1
|
Jebessa E, Bello SF, Xu Y, Cai B, Tuli MD, Girma M, Bordbar F, Hanotte O, Nie Q. Comprehensive analysis of differentially expressed mRNA profiles in chicken jejunum and cecum following Eimeria maxima infection. Poult Sci 2024; 103:103716. [PMID: 38703453 PMCID: PMC11087723 DOI: 10.1016/j.psj.2024.103716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/16/2024] [Accepted: 03/31/2024] [Indexed: 05/06/2024] Open
Abstract
Coccidiosis, a protozoan disease that substantially impacts poultry production, is characterized by an intracellular parasite. The study utilized 48 one-day-old Horro chickens, randomly divided into the infected (I) and control (C) groups. The challenge group of chickens were administered Eimeria maxima oocysts via oral gavage at 21-days-old, and each chicken received 2 mL containing 7×104 sporulated oocysts. The total RNAs of chicken jejunum and cecum tissues were isolated from three samples, each from I and C groups. Our study aimed to understand the host immune-parasite interactions and compare immune response mRNA profiles in chicken jejunum and cecum tissues at 4 and 7 days postinfection with Eimeria maxima. The results showed that 823 up- and 737 down-regulated differentially expressed mRNAs (DEmRNAs) in jejunum at 4 d infection and control (J4I vs. J4C), and 710 up- and 368 down-regulated DEmRNAs in jejunum at 7 days infection and control (J7I vs. J7C) were identified. In addition, DEmRNAs in cecum tissue, 1424 up- and 1930 down-regulated genes in cecum at 4 days infection and control (C4I vs. C4C), and 77 up- and 191 down-regulated genes in cecum at 7 days infection and control (C7I vs. C7C) were detected. The crucial DEmRNAs, including SLC7A5, IL1R2, GLDC, ITGB6, ADAMTS4, IL1RAP, TNFRSF11B, IMPG2, WNT9A, and FOXF1, played pivotal roles in the immune response during Eimeria maxima infection of chicken jejunum. In addition, the potential detection of FSTL3, RBP7, CCL20, DPP4, PRKG2, TFPI2, and CDKN1A in the cecum during the host immune response against Eimeria maxima infection is particularly noteworthy. Furthermore, our functional enrichment analysis revealed the primary involvement of DEmRNAs in small molecule metabolic process, immune response function, inflammatory response, and toll-like receptor 10 signaling pathway in the jejunum at 4 and 7 days postinfection. Similarly, in the cecum, DEmRNAs at 4 and 7 days postinfection were enriched in processes related to oxidative stress response and immune responses. Our findings provide new insights and contribute significantly to the field of poultry production and parasitology.
Collapse
Affiliation(s)
- Endashaw Jebessa
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China; LiveGene-Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Yibin Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Bolin Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Merga Daba Tuli
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Mekonnen Girma
- LiveGene-Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Farhad Bordbar
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Olivier Hanotte
- LiveGene-Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia; School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom.
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.
| |
Collapse
|
2
|
Attia MM, Mohamed RI, Salem HM. Impact of Eimeria tenella experimental Infection on intestinal and splenic reaction of broiler chickens. J Parasit Dis 2023; 47:829-836. [PMID: 38009153 PMCID: PMC10667201 DOI: 10.1007/s12639-023-01629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/08/2023] [Indexed: 11/28/2023] Open
Abstract
This work assesses the cell-mediated immune reaction IL-6, TNF-α, and IFN-γ of experimentally challenged broiler chicken with Eimeria tenella (E. tenella). Therefore, ninety, 2-weeks-old healthy broiler chicks were allocated as eighty chicks infected orally with 2.5 × 104 E. tenella sporulated oocysts, and the other ten birds were kept as control negative birds. Post-challenge, mortality rate, symptoms, oocysts shedding, and lesion score were evaluated. Tissue samples (cecum and spleen) were collected at 0, 4, 8, and 12 days post-infection (dpi). Ten chickens were ethically slaughtered at 0, 4, 8, and 12 days post-infection, as well as two birds from the negative control group; parts from cecal and spleen samples were kept in cryopreservation containers, and other parts were preserved in formaline 10% for further investigation. The evaluated genes (IL-6, TNF-α, and IFN-γ) were normal at 0 days and upregulated at 4 and 8 days, which reached maximum upregulation at eight dpi. The histopathological examination of the ceca and spleen were evaluated before and after challenge. It could be concluded that E. tenella revealed direct severe macroscopic and microscopic changes in cecal tissues and indirectly induced alteration in splenic tissues, resulting in upregulation of different cell mediated immune response in cecum and spleen in relation to the experimental period.
Collapse
Affiliation(s)
- Marwa M. Attia
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Rania I. Mohamed
- Department of Pathology, Agricultural Research Center (ARC), Animal Health Research Institute- Mansoura provincial Laboratory (AHRI-Mansoura), P.O. Box 264, Giza, Cairo, 12618 Egypt
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| |
Collapse
|
3
|
Song HY, Deng ML, Yang JF, Ma J, Shu FF, Cheng WJ, Zhu XQ, Zou FC, He JJ. Transcriptomic, 16S ribosomal ribonucleic acid and network pharmacology analyses shed light on the anticoccidial mechanism of green tea polyphenols against Eimeria tenella infection in Wuliangshan black-boned chickens. Parasit Vectors 2023; 16:330. [PMID: 37726789 PMCID: PMC10510215 DOI: 10.1186/s13071-023-05922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Eimeria tenella is an obligate intracellular parasitic protozoan that invades the chicken cecum and causes coccidiosis, which induces acute lesions and weight loss. Elucidating the anticoccidial mechanism of action of green tea polyphenols could aid the development of anticoccidial drugs and resolve the problem of drug resistance in E. tenella. METHODS We constructed a model of E. tenella infection in Wuliangshan black-boned chickens, an indigenous breed of Yunnan Province, China, to study the efficacy of green tea polyphenols against the infection. Alterations in gene expression and in the microbial flora in the cecum were analyzed by ribonucleic acid (RNA) sequencing and 16S ribosomal RNA (rRNA) sequencing. Quantitative real-time polymerase chain reaction was used to verify the host gene expression data obtained by RNA sequencing. Network pharmacology and molecular docking were used to clarify the interactions between the component green tea polyphenols and the targeted proteins; potential anticoccidial herbs were also analyzed. RESULTS Treatment with the green tea polyphenols led to a reduction in the lesion score and weight loss of the chickens induced by E. tenella infection. The expression of matrix metalloproteinase 7 (MMP7), MMP1, nitric oxide synthase 2 and ephrin type-A receptor 2 was significantly altered in the E. tenella infection plus green tea polyphenol-treated group and in the E. tenella infection group compared with the control group; these genes were also predicted targets of tea polyphenols. Furthermore, the tea polyphenol (-)-epigallocatechin gallate acted on most of the targets, and the molecular docking analysis showed that it has good affinity with interferon induced with helicase C domain 1 protein. 16S ribosomal RNA sequencing showed that the green tea polyphenols had a regulatory effect on changes in the fecal microbiota induced by E. tenella infection. In total, 171 herbs were predicted to act on two or three targets in MMP7, MMP1, nitric oxide synthase 2 and ephrin type-A receptor 2. CONCLUSIONS Green tea polyphenols can directly or indirectly regulate host gene expression and alter the growth of microbiota. The results presented here shed light on the mechanism of action of green tea polyphenols against E. tenella infection in chickens, and have implications for the development of novel anticoccidial products.
Collapse
Affiliation(s)
- Hai-Yang Song
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Meng-Ling Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Jian-Fa Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Jun Ma
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Fan-Fan Shu
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Wen-Jie Cheng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Xing-Quan Zhu
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Feng-Cai Zou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
| | - Jun-Jun He
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
| |
Collapse
|
4
|
Zhou BH, Ding HY, Yang JY, Chai J, Guo HW, Tian EJ. Diclazuril-induced expression of CDK-related kinase 2 in the second-generation merozoites of Eimeria tenella. Mol Biochem Parasitol 2023; 255:111575. [PMID: 37302489 DOI: 10.1016/j.molbiopara.2023.111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Diclazuril is a classic anticoccidial drug. The key molecules of diclazuril in anticoccidial action allows target screening for the development of anticoccidial drugs. Cyclin-dependent kinases (CDK) are prominent target proteins in apicomplexan parasites. In this study, a diclazuril anticoccidiosis animal model was established, and the transcription and translation levels of the CDK-related kinase 2 of Eimeria tenella (EtCRK2) were detected. mRNA and protein expression levels of EtCRK2 decreased in the infected/diclazuril group compared with those in the infected/control group. In addition, immunofluorescence analysis showed that EtCRK2 was localised in the cytoplasm of the merozoites. The fluorescence intensity of EtCRK2 in the infected/diclazuril group was significantly weaker than that in the infected/control group. The anticoccidial drug diclazuril against E.tenella affects the expression pattern of EtCRK2 molecule, and EtCRK2 is a potential target for new drug development.
Collapse
Affiliation(s)
- Bian-Hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luolong District, Luoyang 471023, Henan, People's Republic of China.
| | - Hai-Yan Ding
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luolong District, Luoyang 471023, Henan, People's Republic of China
| | - Jing-Yun Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luolong District, Luoyang 471023, Henan, People's Republic of China
| | - Jun Chai
- School of information technology and urban construction, Luoyang Vocational and Technical College, Keji Avenue 6, Yibin District, Luoyang 471934, Henan, People's Republic of China
| | - Hong-Wei Guo
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Longzi Hubei Road 6, Zhengzhou 450046, Henan, People's Republic of China
| | - Er-Jie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luolong District, Luoyang 471023, Henan, People's Republic of China
| |
Collapse
|
5
|
Sun H, Su X, Fu Y, Hao L, Zhou W, Zhou Z, huang J, Wang Y, Shi T. Pathogenicity and drug resistance of the Eimeria tenella isolate from Yiwu, Zhejiang province, eastern China. Poult Sci 2023; 102:102845. [PMID: 37441842 PMCID: PMC10404733 DOI: 10.1016/j.psj.2023.102845] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
Chicken coccidiosis can cause severe enteritis with high mortality, which causes serious economic losses to the global breeding industry each year. The most virulent species is Eimeria tenella (E. tenella), but the infectivity of different E. tenella varies among geographic strains. At present, there are no reports related to the pathogenicity and drug resistance of E. tenella in Yiwu, Zhejiang province, China. A total of 600 fecal samples were collected from 10 farms in Zhejiang province, the overall oocyst prevalence was 54.2% (325/600). The prevalence was significantly higher (P < 0.01) in chickens under 40 d (97.5%) than that in chickens between 60 and 85-days-old (40.5%) and chickens over 90-days-old (24.5%). E. tenella stain was isolated from fecal samples of chickens in Yiwu and the pathogenicity of this isolate was determined, and then we recorded the survival rate, bloody stool score, lesion score, average weight gain. The results showed that all of the chickens infected with 5 × 105 sporulated oocysts of E. tenella died after the seventh day of infection, the bloody stool score and average lesion score of chickens from group 1 (5 × 105), group 2 (5 × 104), group 3 (5 × 103) and group 4 (5 × 102) decreased successively; the average weight gain (g) and relative weight gain (%) increased successively; the weight gain of the low-dose E. tenella infection groups (5 × 103 and 5 × 102) were higher than the other 2 groups (5 × 105 and 5 × 104) (P < 0.05). Finally, The E. tenella isolate was tested for sensitivity to 6 anticoccidial drugs (sulfachloropyrazine sodium, amproline, toltrazuril, clopidol, salinomycin, and nicarbazine) using 4 indexes including anticoccidial index(ACI), percent of optimum anticoccidial activity (POAA), reduction of lesion scores (RLS), and relative oocyst production (ROP). The results showed that this isolate has developed severe resistance to drugs of salinomycin and nicarbazine, moderate resistance to amproline and clopidol, slight resistance to toltrazuril, while the E. tenella isolate performed more sensitive to sulfachloropyrazine sodium.
Collapse
Affiliation(s)
- Hongchao Sun
- Department of Animal Parasitology, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, PR China
| | - Xinyao Su
- Department of Animal Parasitology, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, PR China
- Department of Animal Parasitology, College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan Province 610041, PR China
| | - Yuan Fu
- Department of Animal Parasitology, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, PR China
| | - Lili Hao
- Department of Animal Parasitology, College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan Province 610041, PR China
| | - Wei Zhou
- Department of Veterinary medicine and feed, Zhejiang Provincial Animal Disease Prevention and Control Center, Hangzhou, Zhejiang Province 311199, PR China
| | - Zhijin Zhou
- Department of Veterinary medicine and feed, Zhejiang Provincial Animal Disease Prevention and Control Center, Hangzhou, Zhejiang Province 311199, PR China
| | - Jing huang
- Department of Veterinary medicine and feed, Zhejiang Provincial Animal Disease Prevention and Control Center, Hangzhou, Zhejiang Province 311199, PR China
| | - Yimin Wang
- Hangzhou Caiyang Agricultural Science, Hangzhou, Zhejiang Province 311321, PR China
| | - Tuanyuan Shi
- Department of Animal Parasitology, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, PR China
| |
Collapse
|
6
|
Guo H, Jia N, Chen H, Xie D, Chi D. Preliminary Analysis of Transcriptome Response of Dioryctria sylvestrella (Lepidoptera: Pyralidae) Larvae Infected with Beauveria bassiana under Short-Term Starvation. INSECTS 2023; 14:insects14050409. [PMID: 37233037 DOI: 10.3390/insects14050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
The Dioryctria genus contains several destructive borer pests that are found in coniferous forests in the Northern Hemisphere. Beauveria bassiana spore powder was tested as a new method of pest control. In this study, Dioryctria sylvestrella (Lepidoptera: Pyralidae) was used as the object. A transcriptome analysis was performed on a freshly caught group, a fasting treatment control group, and a treatment group inoculated with a wild B. bassiana strain, SBM-03. Under the conditions of 72-h fasting and a low temperature of 16 ± 1 °C, (i) in the control group, 13,135 of 16,969 genes were downregulated. However, in the treatment group, 14,558 of 16,665 genes were upregulated. (ii) In the control group, the expression of most genes in the upstream and midstream of the Toll and IMD pathways was downregulated, but 13 of the 21 antimicrobial peptides were still upregulated. In the treatment group, the gene expression of almost all antimicrobial peptides was increased. Several AMPs, including cecropin, gloverin, and gallerimycin, may have a specific inhibitory effect on B. bassiana. (iii) In the treatment group, one gene in the glutathione S-transferase system and four genes in the cytochrome P450 enzyme family were upregulated, with a sharp rise in those that were upregulated significantly. In addition, most genes of the peroxidase and catalase families, but none of the superoxide dismutase family were upregulated significantly. Through innovative fasting and lower temperature control, we have a certain understanding of the specific defense mechanism by which D. sylvestrella larvae may resist B. bassiana in the pre-wintering period. This study paves the way for improving the toxicity of B. bassiana to Dioryctria spp.
Collapse
Affiliation(s)
- Hongru Guo
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Niya Jia
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Huanwen Chen
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Dan Xie
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Defu Chi
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
7
|
Saeed Z, Alkheraije KA. Botanicals: A promising approach for controlling cecal coccidiosis in poultry. Front Vet Sci 2023; 10:1157633. [PMID: 37180056 PMCID: PMC10168295 DOI: 10.3389/fvets.2023.1157633] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/10/2023] [Indexed: 05/15/2023] Open
Abstract
Avian species have long struggled with the problem of coccidiosis, a disease that affects various parts of the intestine, including the anterior gut, midgut, and hindgut. Among different types of coccidiosis, cecal coccidiosis is particularly dangerous to avian species. Chickens and turkeys are commercial flocks; thus, their parasites have remained critical due to their economic importance. High rates of mortality and morbidity are observed in both chickens and turkeys due to cecal coccidiosis. Coccidiostats and coccidiocidal chemicals have traditionally been added to feed and water to control coccidiosis. However, after the EU banned their use because of issues of resistance and public health, alternative methods are being explored. Vaccines are also being used, but their efficacy and cost-effectiveness remain as challenges. Researchers are attempting to find alternatives, and among the alternatives, botanicals are a promising choice. Botanicals contain multiple active compounds such as phenolics, saponins, terpenes, sulfur compounds, etc., which can kill sporozoites and oocysts and stop the replication of Eimeria. These botanicals are primarily used as anticoccidials due to their antioxidant and immunomodulatory activities. Because of the medicinal properties of botanicals, some commercial products have also been developed. However, further research is needed to confirm their pharmacological effects, mechanisms of action, and methods of concentrated preparation. In this review, an attempt has been made to summarize the plants that have the potential to act as anticoccidials and to explain the mode of action of different compounds found within them.
Collapse
Affiliation(s)
- Zohaib Saeed
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Khalid A. Alkheraije
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
8
|
Kim M, Chung Y, Manjula P, Seo D, Cho S, Cho E, Ediriweera TK, Yu M, Nam S, Lee JH. Time-series transcriptome analysis identified differentially expressed genes in broiler chicken infected with mixed Eimeria species. Front Genet 2022; 13:886781. [PMID: 36003329 PMCID: PMC9393255 DOI: 10.3389/fgene.2022.886781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Coccidiosis caused by the Eimeria species is a highly problematic disease in the chicken industry. Here, we used RNA sequencing to observe the time-dependent host responses of Eimeria-infected chickens to examine the genes and biological functions associated with immunity to the parasite. Transcriptome analysis was performed at three time points: 4, 7, and 21 days post-infection (dpi). Based on the changes in gene expression patterns, we defined three groups of genes that showed differential expression. This enabled us to capture evidence of endoplasmic reticulum stress at the initial stage of Eimeria infection. Furthermore, we found that innate immune responses against the parasite were activated at the first exposure; they then showed gradual normalization. Although the cytokine-cytokine receptor interaction pathway was significantly operative at 4 dpi, its downregulation led to an anti-inflammatory effect. Additionally, the construction of gene co-expression networks enabled identification of immunoregulation hub genes and critical pattern recognition receptors after Eimeria infection. Our results provide a detailed understanding of the host-pathogen interaction between chicken and Eimeria. The clusters of genes defined in this study can be utilized to improve chickens for coccidiosis control.
Collapse
Affiliation(s)
- Minjun Kim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Yoonji Chung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Prabuddha Manjula
- Department of Animal Science, Uva Wellassa University, Badulla, Sri Lanka
| | - Dongwon Seo
- Research Institute TNT Research Company, Jeonju, Korea
- Department of Bio AI Convergence, Chungnam National University, Daejeon, Korea
| | - Sunghyun Cho
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Eunjin Cho
- Department of Bio AI Convergence, Chungnam National University, Daejeon, Korea
| | | | - Myunghwan Yu
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Sunju Nam
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Jun Heon Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
- Department of Bio AI Convergence, Chungnam National University, Daejeon, Korea
- *Correspondence: Jun Heon Lee,
| |
Collapse
|
9
|
Characterization of vaccine-induced immune responses against coccidiosis in broiler chickens. Vaccine 2022; 40:3893-3902. [PMID: 35623907 DOI: 10.1016/j.vaccine.2022.05.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022]
Abstract
Coccidiosis, caused by Eimeria protozoan species, is an economically important enteric disease of poultry. Although commercial live vaccines are widely used for disease control, the vaccine-induced protective immune mechanisms are poorly characterized. The present study used a commercial broiler vaccine containing a mixture of E. acervulina, E. maxima, and E. tenella. One-day-old chicks were vaccinated by spray followed by a challenge at 21 days of age with a mixture of wild type Eimeria species via oral gavage. Oocyst shedding, immune gene expression and cellular responses in the spleen and cecal tonsils were measured at pre- (days 14 and 21) and post-challenge (days 24, 28 and 35) time points. Results showed that the oocyst counts were significantly reduced in the vaccinated chickens at post-challenge compared to unvaccinated control group. While the vaccinated birds had a significantly increased toll-like receptor (TLR) 21 gene expression at pre-challenge, the transcription of interferon (IFN)γ, Interleukin (IL)-12 and CD40 genes in spleen and cecal tonsils of these birds was significantly higher at post-challenge compared to unvaccinated chickens. Cellular immunophenotyping analysis found that vaccination led to increased frequency of macrophages and activated T cells (CD8+CD44+ and CD4+CD44+) in the spleen and cecal tonsils at post-challenge. Furthermore, in vitro stimulation of chicken macrophages (MQ-NCSU cells) with purified individual species of E. acervulina, E. maxima, and E. tenella showed a significantly increased expression of TLR21, TLR2 and IFNγ genes as well as nitric oxide production. Collectively, these findings suggest that TLR21 and TLR2 may be involved in the immune cell recognition of Eimeria parasites and that the vaccine can induce a robust macrophage activation leading to a T helper-1 dominated protective response at both local and systemic lymphoid tissues.
Collapse
|
10
|
Ghareeb AFA, Schneiders GH, Richter JN, Foutz JC, Milfort MC, Fuller AL, Yuan J, Rekaya R, Aggrey SE. Heat stress modulates the disruptive effects of Eimeria maxima infection on the ileum nutrient digestibility, molecular transporters, and tissue morphology in meat-type chickens. PLoS One 2022; 17:e0269131. [PMID: 35657942 PMCID: PMC9165794 DOI: 10.1371/journal.pone.0269131] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/14/2022] [Indexed: 11/18/2022] Open
Abstract
Eimeria (E.) maxima is one of the most pathogenic Eimeria spp persistently invading the middle jejunum and ileum, damaging the intestinal mucosa of chickens. Heat stress (HS) is a common stressor and equally contributes to inflammation and oxidative stress. We investigated the effect of E. maxima infection and HS on ileal digestibility, mRNA expression of nutrient transporters, and ileal tissue morphology in broiler chickens. There were four treatment groups: thermoneutral control (TNc), thermoneutral infected (TNi), heat stress control (HSc), and heat stress infected (HSi), 6 replicates each of 10 birds per treatment. Chickens were fed a diet containing 0.2% TiO2. At 6-day-post infection, ileal content and tissue were collected to quantify ileal digestibility of crude protein and fat, mRNA levels of nutrient transporters and histopathology. Growth and feed intake were reduced in all treatment groups, compared with the TNc. Contrary to expectation, the combination of two major stressors (E. maxima and HS) in the TNi group exhibited almost normal digestibility while only the TNi birds expressed severe digestibility depression, compared with the TNc group. The TNi group showed the lowest mRNA expression of the transporters: SGLT1, GLUT2-5-8-10-12, FABP1-2-6, and PEPT1 compared with the other treatment groups. The expression of the absorptive enterocytes’ gene markers (ACSL5, IAP, and SGLT1) supported by the ileal tissue morphology indicated that the TNi group had the highest enterocytic destruction. The expression of oxidative genes (iNOS and CYBB) dramatically increased only in the TNi group compared with the other treatment groups. Our results showed that exposing broiler chickens to HS can mitigate the disruptive effect of E. maxima on the ileal digestibility and absorption by limiting the parasite-induced tissue injury and suppressing the enterocytic inducible oxidative damage.
Collapse
Affiliation(s)
- Ahmed F. A. Ghareeb
- Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Gustavo H. Schneiders
- Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Jennifer N. Richter
- Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - James C. Foutz
- Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Marie C. Milfort
- Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Albert L. Fuller
- Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, Peoples Republic of China
| | - Romdhane Rekaya
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, United States of America
| | - Samuel E. Aggrey
- Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
11
|
The transcriptome from asexual to sexual in vitro development of Cystoisospora suis (Apicomplexa: Coccidia). Sci Rep 2022; 12:5972. [PMID: 35396557 PMCID: PMC8993856 DOI: 10.1038/s41598-022-09714-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/15/2022] [Indexed: 11/08/2022] Open
Abstract
The apicomplexan parasite Cystoisospora suis is an enteropathogen of suckling piglets with woldwide distribution. As with all coccidian parasites, its lifecycle is characterized by asexual multiplication followed by sexual development with two morphologically distinct cell types that presumably fuse to form a zygote from which the oocyst arises. However, knowledge of the sexual development of C. suis is still limited. To complement previous in vitro studies, we analysed transcriptional profiles at three different time points of development (corresponding to asexual, immature and mature sexual stages) in vitro via RNASeq. Overall, transcription of genes encoding proteins with important roles in gametes biology, oocyst wall biosynthesis, DNA replication and axonema formation as well as proteins with important roles in merozoite biology was identified. A homologue of an oocyst wall tyrosine rich protein of Toxoplasma gondii was expressed in macrogametes and oocysts of C. suis. We evaluated inhibition of sexual development in a host-free culture for C. suis by antiserum specific to this protein to evaluate whether it could be exploited as a candidate for control strategies against C. suis. Based on these data, targets can be defined for future strategies to interrupt parasite transmission during sexual development.
Collapse
|
12
|
Yuan J, Ni A, Li Y, Bian S, Liu Y, Wang P, Shi L, Isa AM, Ge P, Sun Y, Ma H, Chen J. Transcriptome Analysis Revealed Potential Mechanisms of Resistance to Trichomoniasis gallinae Infection in Pigeon ( Columba livia). Front Vet Sci 2021; 8:672270. [PMID: 34595226 PMCID: PMC8477972 DOI: 10.3389/fvets.2021.672270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Trichomoniasis gallinae (T. gallinae) is one of the most pathogenic parasites in pigeon, particularly in squabs. Oral cavity is the main site for the host-parasite interaction. Herein, we used RNA-sequencing technology to characterize lncRNA and mRNA profiles and compared transcriptomic dynamics of squabs, including four susceptible birds (S) from infected group, four tolerant birds (T) without parasites after T. gallinae infection, and three birds from uninfected group (N), to understand molecular mechanisms underlying host resistance to this parasite. We identified 29,809 putative lncRNAs and characterized their genomic features subsequently. Differentially expressed (DE) genes, DE-lncRNAs and cis/trans target genes of DE-lncRNAs were further compared among the three groups. The KEGG analysis indicated that specific intergroup DEGs were involved in carbon metabolism (S vs. T), metabolic pathways (N vs. T) and focal adhesion pathway (N vs. S), respectively. Whereas, the cis/trans genes of DE-lncRNAs were enriched in cytokine-cytokine receptor interaction, toll-like receptor signaling pathway, p53 signaling pathway and insulin signaling pathway, which play crucial roles in immune system of the host animal. This suggests T. gallinae invasion in pigeon mouth may modulate lncRNAs expression and their target genes. Moreover, co-expression analysis identified crucial lncRNA-mRNA interaction networks. Several DE-lncRNAs including MSTRG.82272.3, MSTRG.114849.42, MSTRG.39405.36, MSTRG.3338.5, and MSTRG.105872.2 targeted methylation and immune-related genes, such as JCHAIN, IL18BP, ANGPT1, TMRT10C, SAMD9L, and SOCS3. This implied that DE-lncRNAs exert critical influence on T. gallinae infections. The quantitative exploration of host transcriptome changes induced by T. gallinae infection broaden both transcriptomic and epigenetic insights into T. gallinae resistance and its pathological mechanism.
Collapse
Affiliation(s)
- Jingwei Yuan
- Institute of Animal Science, China Academy of Agricultural Science, Beijing, China
| | - Aixin Ni
- Institute of Animal Science, China Academy of Agricultural Science, Beijing, China
| | - Yunlei Li
- Institute of Animal Science, China Academy of Agricultural Science, Beijing, China
| | - Shixiong Bian
- Institute of Animal Science, China Academy of Agricultural Science, Beijing, China
| | - Yunjie Liu
- Institute of Animal Science, China Academy of Agricultural Science, Beijing, China
| | - Panlin Wang
- Institute of Animal Science, China Academy of Agricultural Science, Beijing, China
| | - Lei Shi
- Institute of Animal Science, China Academy of Agricultural Science, Beijing, China
| | - Adamu Mani Isa
- Institute of Animal Science, China Academy of Agricultural Science, Beijing, China.,Department of Animal Science, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Pingzhuang Ge
- Institute of Animal Science, China Academy of Agricultural Science, Beijing, China
| | - Yanyan Sun
- Institute of Animal Science, China Academy of Agricultural Science, Beijing, China
| | - Hui Ma
- Institute of Animal Science, China Academy of Agricultural Science, Beijing, China
| | - Jilan Chen
- Institute of Animal Science, China Academy of Agricultural Science, Beijing, China
| |
Collapse
|
13
|
Gao Y, Suding Z, Wang L, Liu D, Su S, Xu J, Hu J, Tao J. Full-length transcriptome analysis and identification of transcript structures in Eimeria necatrix from different developmental stages by single-molecule real-time sequencing. Parasit Vectors 2021; 14:502. [PMID: 34579769 PMCID: PMC8474931 DOI: 10.1186/s13071-021-05015-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/14/2021] [Indexed: 03/08/2023] Open
Abstract
Background Eimeria necatrix is one of the most pathogenic parasites, causing high mortality in chickens. Although its genome sequence has been published, the sequences and complete structures of its mRNA transcripts remain unclear, limiting exploration of novel biomarkers, drug targets and genetic functions in E. necatrix. Methods Second-generation merozoites (MZ-2) of E. necatrix were collected using Percoll density gradients, and high-quality RNA was extracted from them. Single-molecule real-time (SMRT) sequencing and Illumina sequencing were combined to generate the transcripts of MZ-2. Combined with the SMRT sequencing data of sporozoites (SZ) collected in our previous study, the transcriptome and transcript structures of E. necatrix were studied. Results SMRT sequencing yielded 21,923 consensus isoforms in MZ-2. A total of 17,151 novel isoforms of known genes and 3918 isoforms of novel genes were successfully identified. We also identified 2752 (SZ) and 3255 (MZ-2) alternative splicing (AS) events, 1705 (SZ) and 1874 (MZ-2) genes with alternative polyadenylation (APA) sites, 4019 (SZ) and 2588 (MZ-2) fusion transcripts, 159 (SZ) and 84 (MZ-2) putative transcription factors (TFs) and 3581 (SZ) and 2039 (MZ-2) long non-coding RNAs (lncRNAs). To validate fusion transcripts, reverse transcription-PCR was performed on 16 candidates, with an accuracy reaching up to 87.5%. Sanger sequencing of the PCR products further confirmed the authenticity of chimeric transcripts. Comparative analysis of transcript structures revealed a total of 3710 consensus isoforms, 815 AS events, 1139 genes with APA sites, 20 putative TFs and 352 lncRNAs in both SZ and MZ-2. Conclusions We obtained many long-read isoforms in E. necatrix SZ and MZ-2, from which a series of lncRNAs, AS events, APA events and fusion transcripts were identified. Information on TFs will improve understanding of transcriptional regulation, and fusion event data will greatly improve draft versions of gene models in E. necatrix. This information offers insights into the mechanisms governing the development of E. necatrix and will aid in the development of novel strategies for coccidiosis control. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05015-7.
Collapse
Affiliation(s)
- Yang Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Zeyang Suding
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Lele Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Shijie Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Junjie Hu
- Biology Department, Yunnan University, Kunming, 650500, China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
14
|
Gao Y, Suding Z, Wang L, Liu D, Su S, Xu J, Hu J, Tao J. Full-length transcriptome sequence analysis of Eimeria necatrix unsporulated oocysts and sporozoites identifies genes involved in cellular invasion. Vet Parasitol 2021; 296:109480. [PMID: 34120030 DOI: 10.1016/j.vetpar.2021.109480] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 12/23/2022]
Abstract
Eimeria necatrix is one of the most pathogenic chicken coccidia and causes avian coccidiosis, an enteric disease of major economic importance worldwide. Eimeria parasites have complex developmental life cycles, with an exogenous phase in the environment and an endogenous phase in the chicken intestine. Oocysts excreted by chickens rapidly undergo meiosis and cell division to form eight haploid sporozoites (SZ). SZ liberated from sporocysts in the chicken intestine migrate to their preferred site of development to initiate cellular invasion. To date, almost nothing is known about the proteins that mediate parasite invasion in E. necatrix. In order to discover genes with functions involved in cellular invasion, the transcriptome profiles of E. necatrix unsporulated oocysts (UO) and SZ were analyzed using a combination of third-generation single-molecule real-time sequencing (TGS) and second-generation sequencing (SGS) followed by qRT-PCR validation. Correction of TGS long reads by SGS short reads resulted in 34,932 (UO) and 23,040 (SZ) consensus isoforms. After subsequent assembly, a total of 4949 and 4254 genes were identified from UO and SZ libraries, respectively. A total of 8376 genes were identified as differentially expressed genes (DEGs) between SZ and UO. Compared to UO, 4057 genes were upregulated and 4319 genes were downregulated in SZ. Approximately 1399 and 1758 genes were defined as stage-specific genes in SZ and UO, respectively. Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that 2978 upregulated SZ genes were clustered into 29 GO terms, and 857 upregulated SZ genes were associated with 26 KEGG pathways. We also predicted a further 50 upregulated SZ genes and 73 upregulated UO genes encoding microneme proteins, apical membrane antigens, rhoptry neck proteins, rhoptry proteins, dense granule proteins, heat shock proteins, calcium-dependent protein kinases, cyclin-dependent kinases, cGMP-dependent protein kinase, and glycosylphosphatidylinositol-anchored surface antigens. Our data reveal new features of the E. necatrix transcriptional landscape and provide resources for the development of novel vaccine candidates against E. necatrix infection.
Collapse
Affiliation(s)
- Yang Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| | - Zeyang Suding
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| | - Lele Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| | - Shijie Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| | - Junjie Hu
- Biology Department, Yunnan University, Kunming, 650500, China.
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
15
|
Transcriptome Analysis Reveals the Genes Involved in Growth and Metabolism in Muscovy Ducks. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6648435. [PMID: 33959661 PMCID: PMC8077732 DOI: 10.1155/2021/6648435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022]
Abstract
Muscovy ducks are among the best meat ducks in the world. The objective of this study was to identify genes related to growth metabolism through transcriptome analysis of the ileal tissue of Muscovy ducks. Duck ileum samples with the highest (H group, n = 5) and lowest (L group, n = 5) body weight were selected from two hundred 70-day-old Muscovy ducks for transcriptome analysis by RNA sequencing. In the screening of differentially expressed genes (DEGs) between the H and L groups, a total of 602 DEGs with a fold change no less than 2 were identified, among which 285 were upregulated and 317 were downregulated. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that glutathione metabolism, pyrimidine metabolism, and protein digestion and absorption processes played a vital role in regulating growth and metabolism. The results showed that 7 genes related to growth and metabolism, namely, ANPEP, ENPEP, UPP1, SLC2A2, SLC6A19, NME4, and LOC106034733, were significantly expressed in group H, which was consistent with the phenotype results. The validation of these 7 genes using real-time quantitative PCR results indicated that the expression level of ENPEP was significantly different between the H and L groups (P < 0.05). This study provides a theoretical basis for exploring the influence of the ileum on growth and metabolism in ducks.
Collapse
|
16
|
Wang Y, Feng Z, Yang M, Zeng L, Qi B, Yin S, Li B, Li Y, Fu Z, Shu L, Fu C, Qin P, Meng Y, Li X, Yang Y, Tang J, Yang X. Discovery of a novel short peptide with efficacy in accelerating the healing of skin wounds. Pharmacol Res 2020; 163:105296. [PMID: 33220421 DOI: 10.1016/j.phrs.2020.105296] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022]
Abstract
Despite extensive efforts to develop efficacious therapeutic approaches, the treatment of skin wounds remains a considerable clinical challenge. Existing remedies cannot sufficiently meet current needs, so the discovery of novel pro-healing agents is of growing importance. In the current research, we identified a novel short peptide (named RL-QN15, primary sequence 'QNSYADLWCQFHYMC') from Rana limnocharis skin secretions, which accelerated wound healing in mice. Exploration of the underlying mechanisms showed that RL-QN15 activated the MAPK and Smad signaling pathways, and selectively modulated the secretion of cytokines from macrophages. This resulted in the proliferation and migration of skin cells and dynamic regulation of TGF-β1 and TGF-β3 in wounds, which accelerated re-epithelialization and granulation tissue formation and thus skin regeneration. Moreover, RL-QN15 showed significant therapeutic potency against chronic wounds, skin fibrosis, and oral ulcers. Our results highlight frog skin secretions as a potential treasure trove of bioactive peptides with healing activity. The novel peptide (RL-QN15) identified in this research shows considerable capacity as a candidate for the development of novel pro-healing agents.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, Yunnan, 650504, China
| | - Zhuo Feng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Meifeng Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Lin Zeng
- Public Technical Service Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Bu'er Qi
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Saige Yin
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Bangsheng Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yilin Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zhe Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Longjun Shu
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, Yunnan, 650504, China
| | - Chen Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Pan Qin
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yi Meng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Xiaojie Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ying Yang
- Department of Endocrinology and Metabolism, Second People's Hospital of Yunnan Province & Fourth Affiliated Hospital of Kunming Medical University, Kunming, 650021, Yunnan, 650223, China
| | - Jing Tang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
17
|
Zhou BH, Ding HY, Yang JY, Chai J, Guo HW, Wang HW. Effects of diclazuril on the expression of enolase in second-generation merozoites of Eimeria tenella. Poult Sci 2020; 99:6402-6409. [PMID: 33248555 PMCID: PMC7705050 DOI: 10.1016/j.psj.2020.09.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 01/25/2023] Open
Abstract
Eimeria tenella is an obligate intracellular parasite of the chicken cecum; it brings huge economic loss to the chicken industry. Enolase is a multifunctional glycolytic enzyme involved in many processes of parasites, such as infection and migration. In this study, the effect of diclazuril on the expression of enolase in second-generation merozoites of E. tenella (EtENO) was reported. The prokaryotic expression plasmid pET-28a-EtENO was constructed and transformed into Escherichia coli BL21 (DE3). Then, it was subjected to expression under the induction of isopropyl-β-D-1-thiogalactopyranoside. The expressed products were identified and purified. The purified EtENO protein was used for antibody preparation. The EtENO mRNA and protein expression levels were analyzed via real-time PCR and Western blotting. Localization of EtENO on the merozoites was examined by immunofluorescence technique. The mRNA and protein expression levels of EtENO were decreased by 36.3 and 40.36%, respectively, by diclazuril treatment. EtENO distributed in the surface, cytoplasm, and nucleus of the infected/control group. With diclazuril treatment, it was significantly reduced in the surface and cytoplasm and even disappeared in the nucleus of the infected/diclazuril group. These observations suggested that EtENO may play an important role in mechanism of diclazuril anticoccidial action and be a potential drug target for the intervention with E. tenella infection.
Collapse
Affiliation(s)
- Bian-Hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, People's Republic of China.
| | - Hai-Yan Ding
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, People's Republic of China
| | - Jing-Yun Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, People's Republic of China
| | - Jun Chai
- School of Information Technology and Urban Construction, Luoyang Polytechnic, Luoyang 471934, Henan, People's Republic of China
| | - Hong-Wei Guo
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, Henan, People's Republic of China
| | - Hong-Wei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, People's Republic of China
| |
Collapse
|
18
|
Wang XH, Yu HL, Zou WB, Mi CH, Dai GJ, Zhang T, Zhang GX, Xie KZ, Wang JY. Study of the Relationship between Polymorphisms in the IL-8 Gene Promoter Region and Coccidiosis Resistance Index in Jinghai Yellow Chickens. Genes (Basel) 2020; 11:genes11050476. [PMID: 32349370 PMCID: PMC7291339 DOI: 10.3390/genes11050476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 11/16/2022] Open
Abstract
Interleukin 8 (IL-8) participates in the immune response and has the function of inducing neutrophils to release lysosomal enzymes and eliminate pathogens. This study was to investigate the effect of single nucleotide mutations in the IL-8 gene promoter region on the coccidiosis resistance index. In this study, 180 infected Eimeria tenella (E. tenella) Jinghai yellow chickens were used as experimental samples. DNA sequencing technology was used to detect single nucleotide polymorphisms (SNPs) in the IL-8 gene promoter region. The association between these SNPs and coccidiosis resistance indexes (including superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-PX), catalase (CAT), nitric oxide (NO), interleukin-1β (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6), IL-8, and interferon-γ (IFN-γ)) were analyzed. Three SNPs (T-550C, G-398T, and T-360C) were detected. Significant associations were found between each genotype at the T-550C site with NO (p-value = 0.006) and IL-8 (p-value = 0.034) indexes. Significant associations were found between each genotype at the G-398T site with SOD (p-value = 0.042), CAT (p-value = 0.049), NO (p-value = 0.008), and IL-2 (p-value = 0.044) indexes. Significant associations were found between each genotype at the T-360C site with SOD (p-value = 0.007), NO (p-value = 0.046), IL-2 (p-value = 0.041), IL-8 (p-value = 0.039), and IFN-γ (p-value = 0.042) indexes. Haplotype analysis showed that multiple indexes of the H1H3 haplotype combination were significantly higher than other haplotype combinations. Therefore, mutation of the IL-8 gene promoter region has a significant regulatory effect on the coccidiosis resistance index, with a change in transcription factor binding potentially altering IL-8 gene expression, thereby further affecting the IL-8 level in plasma. However, the specific mechanism needs further study.
Collapse
Affiliation(s)
- Xiao-Hui Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; (X.-H.W.); (H.-L.Y.); (W.-B.Z.); (C.-H.M.); (T.Z.); (G.-X.Z.); (K.-Z.X.); (J.-Y.W.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, Jiangsu 225009, China
| | - Hai-Liang Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; (X.-H.W.); (H.-L.Y.); (W.-B.Z.); (C.-H.M.); (T.Z.); (G.-X.Z.); (K.-Z.X.); (J.-Y.W.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, Jiangsu 225009, China
| | - Wen-Bin Zou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; (X.-H.W.); (H.-L.Y.); (W.-B.Z.); (C.-H.M.); (T.Z.); (G.-X.Z.); (K.-Z.X.); (J.-Y.W.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, Jiangsu 225009, China
| | - Chang-Hao Mi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; (X.-H.W.); (H.-L.Y.); (W.-B.Z.); (C.-H.M.); (T.Z.); (G.-X.Z.); (K.-Z.X.); (J.-Y.W.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, Jiangsu 225009, China
| | - Guo-Jun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; (X.-H.W.); (H.-L.Y.); (W.-B.Z.); (C.-H.M.); (T.Z.); (G.-X.Z.); (K.-Z.X.); (J.-Y.W.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, Jiangsu 225009, China
- Correspondence: ; Tel.: +86-139-5275-0903
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; (X.-H.W.); (H.-L.Y.); (W.-B.Z.); (C.-H.M.); (T.Z.); (G.-X.Z.); (K.-Z.X.); (J.-Y.W.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, Jiangsu 225009, China
| | - Gen-Xi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; (X.-H.W.); (H.-L.Y.); (W.-B.Z.); (C.-H.M.); (T.Z.); (G.-X.Z.); (K.-Z.X.); (J.-Y.W.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, Jiangsu 225009, China
| | - Kai-Zhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; (X.-H.W.); (H.-L.Y.); (W.-B.Z.); (C.-H.M.); (T.Z.); (G.-X.Z.); (K.-Z.X.); (J.-Y.W.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, Jiangsu 225009, China
| | - Jin-Yu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; (X.-H.W.); (H.-L.Y.); (W.-B.Z.); (C.-H.M.); (T.Z.); (G.-X.Z.); (K.-Z.X.); (J.-Y.W.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
19
|
Yu H, Zou W, Wang X, Dai G, Zhang T, Zhang G, Xie K, Wang J, Shi H. Research Note: Correlation analysis of interleukin-6, interleukin-8, and C-C motif chemokine ligand 2 gene expression in chicken spleen and cecal tissues after Eimeria tenella infection in vivo. Poult Sci 2019; 99:1326-1331. [PMID: 32115023 PMCID: PMC7587758 DOI: 10.1016/j.psj.2019.10.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 12/27/2022] Open
Abstract
IL-6, IL-8, and C-C motif chemokine ligand 2 (CCLi2) are important factors in inflammatory and immune responses. To investigate their relationships in the spleen and cecum and between coccidiosis-infected and uninfected states, we performed quantitative real-time PCR to compare the relative expression difference of IL-6, IL-8, and CCLi2 in the same tissues between the infection and control groups. In addition, the correlations of the relative expression levels of these 3 genes were determined in the same and different tissues within the same group. The results showed that the expression levels of IL-6, IL-8, and CCLi2 in the spleen and cecum of the infected group were all higher than those of the uninfected group (P < 0.05). The correlation coefficients among the IL-6, IL-8, and CCLi2 expression levels in the spleen or cecum were all positive in both the infection and control groups. In the spleen tissues, CCLi2 expression was strongly correlated with IL-6 and IL-8 in the uninfected group (P < 0.01), and the correlation coefficients reached 0.853 (R2 = 0.728) and 0.996 (R2 = 0.992), respectively. The expression of CCLi2 was also strongly correlated with IL-8 (R reached 0.890, R2 = 0.792) in the infected group. In the cecal tissues, the expression levels of the 3 genes were all extremely significantly correlated in the uninfected group (P < 0.01), and the correlation coefficients ranged from 0.498 to 0.765, indicating moderate correlations. The expression of IL-6 was extremely significantly positively correlated with IL-8 and CCLi2 in the infected group (P < 0.01), with moderate correlations (R ranged from 0.469–0.639). In addition, the expression levels of the 3 genes were not significantly correlated (P > 0.05) between the spleen and cecum tissues in either the infection group or the control group. These results indicate that IL-6, IL-8, and CCLi2 were correlated and play an important role in coccidiosis infection of Jinghai yellow chicken. Our data also provide a basis for further exploring the role of these 3 genes in genetic breeding for coccidiosis resistance.
Collapse
Affiliation(s)
- Hailiang Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction and Molecular Design of Jangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wenbin Zou
- Key Laboratory of Animal Genetics, Breeding and Reproduction and Molecular Design of Jangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaohui Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction and Molecular Design of Jangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guojun Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction and Molecular Design of Jangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Tao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction and Molecular Design of Jangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Genxi Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction and Molecular Design of Jangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kaizhou Xie
- Key Laboratory of Animal Genetics, Breeding and Reproduction and Molecular Design of Jangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jinyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction and Molecular Design of Jangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Huiqiang Shi
- Jiangsu Jinghai Poultry Group Co., Ltd., Haimen 226100, China
| |
Collapse
|
20
|
Yu H, Zou W, Xin S, Wang X, Mi C, Dai G, Zhang T, Zhang G, Xie K, Wang J, Qiu C. Association Analysis of Single Nucleotide Polymorphisms in the 5' Regulatory Region of the IL-6 Gene with Eimeria tenella Resistance in Jinghai Yellow Chickens. Genes (Basel) 2019; 10:genes10110890. [PMID: 31694169 PMCID: PMC6896108 DOI: 10.3390/genes10110890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 01/06/2023] Open
Abstract
Interleukin 6 (IL-6) is an immunoregulatory cytokine involved in various inflammatory and immune responses. To investigate the effects of single nucleotide polymorphisms (SNPs) and haplotypes of IL-6 on resistance to Eimeria tenella (E. tenella), SNPs in the 5' regulatory region of IL-6 were detected with direct sequencing, and the effects of SNPs and haplotypes on resistance to E. tenella were analyzed by the least square model in Jinghai yellow chickens. Nineteen SNPs were identified in the 5' regulation region of IL-6, among which three SNPs were newly discovered. The SNP association analysis results showed that nine of the SNPs were significantly associated with E. tenella resistance indexes; the A-483G locus was significantly associated with the GSH-Px, IL-2, and IL-17 indexes (p < 0.05); the C-447G locus was significantly associated with the SOD, GSH-Px, IL-17, and IL-2 indexes (p < 0.05); and the G-357A locus had significant effects on the CAT and IL-16 indexes (p < 0.05). Haplotype analysis showed that H2H3 and H2H5 were favorable haplotype combinations with good coccidium resistance. Furthermore, we used qRT-PCR and observed that the expression of IL-6 in the infection group was higher than that in the control group in the liver, proventriculus, small intestine, thymus, kidney, and bursa of Fabricius and extremely significantly different than that in the cecum especially (p < 0.01). In summary, SNPs and haplotypes in the 5' regulatory region of IL-6 have important effects on E. tenella resistance, and the results will provide a reference for molecular marker selection of E. tenella resistance in Jinghai yellow chickens.
Collapse
Affiliation(s)
- Hailiang Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.Y.); (W.Z.); (S.X.); (X.W.); (C.M.); (T.Z.); (G.Z.); (K.X.); (J.W.)
| | - Wenbin Zou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.Y.); (W.Z.); (S.X.); (X.W.); (C.M.); (T.Z.); (G.Z.); (K.X.); (J.W.)
| | - Shijie Xin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.Y.); (W.Z.); (S.X.); (X.W.); (C.M.); (T.Z.); (G.Z.); (K.X.); (J.W.)
| | - Xiaohui Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.Y.); (W.Z.); (S.X.); (X.W.); (C.M.); (T.Z.); (G.Z.); (K.X.); (J.W.)
| | - Changhao Mi
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.Y.); (W.Z.); (S.X.); (X.W.); (C.M.); (T.Z.); (G.Z.); (K.X.); (J.W.)
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.Y.); (W.Z.); (S.X.); (X.W.); (C.M.); (T.Z.); (G.Z.); (K.X.); (J.W.)
- Correspondence: ; Tel.: +86-139-5275-0903
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.Y.); (W.Z.); (S.X.); (X.W.); (C.M.); (T.Z.); (G.Z.); (K.X.); (J.W.)
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.Y.); (W.Z.); (S.X.); (X.W.); (C.M.); (T.Z.); (G.Z.); (K.X.); (J.W.)
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.Y.); (W.Z.); (S.X.); (X.W.); (C.M.); (T.Z.); (G.Z.); (K.X.); (J.W.)
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.Y.); (W.Z.); (S.X.); (X.W.); (C.M.); (T.Z.); (G.Z.); (K.X.); (J.W.)
| | - Cong Qiu
- Jiangsu Jinghai Poultry Group Co., Ltd., Haimen 226100, China;
| |
Collapse
|