1
|
El Baidouri M, Reichheld JP, Belin C. An evolutionary view of the function of CC-type glutaredoxins in plant development and adaptation to the environment. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4287-4299. [PMID: 38787597 DOI: 10.1093/jxb/erae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Land plants have to face an oxidizing, heterogeneous, and fast changing environment. Redox-dependent post-translational modifications emerge as a critical component of plant responses to stresses. Among the thiol oxidoreductase superfamily, class III CC-type glutaredoxins (called ROXYs) are land plant specific, and their evolutionary history is highly dynamic. Angiosperms encode many isoforms, classified into five subgroups (Aα, Aβ, Bα, Bβ, Bγ) that probably evolved from five common ancestral ROXYs, with higher evolutionary dynamics in the Bγ subgroup compared with the other subgroups. ROXYs can modulate the transcriptional activity of TGA transcription factor target genes, although their biochemical function is still debated. ROXYs participate in the control of proper plant development and reproduction, and are mainly negative regulators of plant responses to biotic and abiotic stresses. This suggests that most ROXYs could play essential and conserved functions in resetting redox-dependent changes in transcriptional activity upon stress signaling to ensure the responsiveness of the system and/or avoid exaggerated responses that could lead to major defects in plant growth and reproduction. In Arabidopsis Bγ members acquired important functions in responses to nitrogen availability and endogenous status, but the rapid and independent evolution of this subclass might suggest that this function results from neofunctionalization, specifically observed in core eudicots.
Collapse
Affiliation(s)
- Moaïne El Baidouri
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, F-66860 Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, F-66860 Perpignan, France
| | - Jean-Philippe Reichheld
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, F-66860 Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, F-66860 Perpignan, France
| | - Christophe Belin
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, F-66860 Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, F-66860 Perpignan, France
| |
Collapse
|
2
|
Liu L, Li X, Su M, Shi J, Zhang Q, Liu X. LeGRXS14 Reduces Salt Stress Tolerance in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:2320. [PMID: 37375946 PMCID: PMC10305512 DOI: 10.3390/plants12122320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Salt stress represents a significant abiotic stressor for plants and poses a severe threat to agricultural productivity. Glutaredoxins (GRXs) are small disulfide reductases that can scavenge cellular reactive oxygen species and are crucial for plant growth and development, particularly under stressful circumstances. Although CGFS-type GRXs were found to be involved in various abiotic stresses, the intrinsic mechanism mediated by LeGRXS14, a tomato (Lycopersicon esculentum Mill.) CGFS-type GRX, is not yet fully understood. We discovered that LeGRXS14 is relatively conserved at the N-terminus and exhibits an increase in expression level under salt and osmotic stress conditions in tomatoes. The expression levels of LeGRXS14 in response to osmotic stress peaked relatively rapidly at 30 min, while the response to salt stress only peaked at 6 h. We constructed LeGRXS14 overexpression Arabidopsis thaliana (OE) lines and confirmed that LeGRXS14 is located on the plasma membrane, nucleus, and chloroplasts. In comparison to the wild-type Col-0 (WT), the OE lines displayed greater sensitivity to salt stress, resulting in a profound inhibition of root growth under the same conditions. Analysis of the mRNA levels of the WT and OE lines revealed that salt stress-related factors, such as ZAT12, SOS3, and NHX6, were downregulated. Based on our research, it can be concluded that LeGRXS14 plays a significant role in plant tolerance to salt. However, our findings also suggest that LeGRXS14 may act as a negative regulator in this process by exacerbating Na+ toxicity and the resulting oxidative stress.
Collapse
Affiliation(s)
- Lulu Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
| | - Xiaofei Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310030, China; (X.L.); (M.S.); (J.S.); (Q.Z.)
| | - Mengke Su
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310030, China; (X.L.); (M.S.); (J.S.); (Q.Z.)
| | - Jiaping Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310030, China; (X.L.); (M.S.); (J.S.); (Q.Z.)
| | - Qing Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310030, China; (X.L.); (M.S.); (J.S.); (Q.Z.)
| | - Xunyan Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310030, China; (X.L.); (M.S.); (J.S.); (Q.Z.)
| |
Collapse
|
3
|
Liu S, Liu X, Zhang X, Chang S, Ma C, Qin F. Co-Expression of ZmVPP1 with ZmNAC111 Confers Robust Drought Resistance in Maize. Genes (Basel) 2022; 14:8. [PMID: 36672748 PMCID: PMC9858277 DOI: 10.3390/genes14010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Drought is a primary environmental factor limiting maize production globally. Although transferring a single gene to maize can enhance drought resistance, maize response to water deficit requires further improvement to accommodate the steadily intensifying drought events worldwide. Here, we generated dual transgene lines simultaneously overexpressing two drought-resistant genes, ZmVPP1 (encoding a vacuolar-type H+ pyrophosphatase) and ZmNAC111 (encoding a NAM, ATAF, and CUC (NAC)-type transcription factor). Following drought stress, survival rates of the pyramided transgenic seedlings reached 62-66%, while wild-type and single transgene seedling survival rates were 23% and 37-42%, respectively. Maize seedlings co-expressing ZmVPP1 and ZmNAC111 exhibited higher photosynthesis rates, antioxidant enzyme activities, and root-shoot ratios than the wild type, and anthesis-silking intervals were shorter while grain yields were higher under water deficit conditions in field trials. Additionally, RNA-sequencing analysis confirmed that photosynthesis and stress-related metabolic processes were stimulated in the dual transgene plants under drought conditions. The findings in this work illustrate how high co-expression of different drought-related genes can reinforce drought resistance over that of individual transgene lines, providing a path for developing arid climate-adapted elite maize varieties.
Collapse
Affiliation(s)
- Shengxue Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaohu Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaomin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shujie Chang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chao Ma
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Feng Qin
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Guo X, Yu X, Xu Z, Zhao P, Zou L, Li W, Geng M, Zhang P, Peng M, Ruan M. CC-type glutaredoxin, MeGRXC3, associates with catalases and negatively regulates drought tolerance in cassava (Manihot esculenta Crantz). PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2389-2405. [PMID: 36053917 PMCID: PMC9674314 DOI: 10.1111/pbi.13920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/05/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Glutaredoxins (GRXs) are essential for reactive oxygen species (ROS) homeostasis in responses of plants to environment changes. We previously identified several drought-responsive CC-type GRXs in cassava, an important tropical crop. However, how CC-type GRX regulates ROS homeostasis of cassava under drought stress remained largely unknown. Here, we report that a drought-responsive CC-type GRX, namely MeGRXC3, was associated with activity of catalase in the leaves of 100 cultivars (or unique unnamed genotypes) of cassava under drought stress. MeGRXC3 negatively regulated drought tolerance by modulating drought- and abscisic acid-induced stomatal closure in transgenic cassava. It antagonistically regulated hydrogen peroxide (H2 O2 ) accumulation in epidermal cells and guard cells. Moreover, MeGRXC3 interacted with two catalases of cassava, MeCAT1 and MeCAT2, and regulated their activity in vivo. Additionally, MeGRXC3 interacts with a cassava TGA transcription factor, MeTGA2, in the nucleus, and regulates the expression of MeCAT7 through a MeTGA2-MeMYB63 pathway. Overall, we demonstrated the roles of MeGRXC3 in regulating activity of catalase at both transcriptional and post-translational levels, therefore involving in ROS homeostasis and stomatal movement in responses of cassava to drought stress. Our study provides the first insights into how MeGRXC3 may be used in molecular breeding of cassava crops.
Collapse
Affiliation(s)
- Xin Guo
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| | - Xiaoling Yu
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| | - Ziyin Xu
- College of Tropical CropsHainan UniversityHaikouChina
| | - Pingjuan Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| | - Liangping Zou
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| | - Wenbin Li
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| | - Mengting Geng
- College of Tropical CropsHainan UniversityHaikouChina
| | - Peng Zhang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| | - Mengbin Ruan
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| |
Collapse
|
5
|
Ruan MB, Yu XL, Guo X, Zhao PJ, Peng M. Role of cassava CC-type glutaredoxin MeGRXC3 in regulating sensitivity to mannitol-induced osmotic stress dependent on its nuclear activity. BMC PLANT BIOLOGY 2022; 22:41. [PMID: 35057736 PMCID: PMC8772167 DOI: 10.1186/s12870-022-03433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND We previously identified six drought-inducible CC-type glutaredoxins in cassava cultivars, however, less is known about their potential role in the molecular mechanism by which cassava adapted to abiotic stress. RESULTS Herein, we investigate one of cassava drought-responsive CC-type glutaredoxins, namely MeGRXC3, that involved in regulation of mannitol-induced inhibition on seed germination and seedling growth in transgenic Arabidopsis. MeGRXC3 overexpression up-regulates several stress-related transcription factor genes, such as PDF1.2, ERF6, ORA59, DREB2A, WRKY40, and WRKY53 in Arabidopsis. Protein interaction assays show that MeGRXC3 interacts with Arabidopsis TGA2 and TGA5 in the nucleus. Eliminated nuclear localization of MeGRXC3 failed to result mannitol-induced inhibition of seed germination and seedling growth in transgenic Arabidopsis. Mutation analysis of MeGRXC3 indicates the importance of conserved motifs for its transactivation activity in yeast. Additionally, these motifs are also indispensable for its functionality in regulating mannitol-induced inhibition of seed germination and enhancement of the stress-related transcription factors in transgenic Arabidopsis. CONCLUSIONS MeGRXC3 overexpression confers mannitol sensitivity in transgenic Arabidopsis possibly through interaction with TGA2/5 in the nucleus, and nuclear activity of MeGRXC3 is required for its function.
Collapse
Affiliation(s)
- Meng-Bin Ruan
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
- Key Laboratory of Biology and Genetic Resources of Torpical Crops, Ministry of Agriculture, Haikou, 571101 China
| | - Xiao-Ling Yu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
- Key Laboratory of Biology and Genetic Resources of Torpical Crops, Ministry of Agriculture, Haikou, 571101 China
| | - Xin Guo
- Key Laboratory of Biology and Genetic Resources of Torpical Crops, Ministry of Agriculture, Haikou, 571101 China
- Huazhong Agricultural University, Wuhan, 430070 China
| | - Ping-Juan Zhao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
- Key Laboratory of Biology and Genetic Resources of Torpical Crops, Ministry of Agriculture, Haikou, 571101 China
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
- Key Laboratory of Biology and Genetic Resources of Torpical Crops, Ministry of Agriculture, Haikou, 571101 China
| |
Collapse
|
6
|
Dutta M, Saha A, Moin M, Kirti PB. Genome-Wide Identification, Transcript Profiling and Bioinformatic Analyses of GRAS Transcription Factor Genes in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:777285. [PMID: 34899804 PMCID: PMC8660974 DOI: 10.3389/fpls.2021.777285] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 05/28/2023]
Abstract
Our group has previously identified the activation of a GRAS transcription factor (TF) gene in the gain-of-function mutant population developed through activation tagging in rice (in an indica rice variety, BPT 5204) that was screened for water use efficiency. This family of GRAS transcription factors has been well known for their diverse roles in gibberellin signaling, light responses, root development, gametogenesis etc. Recent studies indicated their role in biotic and abiotic responses as well. Although this family of TFs received significant attention, not many genes were identified specifically for their roles in mediating stress tolerance in rice. Only OsGRAS23 (here named as OsGRAS22) was reported to code for a TF that induced drought tolerance in rice. In the present study, we have analyzed the expression patterns of rice GRAS TF genes under abiotic (NaCl and ABA treatments) and biotic (leaf samples infected with pathogens, Xanthomonas oryzae pv. oryzae that causes bacterial leaf blight and Rhizoctonia solani that causes sheath blight) stress conditions. In addition, their expression patterns were also analyzed in 13 different developmental stages. We studied their spatio-temporal regulation and correlated them with the in-silico studies. Fully annotated genomic sequences available in rice database have enabled us to study the protein properties, ligand interactions, domain analysis and presence of cis-regulatory elements through the bioinformatic approach. Most of the genes were induced immediately after the onset of stress particularly in the roots of ABA treated plants. OsGRAS39 was found to be a highly expressive gene under sheath blight infection and both abiotic stress treatments while OsGRAS8, OsSHR1 and OsSLR1 were also responsive. Our earlier activation tagging based functional characterization followed by the genome-wide characterization of the GRAS gene family members in the present study clearly show that they are highly appropriate candidate genes for manipulating stress tolerance in rice and other crop plants.
Collapse
Affiliation(s)
- Mouboni Dutta
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Anusree Saha
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Mazahar Moin
- Department of Biotechnology, Indian Institute of Rice Research, Hyderabad, India
| | - Pulugurtha Bharadwaja Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
- Agri Biotech Foundation, PJTS Agricultural University Campus, Hyderabad, India
| |
Collapse
|
7
|
Kakeshpour T, Tamang TM, Motolai G, Fleming ZW, Park JE, Wu Q, Park S. CGFS-type glutaredoxin mutations reduce tolerance to multiple abiotic stresses in tomato. PHYSIOLOGIA PLANTARUM 2021; 173:1263-1279. [PMID: 34392538 DOI: 10.1111/ppl.13522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/23/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Sessile organisms such as plants have adopted diverse reactive oxygen species (ROS) scavenging mechanisms to mitigate damage under abiotic stress conditions. Though CGFS-type glutaredoxin (GRX) genes are important regulators of ROS homeostasis, each of their functions in crop plants have not yet been well understood. We performed a targeted mutagenesis analysis of four CGFS-type GRXs (SlGRXS14, SlGRXS15, SlGRXS16, and SlGRXS17) in tomato plants (Solanum lycopersicum) using a multiplex clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system and found that Slgrxs mutants were more sensitive to various abiotic stresses compared with the wild-type tomatoes. Slgrxs15 mutants were embryonic lethal. Single, double, and triple combinations of Slgrxs14, 16, and 17 mutants were examined under heat, chilling, drought, heavy metal toxicity, nutrient deficiency, and short photoperiod stresses. Slgrxs14 and 17 mutants showed hypersensitivity to almost all stresses while Slgrxs16 mutants were affected by chilling stress and showed milder sensitivity to other stresses. Additionally, Slgrxs14 and 17 mutants showed delayed flowering time. Our results indicate that the CGFS-type SlGRXs have specific roles against abiotic stresses, providing valuable resources to develop tomato and, possibly, other crop species that are tolerant to multiple abiotic stresses by genetic engineering.
Collapse
Affiliation(s)
- Tayebeh Kakeshpour
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, Kansas, USA
| | - Tej Man Tamang
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, Kansas, USA
| | - Gergely Motolai
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, Kansas, USA
| | - Zachary Wayne Fleming
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, Kansas, USA
| | - Jung-Eun Park
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, Kansas, USA
| | - Qingyu Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sunghun Park
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
8
|
Dutta M, Moin M, Saha A, Dutta D, Bakshi A, Kirti PB. Gain-of-function mutagenesis through activation tagging identifies XPB2 and SEN1 helicase genes as potential targets for drought stress tolerance in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2253-2272. [PMID: 33821294 DOI: 10.1007/s00122-021-03823-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 03/23/2021] [Indexed: 05/13/2023]
Abstract
XPB2 and SEN1 helicases were identified through activation tagging as potential candidate genes in rice for inducing high water-use efficiency (WUE) and maintaining sustainable yield under drought stress. As a follow-up on the high-water-use-efficiency screening and physiological analyses of the activation-tagged gain-of-function mutant lines that were developed in an indica rice variety, BPT-5204 (Moin et al. in Plant Cell Environ 39:2440-2459, 2016a, https://doi.org/10.1111/pce.12796 ), we have identified two gain-of-function mutant lines (XM3 and SM4), which evidenced the activation of two helicases, ATP-dependent DNA helicase (XPB2) and RNA helicase (SEN1), respectively. We performed the transcript profiling of XPB2 and SEN1 upon exposure to various stress conditions and found their significant upregulation, particularly in ABA and PEG treatments. Extensive morpho-physiological and biochemical analyses based on 24 metrics were performed under dehydration stress (PEG) and phytohormone (ABA) treatments for the wild-type and the two mutant lines. Principal component analysis (PCA) performed on the dataset captured 72.73% of the cumulative variance using the parameters influencing the first two principal components. The tagged mutants exhibited reduced leaf wilting, improved revival efficiency, constant amylose:amylopectin ratio, high chlorophyll and proline contents, profuse tillering, high quantum efficiency and yield-related traits with respect to their controls. These observations were further validated under greenhouse conditions by the periodic withdrawal of water at the pot level. Germination of the seeds of these mutant lines indicated their insensitivity to high ABA concentration. The associated upregulation of stress-specific genes further suggests that their drought tolerance might be because of the coordinated expression of several stress-responsive genes in these two mutants. Altogether, our results provided a firm basis for SEN1 and XPB2 as potential candidates for manipulation of drought tolerance and improving rice performance and yield under limited water conditions.
Collapse
Affiliation(s)
- Mouboni Dutta
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Mazahar Moin
- Biotechnology Division, Indian Institute of Rice Research, Hyderabad, 500030, India.
| | - Anusree Saha
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Dibyendu Dutta
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Mumbai, 400076, India
| | - Achala Bakshi
- Biotechnology Division, Indian Institute of Rice Research, Hyderabad, 500030, India
| | - P B Kirti
- Agri Biotech Foundation, PJTS Agricultural University Campus, Hyderabad, 500030, India.
| |
Collapse
|
9
|
Kumar A, Kumar V, Dubey AK, Ansari MA, Narayan S, Kumar S, Pandey V, Pande V, Sanyal I. Chickpea glutaredoxin ( CaGrx) gene mitigates drought and salinity stress by modulating the physiological performance and antioxidant defense mechanisms. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:923-944. [PMID: 34092945 PMCID: PMC8140008 DOI: 10.1007/s12298-021-00999-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/01/2021] [Accepted: 04/22/2021] [Indexed: 05/23/2023]
Abstract
UNLABELLED Glutaredoxins (Grxs) are short, cysteine-rich glutathione (GSH)-mediated oxidoreductases. In this study, a chickpea (Cicer arietinum L.) glutaredoxin [LOC101493651 (CaGrx)] gene has been selected based on screening experiments with two contrasting varieties of chickpea, PUSA-362 (drought-tolerant) and ICC-1882 (drought-sensitive) under drought and salinity. The tolerant variety showed higher CaGrx gene expression, as compared to less in the sensitive variety, under both the stresses. The CaGrx gene was then over-expressed in Arabidopsis thaliana and were exposed to drought and salinity. The over-expression of CaGrx elevated the activity of glutaredoxin, which induced antioxidant enzymes (glutathione reductase; GR, glutathione peroxidase; GPX, catalase; CAT, ascorbate peroxidase; APX, glutathione-S-transferase; GST, superoxide dismutase; SOD, monodehydroascorbate reductase; MDHAR, and dehydroascorbate reductase; DHAR), antioxidants (GSH and ascorbate) and stress-responsive amino acids (cysteine and proline). Enhancement in the antioxidant defense system possibly administered tolerance in transgenics against both stresses. CaGrx reduced stress markers (H2O2, TBARS, and electrolyte leakage) and enhanced root growth, seed germination, and survival against both stresses. The physiological parameters (net photosynthesis; P N, water use efficiency; WUE, stomatal conductance; g s, transpiration; E, electron transport rate; ETR, and photochemical quenching; qP), chlorophylls and carotenoids, were improved in the transgenics during both stresses, that maintained the photosynthetic apparatus and protected the plants from damage. The enhanced activity of the cysteine biosynthesis enzyme, o-acetylserine (thiol) lyase (OAS-TL), increased the cysteine level in the transgenics, which elevated glutathione biosynthesis to maintain the ascorbate-glutathione cycle under both stresses. This investigation verified that the CaGrx gene provides tolerance against salinity and drought, maintaining physiological and morphological performances, and could be exploited for genetic engineering approaches to overcome both the stresses in various crops. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00999-z.
Collapse
Affiliation(s)
- Anil Kumar
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India
| | - Varun Kumar
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Arvind Kumar Dubey
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India
| | - Mohd Akram Ansari
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India
| | - Shiv Narayan
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Sanoj Kumar
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Vivek Pandey
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Veena Pande
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India
| | - Indraneel Sanyal
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
10
|
Li T, Li M, Jiang Y, Duan X. Genome-wide identification, characterization and expression profile of glutaredoxin gene family in relation to fruit ripening and response to abiotic and biotic stresses in banana (Musa acuminata). Int J Biol Macromol 2020; 170:636-651. [PMID: 33385451 DOI: 10.1016/j.ijbiomac.2020.12.167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 11/30/2022]
Abstract
Glutaredoxins (GRXs) are disulfide oxidoreductases that are involved in various biological processes. However, little information on the role of GRXs in the regulation of fruit ripening and the response to stress is available. In this study, we isolated 64 GRX genes from banana genome. Their encoded GRX proteins could be classified into four classes: CC, CGFS, CPYC and GRL types. The distribution and synteny of these GRXs on chromosomes, the gene structures, the promoter sequences, and the possible protein subcellular localizations were characterized. Molecular interaction network analysis suggested that MaGRX might interact with glutathione reductase (GR), sulfiredoxin, peroxiredoxin (Prx), and NADPH-dependent thioredoxin reductase C (NTRC), contributing to the antioxidative defense of banana fruit. MicroRNA prediction showed that MaGRX genes might be targeted by different miRNAs. Transcriptome analysis characterized the expression profiles of different MaGRX genes during banana fruit ripening, and in response to different storage stresses. The results suggested that CC-type, CPYC-type and GRL-type MaGRXs might be more active than CGFS-type MaGRXs during banana fruit ripening and the response to stress. Moreover, MaGRX6/7/9/11/17/23/28 and MaGRL3/16/19 might play important roles in regulating fruit ripening or in response to low and high temperature, or Fusarium proliferatum infection.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture/Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Mingzhi Li
- Independent Researcher, Guangzhou, 510650, China
| | - Yueming Jiang
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture/Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuewu Duan
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture/Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
11
|
Moursi YS, Thabet SG, Amro A, Dawood MFA, Baenziger PS, Sallam A. Detailed Genetic Analysis for Identifying QTLs Associated with Drought Tolerance at Seed Germination and Seedling Stages in Barley. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9111425. [PMID: 33114292 PMCID: PMC7690857 DOI: 10.3390/plants9111425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/14/2020] [Accepted: 10/16/2020] [Indexed: 05/08/2023]
Abstract
Drought induces several challenges for plant development, growth, and production. These challenges become more severe, in particular, in arid and semiarid countries like Egypt. In terms of production, barley ranks fourth after wheat, maize, and rice. Seed germination and seedling stages are critical stages for plant establishment and growth. In the current study, 60 diverse barley genotypes were tested for drought tolerance using two different treatments: control (0-PEG) and drought (20%-PEG). Twenty-two traits were estimated for seed germination and seedling parameters. All traits were reduced under drought stress, and a significant variation was found among genotypes under control and stress conditions. The broad-sense heritability estimates were very high under both control and drought for all traits. It ranged from 0.63 to 0.97 under the control condition and from 0.89 to 0.97 under drought, respectively. These high heritabilities suggested that genetic improvement of drought tolerance in barley at both stages is feasible. The principal component analysis revealed that root-related parameters account for the largest portion of phenotypic variation in this collection. The single-marker analysis (SMA) resulted in 71 quantitative trait loci (QTLs) distributed across the seven chromosomes of barley. Thirty-three QTLs were detected for root-length-related traits. Many hotspots of QTLs were detected for various traits. Interestingly, some markers controlled many traits in a pleiotropic manner; thus, they can be used to control multiple traits at a time. Some QTLs were constitutive, i.e., they are mapped under control and drought, and targeting these QTLs makes the selection for drought tolerance a single-step process. The results of gene annotation analysis revealed very potential candidate genes that can be targeted to select for drought tolerance.
Collapse
Affiliation(s)
- Yasser S. Moursi
- Department of Botany, Faculty of Science, University of Fayoum, Fayoum 63514, Egypt; (Y.S.M.); (S.G.T.)
| | - Samar G. Thabet
- Department of Botany, Faculty of Science, University of Fayoum, Fayoum 63514, Egypt; (Y.S.M.); (S.G.T.)
| | - Ahmed Amro
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Asyut 71516, Egypt; (A.A.); (M.F.A.D.)
| | - Mona F. A. Dawood
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Asyut 71516, Egypt; (A.A.); (M.F.A.D.)
| | - P. Stephen Baenziger
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, Asyut 71526, Egypt
- Correspondence:
| |
Collapse
|