic pathway or function. On E12 and E14, the majority of genes differentially expressed between the pHu + and pHu- lines were overexpressed in the pHu + line. Conversely, the majority of genes differentially expressed from E18 were overexpressed in the pHu- line. During the metabolic shift at E18, there was a decrease in the expression of genes linked to several metabolic functions (e.g. protein synthesis, autophagy and mitochondrial activity). At hatching (D0), there were two distinct groups of pHu + chicks based on hierarchical clustering; these groups also differed in liver weight and serum parameters (e.g. triglyceride content and creatine kinase activity). At D0 and D8, there was a sex effect for several metabolic pathways. Metabolism appeared to be more active and oriented towards protein synthesis (RPS6) and fatty acid β-oxidation (ACAA2, ACOX1) in males than in females. In comparison, the genes overexpressed in females were related to carbohydrate metabolism (SLC2A1, SLC2A12, FoxO1, PHKA2, PHKB, PRKAB2 and GYS2). CONCLUSIONS Our study provides the first detailed description of the evolution of different hepatic metabolic pathways during the early development of embryos and post-hatching chicks. We found a metabolic orientation for the pHu + line towards proteolysis, glycogen degradation, ATP synthesis and autophagy, likely in response to a higher energy requirement compared with pHu- embryos. The metabolic orientations specific to the pHu + and pHu- lines are established very early, probably in relation with their different genetic background and available nutrients.
Collapse
Affiliation(s)
| | | | - Anne Collin
- INRAE, Université de Tours, BOA, Nouzilly, 37380, France
| | | | - Cécile Berri
- INRAE, Université de Tours, BOA, Nouzilly, 37380, France
| | | | | |
Collapse
|
2
|
Li F, Xing Y, Zhang J, Mu J, Ge J, Zhao M, Liu L, Gong D, Geng T. Goose Hepatic IGFBP2 Is Regulated by Nutritional Status and Participates in Energy Metabolism Mainly through the Cytokine-Cytokine Receptor Pathway. Animals (Basel) 2023; 13:2336. [PMID: 37508113 PMCID: PMC10376900 DOI: 10.3390/ani13142336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Changes in the nutritional status of animals significantly affect their health and production performance. However, it is unclear whether insulin-like growth factor-binding protein 2 (IGFBP2) mediates these effects. This study aimed to investigate the impact of changes in nutritional and energy statuses on hepatic IGFBP2 expression and the mechanism through which IGFBP2 plays a mediating role. Therefore, the expression of IGFBP2 was first determined in the livers of fasting/refeeding and overfeeding geese. The data showed that overfeeding inhibited IGFBP2 expression in the liver compared with the control (normal feeding) group, whereas the expression of IGFBP2 in the liver was induced by fasting. Interestingly, the data indicated that insulin inhibited the expression of IGFBP2 in goose primary hepatocytes, suggesting that the changes in IGFBP2 expression in the liver in the abovementioned models may be partially attributed to the blood insulin levels. Furthermore, transcriptome sequencing analysis showed that the overexpression of IGFBP2 in geese primary hepatocytes significantly altered the expression of 337 genes (including 111 up-regulated and 226 down-regulated genes), and these differentially expressed genes were mainly enriched in cytokine-cytokine receptor, immune, and lipid metabolism-related pathways. We selected the most significant pathway, the cytokine-cytokine receptor pathway, and found that the relationship between the expression of these genes and IGFBP2 in goose liver was in line with the findings from the IGFBP2 overexpression assay, i.e., the decreased expression of IGFBP2 was accompanied by the increased expression of LOC106041919, CCL20, LOC106042256, LOC106041041, and IL22RA1 in the overfed versus normally fed geese, and the increased expression of IGFBP2 was accompanied by the decreased expression of these genes in fasting versus normally fed geese, and refeeding prevented or attenuated the effects of fasting. The association between the expression of these genes and IGFBP2 was verified by IGFBP2-siRNA treatment of goose primary hepatocytes, in which IGFBP2 expression was induced by low serum concentrations. In conclusion, this study suggests that IGFBP2 mediates the biological effects induced by changes in nutritional or energy levels, mainly through the cytokine-cytokine receptor pathway.
Collapse
Affiliation(s)
- Fangbo Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ya Xing
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jinqi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ji'an Mu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jing Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Coudert E, Baéza E, Chartrin P, Jimenez J, Cailleau-Audouin E, Bordeau T, Berri C. Slow and Fast-Growing Chickens Use Different Antioxidant Pathways to Maintain Their Redox Balance during Postnatal Growth. Animals (Basel) 2023; 13:ani13071160. [PMID: 37048416 PMCID: PMC10093630 DOI: 10.3390/ani13071160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The evolution of parameters known to be relevant indicators of energy status, oxidative stress, and antioxidant defense in chickens was followed. These parameters were measured weekly from 1 to 42 days in plasma and/or muscles and liver of two strains differing in growth rate. At 1-day old, in plasma, slow-growing (SG) chicks were characterized by a high total antioxidant status (TAS), probably related to higher superoxide dismutase (SOD) activity and uric acid levels compared to fast-growing (FG) chicks whereas the lipid peroxidation levels were higher in the liver and muscles of SG day-old chicks. Irrespective of the genotype, the plasma glutathione reductase (GR) and peroxidase (GPx) activities and levels of hydroperoxides and α- and γ-tocopherols decreased rapidly post-hatch. In the muscles, lipid peroxidation also decreased rapidly after hatching as well as catalase, GR, and GPx activities, while the SOD activity increased. In the liver, the TAS was relatively stable the first week after hatching while the value of thio-barbituric acid reactive substances (TBARS) and GR activity increased and GPx and catalase activities decreased. Our study revealed the strain specificities regarding the antioxidant systems used to maintain their redox balance over the life course. Nevertheless, the age had a much higher impact than strain on the antioxidant ability of the chickens.
Collapse
|
4
|
Kim DY, Lim B, Kim JM, Kil DY. Integrated transcriptome analysis for the hepatic and jejunal mucosa tissues of broiler chickens raised under heat stress conditions. J Anim Sci Biotechnol 2022; 13:79. [PMID: 35843965 PMCID: PMC9290309 DOI: 10.1186/s40104-022-00734-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background Heat stress (HS) is one of the most important threats for the current poultry industry. Therefore, many efforts have been made to ameliorate the adverse effect of HS on poultry production; however, physiological and molecular mechanisms pertaining to HS are still limited in poultry. Therefore, the objective of the current study was to investigate functional alterations based on individual and integrated transcriptomes in the liver and jejunal mucosa tissues of broiler chickens exposed to HS conditions. Results Broiler chickens exposed to HS showed decreased growth performance and increased corticosterone concentrations in the feather. In the transcriptome analysis, the number of differentially expressed genes (DEGs) were identified in the liver and jejunal mucosa by HS conditions. In the liver, genes related to amino acid oxidation, tryptophan metabolism, lipid metabolism, oxidative phosphorylation, and immune responses were altered by HS, which support the reason why heat-stressed poultry had decreased productive performance. In the jejunal mucosa, genes related to defense systems, glutathione metabolism, detoxification of xenobiotics, and immune responses were differently expressed by HS conditions. The integrated transcriptome analysis with DEGs found in the liver and jejunal mucosa showed a considerable connectivity between the core nodes in the constructed networks, which includes glutathione metabolism, xenobiotic metabolism, carbon metabolism, and several amino acid metabolisms. Conclusions The core network analysis may indicate that increased requirement of energy and amino acids in the jejunal mucosa of broiler chickens exposed to HS conditions is likely compromised by increased oxidation and synthesis of amino acids in the liver. Therefore, our results may provide comprehensive insights for molecular and metabolic alterations of broiler chickens raised under HS conditions, which can aid in the development of the novel strategies to ameliorate the negative effect of HS on poultry productivity and health. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00734-y.
Collapse
|
5
|
Hicks JA, Pike BE, Liu HC. Alterations in hepatic mitotic and cell cycle transcriptional networks during the metabolic switch in broiler chicks. Front Physiol 2022; 13:1020870. [PMID: 36353371 PMCID: PMC9639855 DOI: 10.3389/fphys.2022.1020870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/14/2022] [Indexed: 09/08/2024] Open
Abstract
During embryonic life, chicks mainly derive energy from hepatic oxidation of yolk lipids. After hatch, chicks must rely on carbohydrate-rich feed to obtain energy. This requires an abrupt and intensive switch of metabolic processes, particularly in the liver. We recently identified a number of transcriptional and post-transcriptional regulatory networks that work concordantly to tune metabolic processes during the metabolic switch. Here, we used delayed feeding post-hatch (48 h) to impede the metabolic switch in broilers. We used RNA-seq to identify hepatic transcriptome differences between late stage embryos (E18) and two-day-old chicks (D2), which were either fed-from-hatch (FED) or not fed (DLY). Between FED and E18, 2,430 genes were differentially expressed (fold-change≥ 2; FDR p-value 0.05), of these 1,237 were downregulated in FED birds and 1,193 were upregulated. Between DLY and E18, 1979 genes were differentially expressed, of these 1,043 were downregulated and 936 were upregulated in DLY birds. Between DLY and FED, 880 genes were differentially expressed, of these 543 were downregulated and 337 were upregulated in DLY birds. We found that in addition to disturbances in a number of metabolic pathways, unfed chicks had a widespread suppression of gene networks associated with cell proliferation, cell cycle progression and mitosis. Expression patterns suggest that hepatocytes of delayed-fed birds have abnormal mitosis and increased polyploidization. This suggests that post-hatch feed consumption maintains the rate and integrity of liver growth immediately, which in turn, likely helps facilitate the appropriate programming of hepatic metabolic networks.
Collapse
Affiliation(s)
| | | | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
6
|
Li B, Yang J, Gong Y, Xiao Y, Zeng Q, Xu K, Duan Y, He J, He J, Ma H. Integrated Analysis of Liver Transcriptome, miRNA, and Proteome of Chinese Indigenous Breed Ningxiang Pig in Three Developmental Stages Uncovers Significant miRNA-mRNA-Protein Networks in Lipid Metabolism. Front Genet 2021; 12:709521. [PMID: 34603377 PMCID: PMC8481880 DOI: 10.3389/fgene.2021.709521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022] Open
Abstract
Liver is an important metabolic organ of mammals. During each transitional period of life, liver metabolism is programmed by a complex molecular regulatory system for multiple physiological functions, many pathways of which are regulated by hormones and cytokines, nuclear receptors, and transcription factors. To gain a comprehensive and unbiased molecular understanding of liver growth and development in Ningxiang pigs, we analyzed the mRNA, microRNA (miRNA), and proteomes of the livers of Ningxiang pigs during lactation, nursery, and fattening periods. A total of 22,411 genes (19,653 known mRNAs and 2758 novel mRNAs), 1122 miRNAs (384 known miRNAs and 738 novel miRNAs), and 1123 unique proteins with medium and high abundance were identified by high-throughput sequencing and mass spectrometry. We show that the differences in transcriptional, post-transcriptional, or protein levels were readily identified by comparing different time periods, providing evidence that functional changes that may occur during liver development are widespread. In addition, we found many overlapping differentially expressed genes (DEGs)/differentially expressed miRNAs (DEMs)/differentially expressed proteins (DEPs) related to glycolipid metabolism in any group comparison. These overlapping DEGs/DEMs/DGPs may play an important role in functional transformation during liver development. Short Time-series Expression Miner (STEM) analysis revealed multiple expression patterns of mRNA, miRNA, and protein in the liver. Furthermore, several diverse key Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including immune defense, glycolipid metabolism, protein transport and uptake, and cell proliferation and development, were identified by combined analysis of DEGs and DGPs. A number of predicted miRNA-mRNA-protein pairs were found and validated by qRT-PCR and parallel reaction monitoring (PRM) assays. The results provide new and important information about the genetic breeding of Ningxiang pigs, which represents a foundation for further understanding the molecular regulatory mechanisms of dynamic development of liver tissue, functional transformation, and lipid metabolism.
Collapse
Affiliation(s)
- Biao Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Yan Gong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qinghua Zeng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Ningxiang Pig Farm of Dalong Livestock Technology Co., Ltd., Ningxiang, China
| | - Kang Xu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences (CAS), Changsha, China
| | - Yehui Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences (CAS), Changsha, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jun He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
7
|
Hicks JA, Liu HC. Centennial Review: Metabolic microRNA - shifting gears in the regulation of metabolic pathways in poultry. Poult Sci 2021; 100:100856. [PMID: 33652542 PMCID: PMC7936154 DOI: 10.1016/j.psj.2020.11.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 01/01/2023] Open
Abstract
Over 20 yr ago, a small noncoding class of RNA termed microRNA (miRNA) that was able to recognize sequences in mRNAs and inhibit their translation was discovered in Caenorhabditis elegans. In the intervening years, miRNA have been discovered in most eukaryotes and are now known to regulate the majority of protein-coding genes. It has been discovered that disruption of miRNA function often leads to the development of pathological conditions. One physiological system under extensive miRNA-mediated regulation is metabolism. Metabolism is one of the most dynamic of biological networks within multiple organs, including the liver, muscle, and adipose tissue, working in concert to respond to ever-changing nutritional cues and energy demands. Therefore, it is not surprising that miRNA regulate virtually all aspects of eukaryotic metabolism and have been linked to metabolic disorders, such as obesity, fatty liver diseases, and diabetes, just to name a few. Chickens, and birds in general, face their own unique metabolic challenges, particularly after hatching, when their metabolism must completely transform from using lipid-rich yolk to carbohydrate-rich feed as fuel in a very short period of time. Furthermore, commercial poultry breeds have undergone extensive selection over the last century for more desirable production traits, which has resulted in numerous metabolic consequences. Here, we review the current knowledge of miRNA-mediated regulation of metabolic development and function in chickens.
Collapse
Affiliation(s)
- Julie A Hicks
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
8
|
Expression Signatures of microRNAs and Their Targeted Pathways in the Adipose Tissue of Chickens during the Transition from Embryonic to Post-Hatch Development. Genes (Basel) 2021; 12:genes12020196. [PMID: 33572831 PMCID: PMC7911735 DOI: 10.3390/genes12020196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
As the chick transitions from embryonic to post-hatching life, its metabolism must quickly undergo a dramatic switch in its major energy source. The chick embryo derives most of its energy from the yolk, a lipid-rich/carbohydrate-poor source. Upon hatching, the chick’s metabolism must then be able to utilize a lipid-poor/carbohydrate-rich source (feed) as its main form of energy. We recently found that a number of hepatically-expressed microRNAs (miRNAs) help facilitate this shift in metabolic processes in the chick liver, the main site of lipogenesis. While adipose tissue was initially thought to mainly serve as a lipid storage site, it is now known to carry many metabolic, endocrine, and immunological functions. Therefore, it would be expected that adipose tissue is also an important factor in the metabolic switch. To that end, we used next generation sequencing (NGS) and real-time quantitative PCR (RT-qPCR) to generate miRNome and transcriptome signatures of the adipose tissue during the transition from late embryonic to early post-hatch development. As adipose tissue is well known to produce inflammatory and other immune factors, we used SPF white leghorns to generate the initial miRNome and transcriptome signatures to minimize complications from external factors (e.g., pathogenic infections) and ensure the identification of bona fide switch-associated miRNAs and transcripts. We then examined their expression signatures in the adipose tissue of broilers (Ross 708). Using E18 embryos as representative of pre-switching metabolism and D3 chicks as a representative of post-switching metabolism, we identified a group of miRNAs which work concordantly to regulate a diverse but interconnected group of developmental, immune and metabolic processes in the adipose tissue during the metabolic switch. Network mapping suggests that during the first days post-hatch, despite the consumption of feed, the chick is still heavily reliant upon adipose tissue lipid stores for energy production, and is not yet efficiently using their new energy source for de novo lipid storage. A number of core master regulatory pathways including, circadian rhythm transcriptional regulation and growth hormone (GH) signaling, likely work in concert with miRNAs to maintain an essential balance between adipogenic, lipolytic, developmental, and immunological processes in the adipose tissue during the metabolic switch.
Collapse
|
9
|
Miretti S, Lecchi C, Ceciliani F, Baratta M. MicroRNAs as Biomarkers for Animal Health and Welfare in Livestock. Front Vet Sci 2020; 7:578193. [PMID: 33392281 PMCID: PMC7775535 DOI: 10.3389/fvets.2020.578193] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small and highly conserved non-coding RNA molecules that orchestrate a wide range of biological processes through the post-transcriptional regulation of gene expression. An intriguing aspect in identifying these molecules as biomarkers is derived from their role in cell-to-cell communication, their active secretion from cells into the extracellular environment, their high stability in body fluids, and their ease of collection. All these features confer on miRNAs the potential to become a non-invasive tool to score animal welfare. There is growing interest in the importance of miRNAs as biomarkers for assessing the welfare of livestock during metabolic, environmental, and management stress, particularly in ruminants, pigs, and poultry. This review provides an overview of the current knowledge regarding the potential use of tissue and/or circulating miRNAs as biomarkers for the assessment of the health and welfare status in these livestock species.
Collapse
Affiliation(s)
- Silvia Miretti
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Cristina Lecchi
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Mario Baratta
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| |
Collapse
|
10
|
Reicher N, Melkman-Zehavi T, Dayan J, Uni Z. It's All About Timing: Early Feeding Promotes Intestinal Maturation by Shifting the Ratios of Specialized Epithelial Cells in Chicks. Front Physiol 2020; 11:596457. [PMID: 33391016 PMCID: PMC7773643 DOI: 10.3389/fphys.2020.596457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/27/2020] [Indexed: 12/23/2022] Open
Abstract
The small intestine (SI) of chicks (Gallus gallus) matures rapidly during the initial post-hatch period and acquires digestive, absorptive, and secretive capabilities. The effects of the timing of first feeding on the quantities and distribution of specialized epithelial cells, which generate and maintain SI morphology and functionality, have not yet been examined. In this study, we identified specialized SI epithelial cell sub-types, including stem, progenitor, proliferating, and differentiated cells within crypts and villi of chicks during the first 10 days post-hatch, by in situ hybridization (ISH), immunofluorescence (IF), and histochemical staining. We then examined their quantities and ratios between day of hatch and d10 in chicks that were fed upon hatch [early feeding (EF)], compared to chicks that were fed 24 h post-hatch [delayed feeding (DF)]. Results showed that EF increased total cell quantities in the crypts and villi at days 1, 3, 7, and 10, compared to DF (p < 0.0001). At d3, EF, in comparison to DF, decreased crypt stem cell proportions (p < 0.0001), increased crypt proliferating (p < 0.01) and differentiated (p < 0.05) cell proportions, and increased villus enterocyte proportions (p < 0.01). By d10, EF increased both the quantities and proportions of villus enterocytes and goblet cells, compared to DF. We conclude that feeding upon hatch, compared to 24 h-delayed feeding, enhanced SI maturation and functionality by increasing the quantities and proportions of proliferating and differentiated cells, thus expanding the digestive, absorptive, and secretive cell populations throughout the initial post-hatch period.
Collapse
Affiliation(s)
- Naama Reicher
- Department of Animal Science, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tal Melkman-Zehavi
- Department of Animal Science, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jonathan Dayan
- Department of Animal Science, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Zehava Uni
- Department of Animal Science, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
11
|
Payne JA, Proszkowiec-Weglarz M, Ellestad LE. Delayed access to feed alters expression of genes associated with carbohydrate and amino acid utilization in newly hatched broiler chicks. Am J Physiol Regul Integr Comp Physiol 2019; 317:R864-R878. [PMID: 31596116 PMCID: PMC6962625 DOI: 10.1152/ajpregu.00117.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022]
Abstract
Newly hatched chicks must transition from lipid-rich yolk to carbohydrate-rich feed as their primary nutrient source, and posthatch delays in access to feed can have long-term negative consequences on growth and metabolism. In this study, impacts of delayed access to feed at hatch on expression of genes related to nutrient uptake and utilization in two metabolically important tissues, liver and muscle, were determined in broiler (meat-type) chickens. Hatched chicks were given access to feed within 3 h (fed) or delayed access to feed for 48 h (delayed fed), and liver and breast muscle were collected from males at hatch and 4 h, 1 day, 2 days, 4 days, and 8 days posthatch for analysis of gene expression. Differential expression of carbohydrate response element-binding protein and peroxisome proliferator-activated receptor-γ in muscle and liver was observed, with results indicating a transitional delay from lipid to carbohydrate metabolism when hatched chicks were not given immediate access to feed. Extended upregulation of insulin receptor mRNA was observed in both tissues in delayed fed birds, suggesting increased sensitivity to circulating levels of the hormone. Developmental delays in expression patterns of cationic amino acid transporters 1 and 2 in both tissues and large neutral amino acid transporter 1 in muscle were also apparent when immediate feed access was prevented. These data suggest that delayed transition to carbohydrate use and altered nutrient transport and utilization within liver and breast muscle are key factors negatively affecting growth and metabolism following delayed feed access in broiler chickens.
Collapse
Affiliation(s)
- Jason A Payne
- Department of Poultry Science, University of Georgia, Athens, Georgia
| | - Monika Proszkowiec-Weglarz
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Services, Northeast Area, Beltsville, Maryland
| | - Laura E Ellestad
- Department of Poultry Science, University of Georgia, Athens, Georgia
| |
Collapse
|
12
|
Effects of Dietary Threonine Levels on Intestinal Immunity and Antioxidant Capacity Based on Cecal Metabolites and Transcription Sequencing of Broiler. Animals (Basel) 2019; 9:ani9100739. [PMID: 31569385 PMCID: PMC6826648 DOI: 10.3390/ani9100739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Threonine (Thr), an indispensable amino acid for animals and the third limiting amino acid of broilers, plays a vital role in the synthesis of gut mucosal proteins, which also has better effects on growth performance, biochemical indexes, antioxidant function, and gut morphology, as well as acting as a nutrient immunomodulator that affects the intestinal barrier function of broilers. However, it is not clear how it works in depth. The objective of the current study was to investigate the mechanism of effects of different dietary threonine levels on the antioxidant and immune capacity of broilers. Our findings suggest that a Thr level of 125% NRC (Nutrient Requirements of Poultry, 1994) recommendations had better effects on antioxidant and immune capacity, including resisting viruses and decreasing the abnormal proliferation of cells. As well as this, it also had better effects on maintaining the homeostasis of the body. Abstract This study aimed to determine the effects of different dietary threonine levels on the antioxidant and immune capacity and the immunity of broilers. A total of 432 one-day-old Arbor Acres (AA) broilers were randomly assigned to 4 groups, each with 6 replicates of 18 broilers. The amount of dietary threonine in the four treatments reached 85%, 100%, 125%, and 150% of the NRC (Nutrient Requirements of Poultry, 1994) recommendation for broilers (marked as THR85, THR100, THR125, and THR150). After 42 days of feeding, the cecum contents and jejunum mucosa were collected for metabolic analysis and transcriptional sequencing. The results indicated that under the condition of regular and non-disease growth of broilers, compared with that of the THR85 and THR150 groups, the metabolic profile of the THR125 group was significantly higher than that of the standard requirement group. Compared with the THR100 group, the THR125 group improved antioxidant ability and immunity of broilers and enhanced the ability of resisting viruses. The antioxidant gene CAT was upregulated. PLCD1, which is involved in immune signal transduction and plays a role in cancer suppression, was also upregulated. Carcinogenic or indirect genes PKM2, ACY1, HK2, and TBXA2 were down-regulated. The genes GPT2, glude2, and G6PC, which played an important role in maintaining homeostasis, were up-regulated. Therefore, the present study suggests that 125% of the NRC recommendations for Thr level had better effects on antioxidant and immune capacity, as well as maintaining the homeostasis of the body.
Collapse
|
13
|
Tian WH, Wang Z, Yue YX, Li H, Li ZJ, Han RL, Tian YD, Kang XT, Liu XJ. miR-34a-5p Increases Hepatic Triglycerides and Total Cholesterol Levels by Regulating ACSL1 Protein Expression in Laying Hens. Int J Mol Sci 2019; 20:ijms20184420. [PMID: 31500376 PMCID: PMC6770783 DOI: 10.3390/ijms20184420] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence has shown that miR-34a serves as a posttranscriptional regulatory molecule of lipid metabolism in mammals. However, little studies about miR-34a on lipid metabolism in poultry have been reported until now. To gain insight into the biological functions and action mechanisms of miR-34a on hepatic lipid metabolism in poultry, we firstly investigated the expression pattern of miR-34a-5p, a member of miR-34a family, in liver of chicken, and determined its function in hepatocyte lipid metabolism by miR-34a-5p overexpression and inhibition, respectively. We then validated the interaction between miR-34a-5p and its target using dual-luciferase reporter assay, and explored the action mechanism of miR-34a-5p on its target by qPCR and Western blotting. Additionally, we looked into the function of the target gene on hepatocyte lipid metabolism by gain- and loss-of-function experiments. Our results indicated that miR-34a-5p showed a significantly higher expression level in livers in peak-laying hens than that in pre-laying hens. miR-34a-5p could increase the intracellular levels of triglycerides and total cholesterol in hepatocyte. Furthermore, miR-34a-5p functioned by inhibiting the translation of its target gene, long-chain acyl-CoA synthetase 1 (ACSL1), which negatively regulates hepatocyte lipid content. In conclusion, miR-34a-5p could increase intracellular lipid content by reducing the protein level, without influencing mRNA stability of the ACSL1 gene in chickens.
Collapse
Affiliation(s)
- Wei-Hua Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zhang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Ya-Xin Yue
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, China.
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China.
| | - Zhuan-Jian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, China.
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China.
| | - Rui-Li Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, China.
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China.
| | - Ya-Dong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, China.
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China.
| | - Xiang-Tao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, China.
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China.
| | - Xiao-Jun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002, China.
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China.
| |
Collapse
|