1
|
Lu J, Liu Y, Li H. Identification of key lncRNAs and mRNAs in muscle development pathways of Tan sheep. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101336. [PMID: 39378789 DOI: 10.1016/j.cbd.2024.101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
The study aimed to identify the long noncoding RNA (lncRNA) responsible for regulating muscle development in Tan sheep. RNA-seq analysis was conducted on longissimus dorsi samples from 1-day-old and 60-day-old Tan sheep to investigate the molecular processes involved in muscle development. A total of 5517 lncRNAs and 2885 mRNAs were found to be differentially expressed in the 60-day-old Tan sheep. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that these differentially expressed lncRNAs and mRNAs were linked to pathways crucial for muscle development, such as MAPK, cAMP, and calcium-mediated signaling pathways. Key genes like CDKN1A, MAPK14, TGFB1, MEF2C, MYOD1, and CD53 were identified as significant players in muscle development. The study validated the RNA-seq results through RT-qPCR, confirming the consistency of expression levels of differentially expressed lncRNAs and mRNAs. These findings indicate that lncRNA-mRNA networks produce a remarked effect on modulating muscle development in Tan sheep, such as lncRNAs (MSTRG.12808.1/MSTRG.22662.3/MSTRG.18310.1) and mRNAs (MSTRG.10027/MSTRG.10029/MSTRG.10258/MSTRG.11011/MSTRG.10354), laying the groundwork for future research in this area.
Collapse
Affiliation(s)
- Jiawei Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yilan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huixia Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Zhao D, Liu R, Tan X, Kang H, Wang J, Ma Z, Zhao H, Xiang H, Zhang Z, Li H, Zhao G. Large-scale transcriptomic and genomic analyses reveal a novel functional gene SERPINB6 for chicken carcass traits. J Anim Sci Biotechnol 2024; 15:70. [PMID: 38730308 DOI: 10.1186/s40104-024-01026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/18/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Carcass traits are crucial indicators of meat production efficiency. However, the molecular regulatory mechanisms associated with these traits remain unclear. RESULTS In this study, we conducted comprehensive transcriptomic and genomic analyses on 399 Tiannong partridge chickens to identify key genes and variants associated with carcass traits and to elucidate the underlying regulatory mechanisms. Based on association analyses with the elastic net (EN) model, we identified 12 candidate genes (AMY1A, AP3B2, CEBPG, EEF2, EIF4EBP1, FGFR1, FOXD3, GOLM1, LOC107052698, PABPC1, SERPINB6 and TBC1D16) for 4 carcass-related traits, namely live weight, dressed weight, eviscerated weight, and breast muscle weight. SERPINB6 was identified as the only overlapping gene by 3 analyses, EN model analysis, weighted gene co-expression network analysis and differential expression analysis. Cell-level experiments confirmed that SERPINB6 promotes the proliferation of chicken DF1 cells and primary myoblasts. Further expression genome-wide association study and association analysis indicated that rs317934171 is the critical site that enhances SERPINB6 expression. Furthermore, a dual-luciferase reporter assay proved that gga-miR-1615 targets the 3'UTR of SERPINB6. CONCLUSIONS Collectively, our findings reveal that SERPINB6 serves as a novel gene for chicken carcass traits by promoting fibroblast and myoblast proliferation. Additionally, the downstream variant rs317934171 regulates SERPINB6 expression. These results identify a new target gene and molecular marker for the molecular mechanisms of chicken carcass traits.
Collapse
Affiliation(s)
- Di Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ranran Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaodong Tan
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huimin Kang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jie Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zheng Ma
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Haiquan Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hai Xiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zhengfen Zhang
- Guangdong Tinoo's Foods Group Co., Ltd., Qingyuan, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China.
- Guangdong Tinoo's Foods Group Co., Ltd., Qingyuan, China.
| | - Guiping Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China.
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
3
|
Vasilopoulos S, Giannenas I, Mellidou I, Stylianaki I, Antonopoulou E, Tzora A, Skoufos I, Athanassiou CG, Papadopoulos E, Fortomaris P. Diet replacement with whole insect larvae affects intestinal morphology and microbiota of broiler chickens. Sci Rep 2024; 14:6836. [PMID: 38514719 PMCID: PMC10957974 DOI: 10.1038/s41598-024-54184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/09/2024] [Indexed: 03/23/2024] Open
Abstract
Insect-based diets are gaining interest as potential ingredients in improving poultry gut health. This study assessed the dietary treatment with whole dried Tenebrio molitor larvae (TM) on broiler chickens' gut microbiota and morphology. 120 Ross-308 broilers received treated diets with 5% (TM5) and 10% (TM10) replacement ratio in a 35-day trial. Intestinal histomorphometry was assessed, as well as claudin-3 expression pattern and ileal and caecal digesta for microbial community diversity. Null hypothesis was tested with two-way ANOVA considering the intestinal segment and diet as main factors. The TM5 group presented higher villi in the duodenum and ileum compared to the other two (P < 0.001), while treated groups showed shallower crypts in the duodenum (P < 0.001) and deeper in the jejunum and ileum than the control (P < 0.001). Treatments increased the caecal Firmicutes/Bacteroidetes ratio and led to significant changes at the genus level. While Lactobacilli survived in the caecum, a significant reduction was evident in the ileum of both groups, mainly owed to L. aviarius. Staphylococci and Methanobrevibacter significantly increased in the ileum of the TM5 group. Results suggest that dietary supplementation with whole dried TM larvae has no adverse effect on the intestinal epithelium formation and positively affects bacterial population richness and diversity.
Collapse
Affiliation(s)
- Stylianos Vasilopoulos
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloníki, Greece.
| | - Ilias Giannenas
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloníki, Greece
| | - Ifigeneia Mellidou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-DIMITRA, 57001, Thessaloníki, Greece
| | - Ioanna Stylianaki
- Laboratory of Pathology, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloníki, Greece
| | - Efthimia Antonopoulou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloníki, Greece
| | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100, Arta, Greece
| | - Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, School of Agriculture, University of Ioannina, 47100, Arta, Greece
| | - Christos G Athanassiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou Str., 38446, N. Ionia, Volos, Greece
| | - Elias Papadopoulos
- Laboratory of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloníki, Greece
| | - Paschalis Fortomaris
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloníki, Greece
| |
Collapse
|
4
|
Li Q, Li J, Li C, Wu X, Si S, Yang P, Li W, Han R, Li G, Liu X, Kang X, Tian Y. Transcriptome identification and characterization of long non-coding RNAs in the ovary of hens at four stages. Anim Biotechnol 2023; 34:1342-1353. [PMID: 35209802 DOI: 10.1080/10495398.2021.2024217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Long non-coding RNAs (lncRNAs) play important roles in transcriptional and post-transcriptional regulation. LncRNAs, which are defined as non-coding RNAs more than 200 bp in length, are involved in key biological processes, such as cell proliferation and differentiation, epigenetic regulation, and gene transcriptional translation. Recent studies have shown that lncRNAs also play major regulatory roles in the reproduction of mammals. However, knowledge of the roles of lncRNAs in the chicken ovary lacking. In this study, we performed RNA-seq analyses of ovarian tissue from Hy-Line brown laying hens at four physiological stages [15, 20, 30, and 68 weeks of age (W)]. We identified 657 lncRNA transcripts that were differentially expressed during ovarian development, the number of down-regulated lncRNAs was higher than the number of up-regulated lncRNAs during development. We predicted the cis and trans target genes of the DE lncRNAs and constructed a lncRNA-mRNA interaction network, which indicated that the DE genes (DEGs) and the target genes of the DE lncRNAs are mainly involved in signaling pathways associated with ovarian development, including oocyte meiosis, calcium signaling pathways, ECM-receptor interactions, and ribosome and focal adhesion. Overall, we found that twelve lncRNAs were strongly involved in ovarian development: LNC_013443, LNC_001029, LNC_005713, LNC_016762, ENSGALT00000101857, LNC_003913, LNC_013692, LNC_012219, LNC_004140, ENSGALT00000096941, LNC_009356, and ENSGALT00000098716. In summary, our study utilized RNA-seq analysis of hen ovaries to explore key lncRNAs involved in ovarian development and function. Furthermore, the comprehensive analysis identified the target genes of these lncRNAs providing a better understanding of the mechanisms underlying ovarian development in hens and a theoretical basis for further research.
Collapse
Affiliation(s)
- Qi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Jing Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Chong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xing Wu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Sujin Si
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Pengkun Yang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China
| |
Collapse
|
5
|
Li F, Zhu C, Luo Y, Li S, Wang Q, Han Y, Wu Z, Li X, Liang Y, Chen Y, Shen X, Huang Y, Tian Y, Zhang X. Transcriptomic Analysis on Pectoral Muscle of European Meat Pigeons and Shiqi Pigeons during Embryonic Development. Animals (Basel) 2023; 13:3267. [PMID: 37893991 PMCID: PMC10603743 DOI: 10.3390/ani13203267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
In avian muscle development, embryonic muscle development determines the number of myofibers after birth. Therefore, in this study, we investigated the phenotypic differences and the molecular mechanism of pectoral muscle development of the European meat pigeon Mimas strain (later called European meat pigeon) and Shiqi pigeon on embryonic day 6 (E6), day 10 (E10), day 14 (E14) and day 1 after birth (P1). The results showed that the myofiber density of the Shiqi pigeon was significantly higher than that of the European meat pigeon on E6, and myofibers with a diameter in the range of 50~100 μm of the Shiqi pigeon on P1 were significantly higher than those of European meat pigeon. A total of 204 differential expressed genes (DEGs) were obtained from RNA-seq analysis in comparison between pigeon breeds at the same stage. DEGs related to muscle development were found to significantly enrich the cellular amino acid catabolism, carboxylic acid catabolism, extracellular matrix receptor interaction, REDOX enzyme activity, calcium signaling pathway, ECM receptor interaction, PPAR signaling pathway and other pathways. Using Cytoscape software to create mutual mapping, we identified 33 candidate genes. RT-qPCR was performed to verify the 8 DEGs selected-DES, MYOD, MYF6, PTGS1, MYF5, MYH1, MSTN and PPARG-and the results were consistent with RNA-seq. This study provides basic data for revealing the distinct embryonic development mechanism of pectoral muscle between European meat pigeons and Shiqi pigeons.
Collapse
Affiliation(s)
- Fada Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510225, China; (F.L.); (C.Z.); (Y.L.); (S.L.); (Q.W.); (Y.H.); (Z.W.); (X.L.); (Y.L.); (Y.C.); (X.S.); (Y.H.)
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Chenyu Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510225, China; (F.L.); (C.Z.); (Y.L.); (S.L.); (Q.W.); (Y.H.); (Z.W.); (X.L.); (Y.L.); (Y.C.); (X.S.); (Y.H.)
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yongquan Luo
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510225, China; (F.L.); (C.Z.); (Y.L.); (S.L.); (Q.W.); (Y.H.); (Z.W.); (X.L.); (Y.L.); (Y.C.); (X.S.); (Y.H.)
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Songchao Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510225, China; (F.L.); (C.Z.); (Y.L.); (S.L.); (Q.W.); (Y.H.); (Z.W.); (X.L.); (Y.L.); (Y.C.); (X.S.); (Y.H.)
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qi Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510225, China; (F.L.); (C.Z.); (Y.L.); (S.L.); (Q.W.); (Y.H.); (Z.W.); (X.L.); (Y.L.); (Y.C.); (X.S.); (Y.H.)
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yuanhao Han
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510225, China; (F.L.); (C.Z.); (Y.L.); (S.L.); (Q.W.); (Y.H.); (Z.W.); (X.L.); (Y.L.); (Y.C.); (X.S.); (Y.H.)
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhongping Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510225, China; (F.L.); (C.Z.); (Y.L.); (S.L.); (Q.W.); (Y.H.); (Z.W.); (X.L.); (Y.L.); (Y.C.); (X.S.); (Y.H.)
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiujin Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510225, China; (F.L.); (C.Z.); (Y.L.); (S.L.); (Q.W.); (Y.H.); (Z.W.); (X.L.); (Y.L.); (Y.C.); (X.S.); (Y.H.)
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yayan Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510225, China; (F.L.); (C.Z.); (Y.L.); (S.L.); (Q.W.); (Y.H.); (Z.W.); (X.L.); (Y.L.); (Y.C.); (X.S.); (Y.H.)
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yitian Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510225, China; (F.L.); (C.Z.); (Y.L.); (S.L.); (Q.W.); (Y.H.); (Z.W.); (X.L.); (Y.L.); (Y.C.); (X.S.); (Y.H.)
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xu Shen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510225, China; (F.L.); (C.Z.); (Y.L.); (S.L.); (Q.W.); (Y.H.); (Z.W.); (X.L.); (Y.L.); (Y.C.); (X.S.); (Y.H.)
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yunmao Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510225, China; (F.L.); (C.Z.); (Y.L.); (S.L.); (Q.W.); (Y.H.); (Z.W.); (X.L.); (Y.L.); (Y.C.); (X.S.); (Y.H.)
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yunbo Tian
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510225, China; (F.L.); (C.Z.); (Y.L.); (S.L.); (Q.W.); (Y.H.); (Z.W.); (X.L.); (Y.L.); (Y.C.); (X.S.); (Y.H.)
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xumeng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510225, China; (F.L.); (C.Z.); (Y.L.); (S.L.); (Q.W.); (Y.H.); (Z.W.); (X.L.); (Y.L.); (Y.C.); (X.S.); (Y.H.)
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
6
|
Iqbal MA, Hadlich F, Reyer H, Oster M, Trakooljul N, Murani E, Perdomo‐Sabogal A, Wimmers K, Ponsuksili S. RNA-Seq-based discovery of genetic variants and allele-specific expression of two layer lines and broiler chicken. Evol Appl 2023; 16:1135-1153. [PMID: 37360029 PMCID: PMC10286233 DOI: 10.1111/eva.13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 06/28/2023] Open
Abstract
Recent advances in the selective breeding of broilers and layers have made poultry production one of the fastest-growing industries. In this study, a transcriptome variant calling approach from RNA-seq data was used to determine population diversity between broilers and layers. In total, 200 individuals were analyzed from three different chicken populations (Lohmann Brown (LB), n = 90), Lohmann Selected Leghorn (LSL, n = 89), and Broiler (BR, n = 21). The raw RNA-sequencing reads were pre-processed, quality control checked, mapped to the reference genome, and made compatible with Genome Analysis ToolKit for variant detection. Subsequently, pairwise fixation index (F ST) analysis was performed between broilers and layers. Numerous candidate genes were identified, that were associated with growth, development, metabolism, immunity, and other economically significant traits. Finally, allele-specific expression (ASE) analysis was performed in the gut mucosa of LB and LSL strains at 10, 16, 24, 30, and 60 weeks of age. At different ages, the two-layer strains showed significantly different allele-specific expressions in the gut mucosa, and changes in allelic imbalance were observed across the entire lifespan. Most ASE genes are involved in energy metabolism, including sirtuin signaling pathways, oxidative phosphorylation, and mitochondrial dysfunction. A high number of ASE genes were found during the peak of laying, which were particularly enriched in cholesterol biosynthesis. These findings indicate that genetic architecture as well as biological processes driving particular demands relate to metabolic and nutritional requirements during the laying period shape allelic heterogeneity. These processes are considerably affected by breeding and management, whereby elucidating allele-specific gene regulation is an essential step towards deciphering the genotype to phenotype map or functional diversity between the chicken populations. Additionally, we observed that several genes showing significant allelic imbalance also colocalized with the top 1% of genes identified by the FST approach, suggesting a fixation of genes in cis-regulatory elements.
Collapse
Affiliation(s)
| | - Frieder Hadlich
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
| | - Henry Reyer
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
| | - Michael Oster
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
| | - Nares Trakooljul
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
| | - Eduard Murani
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
| | | | - Klaus Wimmers
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
- Faculty of Agricultural and Environmental SciencesUniversity RostockRostockGermany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal BiologyInstitute of Genome BiologyDummerstorfGermany
| |
Collapse
|
7
|
Cai C, Zhang L, Liu X, Li J, Ma Y, Jiang R, Li Z, Li G, Tian Y, Kang X, Han R. Carcass composition, meat quality, leg muscle status, and its mRNA expression profile in broilers affected by valgus-varus deformity. Poult Sci 2023; 102:102682. [PMID: 37120872 PMCID: PMC10172705 DOI: 10.1016/j.psj.2023.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 04/08/2023] Open
Abstract
Valgus-varus deformity (VVD) is a common leg disease in commercial broilers, which seriously affects animal welfare and causes economic losses. Up to now, most of the studies on VVD have been on skeleton, whereas there are fewer studies on VVD muscle. In this study, carcass composition and meat quality of 35-day-old normal and VVD Cobb broilers assess the effect of VVD on broiler growth. Molecular biology, morphology, and RNA sequencing (RNA-seq) were used to study the difference between normal and VVD gastrocnemius muscle. In comparison with the normal broilers, the breast muscle and leg muscle of the VVD broilers had lower shear force, notably lower crude protein, lower water content, cooking loss, and deeper meat color (P < 0.05). The morphological results showed that the weight of skeletal muscle was significantly higher in the normal broilers than that in the VVD broilers (P < 0.01), the diameter and area of myofibrils in the affected VVD were smaller than in the normal broilers (P < 0.01). Quantitative real-time PCR (qPCR) of gastrocnemius muscle revealed that the expression of myasthenic marker genes, fast myofiber marker genes, and apoptosis-related factors were significantly higher in the VVD broilers than in the normal broilers (P < 0.01). In total, 736 differentially expressed genes (DEGs) were identified firstly in the normal and VVD leg muscle by RNA-seq. Gene ontology (GO) enrichment indicated that these DEGs were mainly involved in the multicellular organismal process and anatomical structure development. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEGs are significantly enriched in proteasome. Protein interaction analysis obtained that DEGs with high interaction were proteasome-related coding genes and ubiquitin-related genes, these DEGs were closely associated with muscle atrophy. These show that VVD has an adverse effect on growth characteristics, slaughter characteristics, and meat quality in broilers, which may cause leg muscle atrophy. This study provides some reference values and basis for studying the pathogenesis of VVD in broilers.
Collapse
Affiliation(s)
- Chunxia Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, China
| | - Lujie Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, China
| | - Xinxin Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, China
| | - Jianzeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, China
| | - Yanchao Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, China; The Shennong Laboratory, Zhengzhou, 450002, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, China; The Shennong Laboratory, Zhengzhou, 450002, China.
| |
Collapse
|
8
|
Luo Y, Hu S, Yan P, Wu J, Guo H, Zhao L, Tang Q, Ma J, Long K, Jin L, Jiang A, Li M, Li X, Wang X. Analysis of mRNA and lncRNA Expression Profiles of Breast Muscle during Pigeon ( Columbalivia) Development. Genes (Basel) 2022; 13:genes13122314. [PMID: 36553580 PMCID: PMC9777807 DOI: 10.3390/genes13122314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The breast muscle is essential for flight and determines the meat yield and quality of the meat type in pigeons. At present, studies about long non-coding RNA (lncRNA) expression profiles in skeletal muscles across the postnatal development of pigeons have not been reported. Here, we used transcriptome sequencing to examine the White-King pigeon breast muscle at four different ages (1 day, 14 days, 28 days, and 2 years old). We identified 12,918 mRNAs and 9158 lncRNAs (5492 known lncRNAs and 3666 novel lncRNAs) in the breast muscle, and 7352 mRNAs and 4494 lncRNAs were differentially expressed in the process of development. We found that highly expressed mRNAs were mainly related to cell-basic and muscle-specific functions. Differential expression and time-series analysis showed that differentially expressed genes were primarily associated with muscle development and functions, blood vessel development, cell cycle, and energy metabolism. To further predict the possible role of lncRNAs, we also conducted the WGCNA and trans/cis analyses. We found that differentially expressed lncRNAs such as lncRNA-LOC102093252, lncRNA-G12653, lncRNA-LOC110357465, lncRNA-G14790, and lncRNA-LOC110360188 might respectively target UBE2B, Pax7, AGTR2, HDAC1, Sox8 and participate in the development of the muscle. Our study provides a valuable resource for studying the lncRNAs and mRNAs of pigeon muscles and for improving the understanding of molecular mechanisms in muscle development.
Collapse
Affiliation(s)
- Yi Luo
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Silu Hu
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Peiqi Yan
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Wu
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qianzi Tang
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Jideng Ma
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Keren Long
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Long Jin
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Anan Jiang
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhou Li
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Li
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (X.L.); (X.W.)
| | - Xun Wang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (X.L.); (X.W.)
| |
Collapse
|
9
|
MYOZ1 Gene Promotes Muscle Growth and Development in Meat Ducks. Genes (Basel) 2022; 13:genes13091574. [PMID: 36140742 PMCID: PMC9498692 DOI: 10.3390/genes13091574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 11/20/2022] Open
Abstract
To explore the effect of MYOZ1 in the muscle growth and development of meat ducks, MYOZ1 single-nucleotide polymorphism loci were screened at the DNA level in the meat duck population with highest and lowest feed conversion rates. The expression of MYOZ1 was detected using reverse-transcription quantitative polymerase chain reaction. The protein expression of MYOZ1 was detected using Western blotting at the protein level. The results showed that there was a base mutation site at 30 bp and 158 bp in the fourth exon of MYOZ1, which was mutated from C to T (exon4 C30T) and from G to A (exon4 G158A), respectively. The allele frequency of the locus was significantly different between the high and low feed conversion rate groups (p < 0.01). The relative expression of MYOZ1 mRNA in breast muscle tissue of HF ducks was significantly higher than that of LF ducks (p < 0.01). The MYOZ1 protein expression of HF ducks was significantly higher than that of LF ducks (p < 0.01). In general, MYOZ1 has a positive regulatory effect on the muscle growth and development of meat ducks. The results of this study lay a certain theoretical basis for the muscle growth and development of meat ducks.
Collapse
|
10
|
Song Y, Zhang Q, Shi J, Fu L, Cheng S. Screening of Genes Related to Growth, Development and Meat Quality of Sahan Crossbred F1 Sheep Based on RNA-Seq Technology. Front Vet Sci 2022; 9:831519. [PMID: 35464379 PMCID: PMC9021821 DOI: 10.3389/fvets.2022.831519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 12/22/2022] Open
Abstract
This study aimed to identify genes related to sheep growth, development and meat quality. Small-tailed Han sheep (STH), and small-tailed Han sheep and Suffolk crossbred F1 (STH×SFK), were selected to determine the growth performance, slaughter performance, and meat quality. The longissimus dorsi muscle was selected for transcriptome sequencing, and the target gene was screened based on bioinformatics analysis; real-time fluorescent quantitative PCR (RT-PCR) and western blotting (WB) were conducted to verify the target gene. Locations of genes in tissues were confirmed via immunofluorescence. The results showed that the pre-slaughter live weight, bust circumference, slaughter performance, and marbling score of the STH×SFK population were significantly higher than those of the STH population (P < 0.01). Sequencing results showed that 560 differentially expressed genes (DEGs) were identified in the STH×SFK population, of which 377 exhibited up-regulated and 183 exhibited down-regulated expression levels. GO annotation revealed that DEGs could be classified into 13 cell components, 10 molecular functions, and 22 biological processes. The KEGG enrichment analysis showed that DEGs were mainly enriched in the Rap1 signaling pathway, Ras signaling pathway, and other pathways related to growth and meat quality. Based on the GO and KEGG analyses, four candidate genes related to sheep growth and meat quality, namely myostain (MSTN), interferon-related developmental regulator 1 (IFRD1), peroxisome proliferator activator receptor delta (PPARD), and myosin light chain 2 (MLC2 or MYL2), were screened. The expression levels of genes and proteins were verified via RT-PCR and WB, and the results were consistent with the trend of transcriptome sequencing. Immunofluorescence results showed that IFRD1 was expressed in the cytoplasm and nucleus, and MYL2 was expressed in the cytoplasm. This study revealed the mechanism of gene regulation of sheep growth and development at the molecular level and provided a theoretical basis for studying sheep genetics and breeding.
Collapse
Affiliation(s)
- Yali Song
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Quanwei Zhang
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Jinping Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lingjuan Fu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shuru Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
11
|
Lin C, Li F, Zhang X, Zhang D, Li X, Zhang Y, Zhao Y, Song Q, Wang J, Zhou B, Cheng J, Xu D, Li W, Zhao L, Wang W. Expression and polymorphisms of CD8B gene and its associations with body weight and size traits in sheep. Anim Biotechnol 2021:1-9. [PMID: 34928779 DOI: 10.1080/10495398.2021.2016432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The growth traits are economically important traits in sheep. Improving growth rates will increase the profitability of producers. The aim of this study was to identify alleles of CD8B (encoding T-cell surface glycoprotein CD8 beta chain) that are aberrantly expressed in different tissues and to assess the effects and associations of its different genotypes on weight and size traits in sheep. Using quantitative real-time reverse transcription PCR arrays, expression profiling of CD8B was performed in various organs and tissues. CD8B was ubiquitously expressed, with very high expression in the lung, spleen, lymph, duodenum, and liver. One intronic mutation (chr3:62,718,030 (Oar_rambouillet_v1.0, same below) G > A) was identified using pooled DNA sequencing. Subsequently, the variants (AA, AG, and GG) were genotyped using the KASPar® PCR single nucleotide polymorphism (SNP) genotyping system. The results of association analysis with body weight and body size traits in 1304 sheep showed that increases in multiple phenotypic traits correlated with the AA genotype (body weight, p < 0.05; body length, p < 0.05). Thus, SNP chr3:62,718,030 G > A is a promising molecular marker for marker-assisted selection in sheep breeding.
Collapse
Affiliation(s)
- Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fadi Li
- Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin, China.,The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qizhi Song
- Linze County Animal Disease Prevention and Control Center of Gansu Province, Linze, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
12
|
Kang H, Zhao D, Xiang H, Li J, Zhao G, Li H. Large-scale transcriptome sequencing in broiler chickens to identify candidate genes for breast muscle weight and intramuscular fat content. Genet Sel Evol 2021; 53:66. [PMID: 34399688 PMCID: PMC8369645 DOI: 10.1186/s12711-021-00656-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/15/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND In broiler production, breast muscle weight and intramuscular fat (IMF) content are important economic traits. Understanding the genetic mechanisms that underlie these traits is essential to implement effective genetic improvement programs. To date, genome-wide association studies (GWAS) and gene expression analyses have been performed to identify candidate genes for these traits. However, GWAS mainly detect associations at the DNA level, while differential expression analyses usually have low power because they are typically based on small sample sizes. To detect candidate genes for breast muscle weight and IMF contents (intramuscular fat percentage and relative content of triglycerides, cholesterol, and phospholipids), we performed association analyses based on breast muscle transcriptomic data on approximately 400 Tiannong partridge chickens at slaughter age. RESULTS First, by performing an extensive simulation study, we evaluated the statistical properties of association analyses of gene expression levels and traits based on the linear mixed model (LMM) and three regularized linear regression models, i.e., least absolute shrinkage and selection operator (LASSO), ridge regression (RR), and elastic net (EN). The results show that LMM, LASSO and EN with tuning parameters that are determined based on the one standard error rule exhibited the lowest type I error rates. Using results from all three models, we detected 43 candidate genes with expression levels that were associated with breast muscle weight. In addition, candidate genes were detected for intramuscular fat percentage (1), triglyceride content (2), cholesterol content (1), and phospholipid content (1). Many of the identified genes have been demonstrated to play roles in the development and metabolism of skeletal muscle or adipocyte. Moreover, weighted gene co-expression network analyses revealed that many candidate genes were harbored by gene co-expression modules, which were also significantly correlated with the traits of interest. The results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that these modules are involved in muscle development and contraction, and in lipid metabolism. CONCLUSIONS Our study provides valuable insight into the transcriptomic bases of breast muscle weight and IMF contents in Chinese indigenous yellow broilers. Our findings could be useful for the genetic improvement of these traits in broiler chickens.
Collapse
Affiliation(s)
- Huimin Kang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes; School of Life Science and Engineering, Foshan University, #33 Guang-yun-lu, Shishan, Nanhai, Foshan, 528231, Guangdong, People's Republic of China
| | - Di Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes; School of Life Science and Engineering, Foshan University, #33 Guang-yun-lu, Shishan, Nanhai, Foshan, 528231, Guangdong, People's Republic of China
| | - Hai Xiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes; School of Life Science and Engineering, Foshan University, #33 Guang-yun-lu, Shishan, Nanhai, Foshan, 528231, Guangdong, People's Republic of China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes; School of Life Science and Engineering, Foshan University, #33 Guang-yun-lu, Shishan, Nanhai, Foshan, 528231, Guangdong, People's Republic of China
| | - Guiping Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes; School of Life Science and Engineering, Foshan University, #33 Guang-yun-lu, Shishan, Nanhai, Foshan, 528231, Guangdong, People's Republic of China. .,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China.
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes; School of Life Science and Engineering, Foshan University, #33 Guang-yun-lu, Shishan, Nanhai, Foshan, 528231, Guangdong, People's Republic of China. .,Guangdong Tinoo's Foods Group Co., Ltd, Jiangkou, Feilaixia, Qingcheng, Qingyuan, 511827, Guangdong, People's Republic of China.
| |
Collapse
|
13
|
Liu X, Liu L, Wang J, Cui H, Zhao G, Wen J. FOSL2 Is Involved in the Regulation of Glycogen Content in Chicken Breast Muscle Tissue. Front Physiol 2021; 12:682441. [PMID: 34295261 PMCID: PMC8290175 DOI: 10.3389/fphys.2021.682441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/03/2021] [Indexed: 01/22/2023] Open
Abstract
The glycogen content in muscle of livestock and poultry animals affects the homeostasis of their body, growth performance, and meat quality after slaughter. FOS-like 2, AP-1 transcription factor subunit (FOSL2) was identified as a candidate gene related to muscle glycogen (MG) content in chicken in our previous study, but the role of FOSL2 in the regulation of MG content remains to be elucidated. Differential gene expression analysis and weighted gene coexpression network analysis (WGCNA) were performed on differentially expressed genes (DEGs) in breast muscle tissues from the high-MG-content (HMG) group and low-MG-content (LMG) group of Jingxing yellow chickens. Analysis of the 1,171 DEGs (LMG vs. HMG) identified, besides FOSL2, some additional genes related to MG metabolism pathway, namely PRKAG3, CEBPB, FOXO1, AMPK, and PIK3CB. Additionally, WGCNA revealed that FOSL2, CEBPB, MAP3K14, SLC2A14, PPP2CA, SLC38A2, PPP2R5E, and other genes related to the classical glycogen metabolism in the same coexpressed module are associated with MG content. Also, besides finding that FOSL2 expression is negatively correlated with MG content, a possible interaction between FOSL2 and CEBPB was predicted using the STRING (Search Tool for the Retrieval of Interacting Genes) database. Furthermore, we investigated the effects of lentiviral overexpression of FOSL2 on the regulation of the glycogen content in vitro, and the result indicated that FOSL2 decreases the glycogen content in DF1 cells. Collectively, our results confirm that FOSL2 has a key role in the regulation of the MG content in chicken. This finding is helpful to understand the mechanism of MG metabolism regulation in chicken and provides a new perspective for the production of high-quality broiler and the development of a comprehensive nutritional control strategy.
Collapse
Affiliation(s)
- Xiaojing Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Liu
- College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Jie Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huanxian Cui
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Fan Y, Han Z, Lu X, Arbab AAI, Nazar M, Yang Y, Yang Z. Short Time-Series Expression Transcriptome Data Reveal the Gene Expression Patterns of Dairy Cow Mammary Gland as Milk Yield Decreased Process. Genes (Basel) 2021; 12:genes12060942. [PMID: 34203058 PMCID: PMC8235497 DOI: 10.3390/genes12060942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/29/2022] Open
Abstract
The existing research on dairy cow mammary gland genes is extensive, but there have been few reports about dynamic changes in dairy cow mammary gland genes as milk yield decrease. For the first time, transcriptome analysis based on short time-series expression miner (STEM) and histological observations were performed using the Holstein dairy cow mammary gland to explore gene expression patterns in this process of decrease (at peak, mid-, and late lactation). Histological observations suggested that the number of mammary acinous cells at peak/mid-lactation was significantly higher than that at mid-/late lactation, and the lipid droplets area secreted by dairy cows was almost unaltered across the three stages of lactation (p > 0.05). Totals of 882 and 1439 genes were differentially expressed at mid- and late lactation, respectively, compared to peak lactation. Function analysis showed that differentially expressed genes (DEGs) were mainly related to apoptosis and energy metabolism (fold change ≥ 2 or fold change ≤ 0.5, p-value ≤ 0.05). Transcriptome analysis based on STEM identified 16 profiles of differential gene expression patterns, including 5 significant profiles (false discovery rate, FDR ≤ 0.05). Function analysis revealed DEGs involved in milk fat synthesis were downregulated in Profile 0 and DEGs in Profile 12 associated with protein synthesis. These findings provide a foundation for future studies on the molecular mechanisms underlying mammary gland development in dairy cows.
Collapse
Affiliation(s)
- Yongliang Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (Z.H.); (X.L.); (A.A.I.A.); (M.N.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Ziyin Han
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (Z.H.); (X.L.); (A.A.I.A.); (M.N.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (Z.H.); (X.L.); (A.A.I.A.); (M.N.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Abdelaziz Adam Idriss Arbab
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (Z.H.); (X.L.); (A.A.I.A.); (M.N.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Mudasir Nazar
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (Z.H.); (X.L.); (A.A.I.A.); (M.N.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yi Yang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou 225009, China;
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (Z.H.); (X.L.); (A.A.I.A.); (M.N.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-0514-87979269
| |
Collapse
|
15
|
Whiting JR, Paris JR, van der Zee MJ, Parsons PJ, Weigel D, Fraser BA. Drainage-structuring of ancestral variation and a common functional pathway shape limited genomic convergence in natural high- and low-predation guppies. PLoS Genet 2021; 17:e1009566. [PMID: 34029313 PMCID: PMC8177651 DOI: 10.1371/journal.pgen.1009566] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/04/2021] [Accepted: 04/27/2021] [Indexed: 01/21/2023] Open
Abstract
Studies of convergence in wild populations have been instrumental in understanding adaptation by providing strong evidence for natural selection. At the genetic level, we are beginning to appreciate that the re-use of the same genes in adaptation occurs through different mechanisms and can be constrained by underlying trait architectures and demographic characteristics of natural populations. Here, we explore these processes in naturally adapted high- (HP) and low-predation (LP) populations of the Trinidadian guppy, Poecilia reticulata. As a model for phenotypic change this system provided some of the earliest evidence of rapid and repeatable evolution in vertebrates; the genetic basis of which has yet to be studied at the whole-genome level. We collected whole-genome sequencing data from ten populations (176 individuals) representing five independent HP-LP river pairs across the three main drainages in Northern Trinidad. We evaluate population structure, uncovering several LP bottlenecks and variable between-river introgression that can lead to constraints on the sharing of adaptive variation between populations. Consequently, we found limited selection on common genes or loci across all drainages. Using a pathway type analysis, however, we find evidence of repeated selection on different genes involved in cadherin signaling. Finally, we found a large repeatedly selected haplotype on chromosome 20 in three rivers from the same drainage. Taken together, despite limited sharing of adaptive variation among rivers, we found evidence of convergent evolution associated with HP-LP environments in pathways across divergent drainages and at a previously unreported candidate haplotype within a drainage.
Collapse
Affiliation(s)
- James R. Whiting
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | | | | | - Paul J. Parsons
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Bonnie A. Fraser
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
16
|
Transcriptome Analysis Reveals the Genes Involved in Growth and Metabolism in Muscovy Ducks. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6648435. [PMID: 33959661 PMCID: PMC8077732 DOI: 10.1155/2021/6648435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022]
Abstract
Muscovy ducks are among the best meat ducks in the world. The objective of this study was to identify genes related to growth metabolism through transcriptome analysis of the ileal tissue of Muscovy ducks. Duck ileum samples with the highest (H group, n = 5) and lowest (L group, n = 5) body weight were selected from two hundred 70-day-old Muscovy ducks for transcriptome analysis by RNA sequencing. In the screening of differentially expressed genes (DEGs) between the H and L groups, a total of 602 DEGs with a fold change no less than 2 were identified, among which 285 were upregulated and 317 were downregulated. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that glutathione metabolism, pyrimidine metabolism, and protein digestion and absorption processes played a vital role in regulating growth and metabolism. The results showed that 7 genes related to growth and metabolism, namely, ANPEP, ENPEP, UPP1, SLC2A2, SLC6A19, NME4, and LOC106034733, were significantly expressed in group H, which was consistent with the phenotype results. The validation of these 7 genes using real-time quantitative PCR results indicated that the expression level of ENPEP was significantly different between the H and L groups (P < 0.05). This study provides a theoretical basis for exploring the influence of the ileum on growth and metabolism in ducks.
Collapse
|
17
|
Tang J, Shen X, Ouyang H, Luo W, Huang Y, Tian Y, Zhang X. Transcriptome analysis of pituitary gland revealed candidate genes and gene networks regulating the growth and development in goose. Anim Biotechnol 2020; 33:429-439. [PMID: 32779547 DOI: 10.1080/10495398.2020.1801457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Goose is important meat poultry and its growth and development has always been the focus of attention, but the regulation mechanisms of genes and gene network underlying growth and development of goose are still unclear. Three males of large-size Shitou goose and three males of small size Wuzong goose at 5 weeks of age were used for transcriptome analysis with deep sequencing. After slaughter, their pituitary gland was taken for RNA-seq. A total of 290 DEGs were identified by fold change ≥2 and false discovery rate (FDR) <0.05, where there were 148 upregulated genes and 142 downregulated genes in Shitou goose compared to Wuzong goose. Results also showed that the DEGs related to insulin signaling pathway could increase protein synthesis and fat production, and the interaction network of DEGs was mainly related to development, endocrine system, inflammatory diseases, tissue damage and abnormality. The DEGs involved in the growth and function of the pituitary organs may regulate the growth and development of the body by affecting the synthesis and secretion of pituitary hormones. The results of this study will help to understand the regulatory mechanism of goose growth and development.
Collapse
Affiliation(s)
- Jun Tang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong, China
| | - Xu Shen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong, China
| | - Hongjia Ouyang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong, China
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yunmao Huang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong, China
| | - Yunbo Tian
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Tang R, Wang J, Zhou M, Lan Y, Jiang L, Price M, Yue B, Li D, Fan Z. Comprehensive analysis of lncRNA and mRNA expression changes in Tibetan chicken lung tissue between three developmental stages. Anim Genet 2020; 51:731-740. [DOI: 10.1111/age.12990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/04/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Ruixiang Tang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education) College of Life Sciences Sichuan University Chengdu 610064 China
| | - Jiao Wang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education) College of Life Sciences Sichuan University Chengdu 610064 China
| | - Min Zhou
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education) College of Life Sciences Sichuan University Chengdu 610064 China
| | - Yue Lan
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife College of Life Sciences Sichuan University Chengdu 610064 China
| | - Lan Jiang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife College of Life Sciences Sichuan University Chengdu 610064 China
| | - Megan Price
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education) College of Life Sciences Sichuan University Chengdu 610064 China
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education) College of Life Sciences Sichuan University Chengdu 610064 China
| | - Diyan Li
- Sichuan Agricultural University Chengdu 611130 China
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education) College of Life Sciences Sichuan University Chengdu 610064 China
| |
Collapse
|
19
|
Xu K, Han CX, Zhou H, Ding JM, Xu Z, Yang LY, He C, Akinyemi F, Zheng YM, Qin C, Luo HX, Meng H. Effective MSTN Gene Knockout by AdV-Delivered CRISPR/Cas9 in Postnatal Chick Leg Muscle. Int J Mol Sci 2020; 21:ijms21072584. [PMID: 32276422 PMCID: PMC7177447 DOI: 10.3390/ijms21072584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Muscle growth and development are important aspects of chicken meat production, but the underlying regulatory mechanisms remain unclear and need further exploration. CRISPR has been used for gene editing to study gene function in mice, but less has been done in chick muscles. To verify whether postnatal gene editing could be achieved in chick muscles and determine the transcriptomic changes, we knocked out Myostatin (MSTN), a potential inhibitor of muscle growth and development, in chicks and performed transcriptome analysis on knock-out (KO) muscles and wild-type (WT) muscles at two post-natal days: 3d (3-day-old) and 14d (14-day-old). Large fragment deletions of MSTN (>5 kb) were achieved in all KO muscles, and the MSTN gene expression was significantly downregulated at 14d. The transcriptomic results indicated the presence of 1339 differentially expressed genes (DEGs) between the 3d KO and 3d WT muscles, as well as 597 DEGs between 14d KO and 14d WT muscles. Many DEGs were found to be related to cell differentiation and proliferation, muscle growth and energy metabolism. This method provides a potential means of postnatal gene editing in chicks, and the results presented here could provide a basis for further investigation of the mechanisms involved in muscle growth and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - He Meng
- Correspondence: ; Tel.: +86-021-34206146
| |
Collapse
|
20
|
Transcriptional insights into key genes and pathways controlling muscle lipid metabolism in broiler chickens. BMC Genomics 2019; 20:863. [PMID: 31729950 PMCID: PMC6858653 DOI: 10.1186/s12864-019-6221-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
Background Intramuscular fat (IMF) is one of the most important factors positively associated with meat quality. Triglycerides (TGs), as the main component of IMF, play an essential role in muscle lipid metabolism. This transcriptome analysis of pectoralis muscle tissue aimed to identify functional genes and biological pathways likely contributing to the extreme differences in the TG content of broiler chickens. Results The study included Jingxing-Huang broilers that were significantly different in TG content (5.81 mg/g and 2.26 mg/g, p < 0.01) and deposition of cholesterol also showed the same trend. This RNA sequencing analysis was performed on pectoralis muscle samples from the higher TG content group (HTG) and the lower TG content group (LTG) chickens. A total of 1200 differentially expressed genes (DEGs) were identified between two groups, of which 59 DEGs were related to TG and steroid metabolism. The HTG chickens overexpressed numerous genes related to adipogenesis and lipogenesis in pectoralis muscle tissue, including the key genes ADIPOQ, CD36, FABP4, FABP5, LPL, SCD, PLIN1, CIDEC and PPARG, as well as genes related to steroid biosynthesis (DHCR24, LSS, MSMO1, NSDHL and CH25H). Additionally, key pathways related to lipid storage and metabolism (the steroid biosynthesis and peroxisome proliferator activated receptor (PPAR) signaling pathway) may be the key pathways regulating differential lipid deposition between HTG group and LTG group. Conclusions This study showed that increased TG deposition accompanying an increase in steroid synthesis in pectoralis muscle tissue. Our findings of changes in gene expression of steroid biosynthesis and PPAR signaling pathway in HTG and LTG chickens provide insight into genetic mechanisms involved in different lipid deposition patterns in pectoralis muscle tissue.
Collapse
|