1
|
Brahimllari O, Eloranta S, Georgii-Hemming P, Haider Z, Koch S, Krstic A, Skarp FP, Rosenquist R, Smedby KE, Taylan F, Thorvaldsdottir B, Wirta V, Wästerlid T, Boman M. Smart variant filtering - A blueprint solution for massively parallel sequencing-based variant analysis. Health Informatics J 2024; 30:14604582241290725. [PMID: 39394057 DOI: 10.1177/14604582241290725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Massively parallel sequencing helps create new knowledge on genes, variants and their association with disease phenotype. This important technological advancement simultaneously makes clinical decision making, using genomic information for cancer patients, more complex. Currently, identifying actionable pathogenic variants with diagnostic, prognostic, or predictive impact requires substantial manual effort. Objective: The purpose is to design a solution for clinical diagnostics of lymphoma, specifically for systematic variant filtering and interpretation. Methods: A scoping review and demonstrations from specialists serve as a basis for a blueprint of a solution for massively parallel sequencing-based genetic diagnostics. Results: The solution uses machine learning methods to facilitate decision making in the diagnostic process. A validation round of interviews with specialists consolidated the blueprint and anchored it across all relevant expert disciplines. The scoping review identified four components of variant filtering solutions: algorithms and Artificial Intelligence (AI) applications, software, bioinformatics pipelines and variant filtering strategies. The blueprint describes the input, the AI model and the interface for dynamic browsing. Conclusion: An AI-augmented system is designed for predicting pathogenic variants. While such a system can be used to classify identified variants, diagnosticians should still evaluate the classification's accuracy, make corrections when necessary, and ultimately decide which variants are truly pathogenic.
Collapse
Affiliation(s)
- Orlinda Brahimllari
- MedTechLabs, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Eloranta
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | | | - Zahra Haider
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sabine Koch
- Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Stockholm, Sweden
| | - Aleksandra Krstic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Karin E Smedby
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Birna Thorvaldsdottir
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Valtteri Wirta
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, 17177, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Division of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Tove Wästerlid
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Boman
- MedTechLabs, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Wang X, Le C, Jin X, Feng Y, Chen L, Huang X, Tian S, Wang Q, Ji J, Liu Y, Zhang H, Huang J, Ren Z. Estimating postmortem interval based on oral microbial community succession in rat cadavers. Heliyon 2024; 10:e31897. [PMID: 38882314 PMCID: PMC11177140 DOI: 10.1016/j.heliyon.2024.e31897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
The accurate estimation of the postmortem interval has been one of the crucial issues to be solved in forensic research, and it is influenced by various factors in the process of decay. With the development of high-throughput sequencing technology, forensic microbiology has become the major hot topic in forensic science, which provides new research options for postmortem interval estimation. The oral microbial community is one of the most diverse of microbiomes, ranking as the second most abundant microbiota following the gastrointestinal tract. It is remarkable that oral microorganisms have a significant function in the decay process of cadavers. Therefore, we collected outdoor soil to simulate the death environment and focused on the relationship between oral microbial community succession and PMI in rats above the soil. In addition, linear regression models and random forest regression models were developed for the relationship between the relative abundance of oral microbes and PMI. We also identified a number of microorganisms that may be important to estimate PMI, including: Ignatzschineria, Morganella, Proteus, Lysinibacillus, Pseudomonas, Globicatella, Corynebacterium, Streptococcus, Rothia, Aerococcus, Staphylococcus, and so on.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Cuiyun Le
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaoye Jin
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yuhang Feng
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Li Chen
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaolan Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Shunyi Tian
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jingyan Ji
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| |
Collapse
|
3
|
Tinikul R, Trisrivirat D, Chinantuya W, Wongnate T, Watthaisong P, Phonbuppha J, Chaiyen P. Detection of cellular metabolites by redox enzymatic cascades. Biotechnol J 2022; 17:e2100466. [PMID: 35192744 DOI: 10.1002/biot.202100466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/11/2022]
Abstract
Detection of cellular metabolites that are disease biomarkers is important for human healthcare monitoring and assessing prognosis and therapeutic response. Accurate and rapid detection of microbial metabolites and pathway intermediates is also crucial for the process optimization required for development of bioconversion methods using metabolically engineered cells. Various redox enzymes can generate electrons that can be employed in enzyme-based biosensors and in the detection of cellular metabolites. These reactions can directly transform target compounds into various readout signals. By incorporating engineered enzymes into enzymatic cascades, the readout signals can be improved in terms of accuracy and sensitivity. This review critically discusses selected redox enzymatic and chemoenzymatic cascades currently employed for detection of human- and microbe-related cellular metabolites including, amino acids, d-glucose, inorganic ions (pyrophosphate, phosphate, and sulfate), nitro- and halogenated phenols, NAD(P)H, fatty acids, fatty aldehyde, alkane, short chain acids, and cellular metabolites.
Collapse
Affiliation(s)
- Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Duangthip Trisrivirat
- Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, School of Biomolecular Science and Engineering, Rayong, Thailand
| | - Wachirawit Chinantuya
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thanyaporn Wongnate
- Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, School of Biomolecular Science and Engineering, Rayong, Thailand
| | - Pratchaya Watthaisong
- Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, School of Biomolecular Science and Engineering, Rayong, Thailand
| | - Jittima Phonbuppha
- Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, School of Biomolecular Science and Engineering, Rayong, Thailand
| | - Pimchai Chaiyen
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, School of Biomolecular Science and Engineering, Rayong, Thailand
| |
Collapse
|
4
|
Revealing the Mysteries of Acute Myeloid Leukemia: From Quantitative PCR through Next-Generation Sequencing and Systemic Metabolomic Profiling. J Clin Med 2022; 11:jcm11030483. [PMID: 35159934 PMCID: PMC8836582 DOI: 10.3390/jcm11030483] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
The efforts made in the last decade regarding the molecular landscape of acute myeloid leukemia (AML) have created the possibility of obtaining patients’ personalized treatment. Indeed, the improvement of accurate diagnosis and precise assessment of minimal residual disease (MRD) increased the number of new markers suitable for novel and targeted therapies. This progress was obtained thanks to the development of molecular techniques starting with real-time quantitative PCR (Rt-qPCR) passing through digital droplet PCR (ddPCR) and next-generation sequencing (NGS) up to the new attractive metabolomic approach. The objective of this surge in technological advances is a better delineation of AML clonal heterogeneity, monitoring patients without disease-specific mutation and designing customized post-remission strategies based on MRD assessment. In this context, metabolomics, which pertains to overall small molecules profiling, emerged as relevant access for risk stratification and targeted therapies improvement. In this review, we performed a detailed overview of the most popular modern methods used in hematological laboratories, pointing out their vital importance for MRD monitoring in order to improve overall survival, early detection of possible relapses and treatment efficacy.
Collapse
|
5
|
John A, Muenzen K, Ausmees K. Evaluation of serverless computing for scalable execution of a joint variant calling workflow. PLoS One 2021; 16:e0254363. [PMID: 34242357 PMCID: PMC8270184 DOI: 10.1371/journal.pone.0254363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/24/2021] [Indexed: 11/18/2022] Open
Abstract
Advances in whole-genome sequencing have greatly reduced the cost and time of obtaining raw genetic information, but the computational requirements of analysis remain a challenge. Serverless computing has emerged as an alternative to using dedicated compute resources, but its utility has not been widely evaluated for standardized genomic workflows. In this study, we define and execute a best-practice joint variant calling workflow using the SWEEP workflow management system. We present an analysis of performance and scalability, and discuss the utility of the serverless paradigm for executing workflows in the field of genomics research. The GATK best-practice short germline joint variant calling pipeline was implemented as a SWEEP workflow comprising 18 tasks. The workflow was executed on Illumina paired-end read samples from the European and African super populations of the 1000 Genomes project phase III. Cost and runtime increased linearly with increasing sample size, although runtime was driven primarily by a single task for larger problem sizes. Execution took a minimum of around 3 hours for 2 samples, up to nearly 13 hours for 62 samples, with costs ranging from $2 to $70.
Collapse
Affiliation(s)
- Aji John
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Kathleen Muenzen
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, United States of America
| | - Kristiina Ausmees
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Salimi D, Moeini A. Incorporating K-mers Highly Correlated to Epigenetic Modifications for Bayesian Inference of Gene Interactions. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200728193621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective::
A gene interaction network, along with its related biological features, has an
important role in computational biology. Bayesian network, as an efficient model, based on
probabilistic concepts is able to exploit known and novel biological casual relationships between
genes. The success of Bayesian networks in predicting the relationships greatly depends on
selecting priors.
Methods::
K-mers have been applied as the prominent features to uncover the similarity between
genes in a specific pathway, suggesting that this feature can be applied to study genes
dependencies. In this study, we propose k-mers (4,5 and 6-mers) highly correlated with epigenetic
modifications, including 17 modifications, as a new prior for Bayesian inference in the gene
interaction network.
Result::
Employing this model on a network of 23 human genes and on a network based on 27
genes related to yeast resulted in F-measure improvements in different biological networks.
Conclusion::
The improvements in the best case are 12%, 36%, and 10% in the pathway, coexpression,
and physical interaction, respectively.
Collapse
Affiliation(s)
- Dariush Salimi
- Department of Animal Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Ali Moeini
- Department of Algorithms and Computation, Faculty of Engineering Science, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Calabrò GE, Tognetto A, Mazzaccara A, Barbina D, Carbone P, Guerrera D, Di Pucchio A, Federici A, Ricciardi W, Boccia S. Capacity Building of Health Professionals on Genetics and Genomics Practice: Evaluation of the Effectiveness of a Distance Learning Training Course for Italian Physicians. Front Genet 2021; 12:626685. [PMID: 33790945 PMCID: PMC8005606 DOI: 10.3389/fgene.2021.626685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/22/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The rapid spread of personalized medicine requires professionals to manage the "omics revolution." Therefore, the genetics/genomics literacy of healthcare professionals should be in line with the continuous advances in this field, in order to implement its potential implications for diagnosis, control and treatment of diseases. The present study investigates the effectiveness of a distance learning course on genetics and genomics targeted at medical doctors. METHODS In the context of a project funded by the Italian Ministry of Health, we developed a distance learning course, entitled Genetics and Genomics practice. The course focused on genetic/genomics testing, pharmacogenetics and oncogenomics and was developed according to andragogical training methods (Problem-based Learning and Case-based Learning). We used a pre-test vs. post-test study design to assess knowledge improvement on a set of 10 Multiple Choice Questions (MCQs). We analyzed the proportion of correct answers for each question pre and post-test and the mean score difference stratified by gender, age, professional status and medical discipline. Moreover, the test was submitted to the participants 8 months after the conclusion of the course (follow-up), in order to assess the retained knowledge. RESULTS The course was completed by 1,637 Italian physicians, most of which were primary care physicians (20.8%), public health professionals (11.5%) and specialist pediatricians (10.6%). The proportion of correct answers increased in the post-test for all the MCQs. The overall mean score significantly increased, from 59.46 in the pre-test to 71.42 in the post-test (p < 0.0001). The comparison in test performance between follow-up and pre-test demonstrated an overall knowledge improvement. CONCLUSION Genomics literacy among healthcare professionals is essential to ensure optimal translation to healthcare delivery of research. The results of this course suggest that distance-learning training in genetic/genomics practice represents an effective method to improve physicians' knowledge in the immediate and mid-term time scale. A preprint version of this paper is available at: https://www.researchsquare.com/article/rs-10083/v1.
Collapse
Affiliation(s)
- Giovanna Elisa Calabrò
- Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessia Tognetto
- Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alfonso Mazzaccara
- Servizio Formazione – Presidenza, Istituto Superiore di Sanità, Rome, Italy
| | - Donatella Barbina
- Servizio Formazione – Presidenza, Istituto Superiore di Sanità, Rome, Italy
| | - Pietro Carbone
- Servizio Formazione – Presidenza, Istituto Superiore di Sanità, Rome, Italy
| | - Debora Guerrera
- Servizio Formazione – Presidenza, Istituto Superiore di Sanità, Rome, Italy
| | | | - Antonio Federici
- Direzione Generale Prevenzione Sanitaria, Ministero della Salute, Rome, Italy
| | - Walter Ricciardi
- Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefania Boccia
- Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Woman and Child Health and Public Health – Public Health Area, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
8
|
Yao L, Zhu W, Shi J, Xu T, Qu G, Zhou W, Yu XF, Zhang X, Jiang G. Detection of coronavirus in environmental surveillance and risk monitoring for pandemic control. Chem Soc Rev 2021; 50:3656-3676. [PMID: 33710177 DOI: 10.1039/d0cs00595a] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The novel human infectious coronaviruses (CoVs) responsible for severe respiratory syndromes have raised concerns owing to the global public health emergencies they have caused repeatedly over the past two decades. However, the ongoing coronavirus disease 2019 (COVID-19) pandemic induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has received unprecedented attention internationally. Monitoring pathogenic CoVs in environmental compartments has been proposed as a promising strategy in preventing the environmental spread and tracing of infectious diseases, but a lack of reliable and efficient detection techniques is still a significant challenge. Moreover, the lack of information regarding the monitoring methodology may pose a barrier to primary researchers. Here, we provide a systematic introduction focused on the detection of CoVs in various environmental matrices, comprehensively involving methods and techniques of sampling, pretreatment, and analysis. Furthermore, the review addresses the challenges and potential improvements in virus detection techniques for environmental surveillance.
Collapse
Affiliation(s)
- Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bregni G, Sticca T, Camera S, Akin Telli T, Craciun L, Trevisi E, Pretta A, Kehagias P, Leduc S, Senti C, Deleporte A, Vandeputte C, Saad ED, Kerger J, Gil T, Piccart-Gebhart M, Awada A, Demetter P, Larsimont D, Hendlisz A, Aftimos P, Sclafani F. Feasibility and clinical impact of routine molecular testing of gastrointestinal cancers at a tertiary centre with a multi-gene, tumor-agnostic, next generation sequencing panel. Acta Oncol 2020; 59:1438-1446. [PMID: 32820683 DOI: 10.1080/0284186x.2020.1809704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND High-throughput sequencing technologies are increasingly used in research but limited data are available on the feasibility and value of these when routinely adopted in clinical practice. MATERIAL AND METHODS We analyzed all consecutive cancer patients for whom genomic testing by a 48-gene next-generation sequencing (NGS) panel (Truseq Amplicon Cancer Panel, Illumina) was requested as part of standard care in one of the largest Belgian cancer networks between 2014 and 2019. Feasibility of NGS was assessed in all study patients, while the impact of NGS on the decision making was analyzed in the group of gastrointestinal cancer patients. RESULTS Tumor samples from 1064 patients with varying tumor types were tested, the number of NGS requests increasing over time (p < .0001). Success rate and median turnaround time were 91.4% and 12.5 days, respectively, both significantly decreasing over time (p ≤ .0002). Non-surgical sampling procedure (OR 7.97, p < .0001), tissue from metastatic site (OR 2.35, p = .0006) and more recent year of testing (OR 1.79, p = .0258) were independently associated with NGS failure. Excluding well-known actionable or clinically relevant mutations which are recommended by international guidelines and commonly tested by targeted sequencing, 57/279 (20.4%) assessable gastrointestinal cancer patients were found to have tumors harboring at least one actionable altered gene according to the OncoKB database. NGS results, however, had a direct impact on management decisions by the treating physician in only 3 cases (1.1%). CONCLUSIONS Our findings confirm that NGS is feasible in the clinical setting with acceptably low failure rates and rapid turnaround time. In gastrointestinal cancers, however, NGS-based multiple-gene testing adds very little to standard targeted sequencing, and in routine practice the clinical impact of NGS panels including genes which are not routinely recommended by international guidelines remains limited.
Collapse
Affiliation(s)
- Giacomo Bregni
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Tiberio Sticca
- Department of Pathology and Molecular Biology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Silvia Camera
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Tugba Akin Telli
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ligia Craciun
- Department of Pathology and Molecular Biology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Elena Trevisi
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Andrea Pretta
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pashalina Kehagias
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sophia Leduc
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Chiara Senti
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Amélie Deleporte
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Caroline Vandeputte
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Everardo Delforge Saad
- Dendrix Research, Sao Paulo, Brazil
- International Drug Development Institute, Louvain-la-Neuve, Belgium
| | - Joseph Kerger
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Thierry Gil
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Martine Piccart-Gebhart
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ahmad Awada
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pieter Demetter
- Department of Pathology and Molecular Biology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Denis Larsimont
- Department of Pathology and Molecular Biology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alain Hendlisz
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Philippe Aftimos
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Francesco Sclafani
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
10
|
Baek SE, Ul-Haq A, Kim DH, Choi HW, Kim MJ, Choi HJ, Kim H. Human Organic Anion Transporting Polypeptide 1B3 Applied as an MRI-Based Reporter Gene. Korean J Radiol 2020; 21:726-735. [PMID: 32410411 PMCID: PMC7231618 DOI: 10.3348/kjr.2019.0903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 01/19/2020] [Indexed: 12/22/2022] Open
Abstract
Objective Recent innovations in biology are boosting gene and cell therapy, but monitoring the response to these treatments is difficult. The purpose of this study was to find an MRI-reporter gene that can be used to monitor gene or cell therapy and that can be delivered without a viral vector, as viral vector delivery methods can result in long-term complications. Materials and Methods CMV promoter-human organic anion transporting polypeptide 1B3 (CMV-hOATP1B3) cDNA or CMV-blank DNA (control) was transfected into HEK293 cells using Lipofectamine. OATP1B3 expression was confirmed by western blotting and confocal microscopy. In vitro cell phantoms were made using transfected HEK293 cells cultured in various concentrations of gadoxetic acid for 24 hours, and images of the phantoms were made with a 9.4T micro-MRI. In vivo xenograft tumors were made by implanting HEK293 cells transfected with CMV-hOATP1B3 (n = 4) or CMV-blank (n = 4) in 8-week-old male nude mice, and MRI was performed before and after intravenous injection of gadoxetic acid (1.2 µL/g). Results Western blot and confocal microscopy after immunofluorescence staining revealed that only CMV-hOATP1B3-transfected HEK293 cells produced abundant OATP1B3, which localized at the cell membrane. OATP1B3 expression levels remained high through the 25th subculture cycle, but decreased substantially by the 50th subculture cycle. MRI of cell phantoms showed that only the CMV-hOATP1B3-transfected cells produced a significant contrast enhancement effect. In vivo MRI of xenograft tumors revealed that only CMV-hOATP1B3-transfected HEK293 tumors demonstrated a T1 contrast effect, which lasted for at least 5 hours. Conclusion The human endogenous OATP1B3 gene can be non-virally delivered into cells to induce transient OATP1B3 expression, leading to gadoxetic acid-mediated enhancement on MRI. These results indicate that hOATP1B3 can serve as an MRI-reporter gene while minimizing the risk of long-term complications.
Collapse
Affiliation(s)
- Song Ee Baek
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Asad Ul-Haq
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dae Hee Kim
- Yonsei University College of Medicine, Seoul, Korea
| | | | - Myeong Jin Kim
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Jin Choi
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Honsoul Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
11
|
Ji JJ, Fan J. Discovering myeloid cell heterogeneity in the lung by means of next generation sequencing. Mil Med Res 2019; 6:33. [PMID: 31651369 PMCID: PMC6814050 DOI: 10.1186/s40779-019-0222-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
The lung plays a vital role in maintaining homeostasis, as it is responsible for the exchange of oxygen and carbon dioxide. Pulmonary homeostasis is maintained by a network of tissue-resident cells, including epithelial cells, endothelial cells and leukocytes. Myeloid cells of the innate immune system and epithelial cells form a critical barrier in the lung. Recently developed unbiased next generation sequencing (NGS) has revealed cell heterogeneity in the lung with respect to physiology and pathology and has reshaped our knowledge. New phenotypes and distinct gene signatures have been identified, and these new findings enhance the diagnosis and treatment of lung diseases. Here, we present a review of the new NGS findings on myeloid cells in lung development, homeostasis, and lung diseases, including acute lung injury (ALI), lung fibrosis, chronic obstructive pulmonary disease (COPD), and lung cancer.
Collapse
Affiliation(s)
- Jing-Jing Ji
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,Department of Pathophysiology, Southern Medical University, Guangzhou, 510515, China
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA. .,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA. .,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
12
|
Tuaeva NO, Falzone L, Porozov YB, Nosyrev AE, Trukhan VM, Kovatsi L, Spandidos DA, Drakoulis N, Kalogeraki A, Mamoulakis C, Tzanakakis G, Libra M, Tsatsakis A. Translational Application of Circulating DNA in Oncology: Review of the Last Decades Achievements. Cells 2019; 8:E1251. [PMID: 31615102 PMCID: PMC6829588 DOI: 10.3390/cells8101251] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/30/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, the introduction of new molecular techniques in experimental and clinical settings has allowed researchers and clinicians to propose circulating-tumor DNA (ctDNA) analysis and liquid biopsy as novel promising strategies for the early diagnosis of cancer and for the definition of patients' prognosis. It was widely demonstrated that through the non-invasive analysis of ctDNA, it is possible to identify and characterize the mutational status of tumors while avoiding invasive diagnostic strategies. Although a number of studies on ctDNA in patients' samples significantly contributed to the improvement of oncology practice, some investigations generated conflicting data about the diagnostic and prognostic significance of ctDNA. Hence, to highlight the relevant achievements obtained so far in this field, a clearer description of the current methodologies used, as well as the obtained results, are strongly needed. On these bases, this review discusses the most relevant studies on ctDNA analysis in cancer, as well as the future directions and applications of liquid biopsy. In particular, special attention was paid to the early diagnosis of primary cancer, to the diagnosis of tumors with an unknown primary location, and finally to the prognosis of cancer patients. Furthermore, the current limitations of ctDNA-based approaches and possible strategies to overcome these limitations are presented.
Collapse
Affiliation(s)
- Natalia O Tuaeva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Luca Falzone
- Department of Biomedical and Biotechnlogical Sciences, University of Catania, 95123 Catania, Italy.
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Naples, Italy.
| | - Yuri B Porozov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
- ITMO University, Saint Petersburg 197101, Russia.
| | - Alexander E Nosyrev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Vladimir M Trukhan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54248 Thessaloniki, Greece.
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Zografou, Greece.
| | - Alexandra Kalogeraki
- Department of Pathology-Cytopathology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, 70013 Crete, Greece.
| | - George Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Massimo Libra
- Department of Biomedical and Biotechnlogical Sciences, University of Catania, 95123 Catania, Italy.
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy.
| | - Aristides Tsatsakis
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion, 71003 Crete, Greece.
| |
Collapse
|
13
|
Conte F, Fiscon G, Licursi V, Bizzarri D, D'Antò T, Farina L, Paci P. A paradigm shift in medicine: A comprehensive review of network-based approaches. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194416. [PMID: 31382052 DOI: 10.1016/j.bbagrm.2019.194416] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/19/2019] [Accepted: 07/28/2019] [Indexed: 02/01/2023]
Abstract
Network medicine is a rapidly evolving new field of medical research, which combines principles and approaches of systems biology and network science, holding the promise to uncovering the causes and to revolutionize the diagnosis and treatments of human diseases. This new paradigm reflects the fact that human diseases are not caused by single molecular defects, but driven by complex interactions among a variety of molecular mediators. The complexity of these interactions embraces different types of information: from the cellular-molecular level of protein-protein interactions to correlational studies of gene expression and regulation, to metabolic and disease pathways up to drug-disease relationships. The analysis of these complex networks can reveal new disease genes and/or disease pathways and identify possible targets for new drug development, as well as new uses for existing drugs. In this review, we offer a comprehensive overview of network types and algorithms used in the framework of network medicine. This article is part of a Special Issue entitled: Transcriptional Profiles and Regulatory Gene Networks edited by Dr. Dr. Federico Manuel Giorgi and Dr. Shaun Mahony.
Collapse
Affiliation(s)
- Federica Conte
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Giulia Fiscon
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy.
| | - Valerio Licursi
- Biology and Biotechnology Department "Charles Darwin" (BBCD), Sapienza University of Rome, Rome, Italy
| | - Daniele Bizzarri
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Tommaso D'Antò
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Farina
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - Paola Paci
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| |
Collapse
|
14
|
Strobl C, Churchill Cihlar J, Lagacé R, Wootton S, Roth C, Huber N, Schnaller L, Zimmermann B, Huber G, Lay Hong S, Moura-Neto R, Silva R, Alshamali F, Souto L, Anslinger K, Egyed B, Jankova-Ajanovska R, Casas-Vargas A, Usaquén W, Silva D, Barletta-Carrillo C, Tineo DH, Vullo C, Würzner R, Xavier C, Gusmão L, Niederstätter H, Bodner M, Budowle B, Parson W. Evaluation of mitogenome sequence concordance, heteroplasmy detection, and haplogrouping in a worldwide lineage study using the Precision ID mtDNA Whole Genome Panel. Forensic Sci Int Genet 2019; 42:244-251. [PMID: 31382159 DOI: 10.1016/j.fsigen.2019.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/09/2019] [Accepted: 07/21/2019] [Indexed: 12/24/2022]
Abstract
The emergence of Massively Parallel Sequencing technologies enabled the analysis of full mitochondrial (mt)DNA sequences from forensically relevant samples that have, so far, only been typed in the control region or its hypervariable segments. In this study, we evaluated the performance of a commercially available multiplex-PCR-based assay, the Precision ID mtDNA Whole Genome Panel (Thermo Fisher Scientific), for the amplification and sequencing of the entire mitochondrial genome (mitogenome) from even degraded forensic specimens. For this purpose, more than 500 samples from 24 different populations were selected to cover the vast majority of established superhaplogroups. These are known to harbor different signature sequence motifs corresponding to their phylogenetic background that could have an effect on primer binding and, thus, could limit a broad application of this molecular genetic tool. The selected samples derived from various forensically relevant tissue sources and were DNA extracted using different methods. We evaluated sequence concordance and heteroplasmy detection and compared the findings to conventional Sanger sequencing as well as an orthogonal MPS platform. We discuss advantages and limitations of this approach with respect to forensic genetic workflow and analytical requirements.
Collapse
Affiliation(s)
- Christina Strobl
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Robert Lagacé
- Human Identification Group, ThermoFisher Scientific, San Francisco, CA, USA
| | - Sharon Wootton
- Human Identification Group, ThermoFisher Scientific, San Francisco, CA, USA
| | - Chantal Roth
- Human Identification Group, ThermoFisher Scientific, San Francisco, CA, USA
| | - Nicole Huber
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Lisa Schnaller
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Bettina Zimmermann
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriela Huber
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Seah Lay Hong
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Rodrigo Moura-Neto
- Laboratório de Biologia Molecular Forense, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rosane Silva
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Farida Alshamali
- Dubai Police, Gen. Dept. Forensic Science & Criminology, Dubai, United Arab Emirates
| | - Luis Souto
- Laboratorio de Genética Aplicada, Departamento de Biologia, Universidade de Aveiro, Portugal
| | | | - Balazs Egyed
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Renata Jankova-Ajanovska
- Institute of Forensic Medicine, Criminalistic and Medical Deontology, Medical Faculty, University "St. Cyril and Methodius", Skopje, Macedonia
| | - Andrea Casas-Vargas
- Group of Population Genetics and Identification, Genetics Institute, National University of Colombia, Bogotá, Colombia
| | - Wiliam Usaquén
- Group of Population Genetics and Identification, Genetics Institute, National University of Colombia, Bogotá, Colombia
| | - Dayse Silva
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | | | - Dean Herman Tineo
- Universidad Nacional Mayor de San Marcos, Instituto de Medicina Legal del Perú, Lima, Peru
| | - Carlos Vullo
- DNA Forensic Laboratory, Argentinean Forensic Anthropology team (EAAF), Córdoba, Argentina
| | - Reinhard Würzner
- Division of Hygiene & Med. Microbiology, Medical University of Innsbruck, Austria
| | - Catarina Xavier
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Harald Niederstätter
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Bruce Budowle
- Center for Human Identification, University of North Texas Health Science Center, TX, USA
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
15
|
Familial intrahepatic cholestasis: New and wide perspectives. Dig Liver Dis 2019; 51:922-933. [PMID: 31105019 DOI: 10.1016/j.dld.2019.04.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/01/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Progressive familial intrahepatic cholestasis (PFIC) includes autosomal recessive cholestatic rare diseases of childhood. AIMS To update the panel of single genes mutations involved in familial cholestasis. METHODS PubMed search for "familial intrahepatic cholestasis" alone as well as in combination with other key words was performed considering primarily original studies and meta-analyses. RESULTS PFIC1 involves ATP8B1 gene encoding for aminophospholipid flippase FIC1. PFIC2 includes ABCB11 gene, encoding for protein functioning as bile salt export pump. PFIC3 is due to mutations of ABCB4 gene responsible for the synthesis of class III multidrug resistance P-glycoprotein flippase. PFIC4 and PFIC5 involve tight junction protein-2 gene and NR1H4 gene encoding for farnesoid X receptor. Benign Intrahepatic Cholestasis, Intrahepatic Cholestasis of Pregnancy and Low-phospholipid-associated cholelithiasis involve the same genes and are characterized by intermittent attacks of cholestasis, no progression to cirrhosis, reversible pregnancy-specific cholestasis and cholelithiasis in young people. Blood and liver tissue levels of bile-excreted drugs can be influenced by the presence of mutations in PFIC genes, causing drug-induced cholestasis. Mutations in PFIC genes might increase the risk of liver cancer. CONCLUSION There is a high proportion of unexplained cholestasis potentially caused by specific genetic pathophysiologic pathways. The use of next generation sequencing and whole-exome sequencing could improve the diagnostic process in this setting.
Collapse
|
16
|
Goodarzi P, Alavi-Moghadam S, Payab M, Larijani B, Rahim F, Gilany K, Bana N, Tayanloo-Beik A, Foroughi Heravani N, Hadavandkhani M, Arjmand B. Metabolomics Analysis of Mesenchymal Stem Cells. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 8:30-40. [PMID: 32351907 PMCID: PMC7175611 DOI: 10.22088/ijmcm.bums.8.2.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Abstract
Various mesenchymal stem cells as easily accessible and multipotent cells can share different essential signaling pathways related to their stemness ability. Understanding the mechanism of stemness ability can be useful for controlling the stem cells for regenerative medicine targets. In this context, OMICs studies can analyze the mechanism of different stem cell properties or stemness ability via a broad range of current high-throughput techniques. This field is fundamentally directed toward the analysis of whole genome (genomics), mRNAs (transcriptomics), proteins (proteomics) and metabolites (metabolomics) in biological samples. According to several studies, metabolomics is more effective than other OMICs ّfor various system biology concerns. Metabolomics can elucidate the biological mechanisms of various mesenchymal stem cell function by measuring their metabolites such as their secretome components. Analyzing the metabolic alteration of mesenchymal stem cells can be useful to promote their regenerative medicine application.
Collapse
Affiliation(s)
- Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran .,Department of Biomedical Sciences, University of Antwerp, Belgium
| | - Nikoo Bana
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Foroughi Heravani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Hadavandkhani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran .,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Biological Rationale for Targeting MEK/ERK Pathways in Anti-Cancer Therapy and to Potentiate Tumour Responses to Radiation. Int J Mol Sci 2019; 20:ijms20102530. [PMID: 31126017 PMCID: PMC6567863 DOI: 10.3390/ijms20102530] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
ERK1 and ERK2 (ERKs), two extracellular regulated kinases (ERK1/2), are evolutionary-conserved and ubiquitous serine-threonine kinases involved in regulating cell signalling in normal and pathological tissues. The expression levels of these kinases are almost always different, with ERK2 being the more prominent. ERK1/2 activation is fundamental for the development and progression of cancer. Since their discovery, much research has been dedicated to their role in mitogen-activated protein kinases (MAPK) pathway signalling and in their activation by mitogens and mutated RAF or RAS in cancer cells. In order to gain a better understanding of the role of ERK1/2 in MAPK pathway signalling, many studies have been aimed at characterizing ERK1/2 splicing isoforms, mutants, substrates and partners. In this review, we highlight the differences between ERK1 and ERK2 without completely discarding the hypothesis that ERK1 and ERK2 exhibit functional redundancy. The main goal of this review is to shed light on the role of ERK1/2 in targeted therapy and radiotherapy and highlight the importance of identifying ERK inhibitors that may overcome acquired resistance. This is a highly relevant therapeutic issue that needs to be addressed to combat tumours that rely on constitutively active RAF and RAS mutants and the MAPK pathway.
Collapse
|
18
|
Whole-Genome Sequencing in Relation to Resistance of Mycobacterium Tuberculosis. ACTA MEDICA MARTINIANA 2019. [DOI: 10.2478/acm-2019-0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Abstract
Tuberculosis, a disease caused by Mycobacterium tuberculosis, represents one of the deadliest infections worldwide. The incidence of resistant forms is increasing year by year; therefore, it is necessary to involve new methods for rapid diagnostics and treatment. One of the possible solutions is the use of whole-genome sequencing (WGS).
The WGS provides an identification of complete genome of the microorganism, including all genes responsible for resistance, in comparison with other genotypic methods (eg. Xpert MTB / RIF or Hain line-probes) that are capable to detect only basic genes. WGS data are available in 1-9 days and several online software tools (TBProfiler, CASTB, Mykrobe PredictorTB) are used for their interpretation and analysis, compared to 3-8 weeks in the case of classic phenotypic evaluation.
Furthermore, WGS predicts resistance to the first-line antituberculotics with a sensitivity of 85-100% and a specificity of 85-100%.
This review elucidates the importance and summarizes the current knowledge about the possible use of WGS in diagnosis and treatment of resistant forms of tuberculosis elucidates.
WGS of M. tuberculosis brings new possibilities for rapid and accurate diagnostics of resistant forms of tuberculosis. Introducing WGS into routine practice can help to reduce the spread of resistant forms of tuberculosis as well as to increase the success rate of the treatment, especially through an appropriate combination of antituberculotics ATs. Introduction of WGS into routine diagnostics can, in spite of the financial difficulty, significantly improve patient care.
Collapse
|
19
|
Zekušić M, Škaričić A, Fumić K, Rogić D, Žigman T, Petković Ramadža D, Vukojević N, Rüfenacht V, Uroić V, Barić I. Metabolic follow-up of a Croatian patient with gyrate atrophy and a new mutation in the OAT gene: a case report. Biochem Med (Zagreb) 2019; 28:030801. [PMID: 30429681 PMCID: PMC6214690 DOI: 10.11613/bm.2018.030801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 06/02/2018] [Indexed: 11/02/2022] Open
Abstract
Gyrate atrophy (GA) of the choroid and retina is a rare autosomal recessive disorder that occurs due to deficiency of the mitochondrial enzyme ornithine aminotransferase (OAT). Hyperornithinemia causes degeneration of the retina with symptoms like myopia, reduced night vision and progressive vision loss. Our patient is a 10-year-old girl with impaired vision and strabismus. As part of the metabolic work-up, plasma amino acid analysis revealed significantly increased concentration of ornithine (1039 μmol/L; reference interval 20 - 155 μmol/L). Molecular genetic analysis revealed homozygous mutation in exon 7 of the OAT gene that has not been reported previously (c.868_870delCTT p.(Leu290del)). This in frame deletion was predicted to be deleterious by in silico software analysis. Our patient was treated with pyridoxine (vitamin B6 in a dose of 2 x 100 mg/day), low-protein diet (0.6 g/kg/day) and L-lysine supplementation which resulted in a significant reduction in plasma ornithine concentrations to 53% of the initial concentration and the ophthalmologic findings showed significant improvement. We conclude that low protein diet and lysine supplementation can lead to long-term reduction in plasma ornithine concentrations and, if started at an early age, notably slow the progression of retinal function loss in patients with GA. The effect of therapy can be reliably monitored by periodical measurement of plasma ornithine concentration. To our knowledge, this is the first report of OAT deficiency in Croatia.
Collapse
Affiliation(s)
- Marija Zekušić
- Department of Laboratory Diagnostics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ana Škaričić
- Department of Laboratory Diagnostics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ksenija Fumić
- Department of Laboratory Diagnostics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Dunja Rogić
- Department of Laboratory Diagnostics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Tamara Žigman
- Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Danijela Petković Ramadža
- Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nenad Vukojević
- Department of Ophthalmology, University Hospital Center Zagreb, Zagreb, Croatia
| | | | - Valentina Uroić
- Department of Nutrition and Dietetics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ivo Barić
- Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
20
|
Tebaldi M, Salvi S. From cfDNA to Sequencing: Workflows and Potentials. Methods Mol Biol 2019; 1909:119-125. [PMID: 30580427 DOI: 10.1007/978-1-4939-8973-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cell-free DNA (cfDNA) is acquiring increasingly importance in oncologic clinical practice, mostly due to its role in predicting the onset of therapy resistance by following the mutation status changes of patients. In this field, high-sensitivity methods like next-generation sequencing (NGS) could help to accurately detect somatic mutations at low frequency. Here, we report some advantages and limitations of NGS approaches for cfDNA mutation analyses with the aim of choosing the most suitable in terms of sensitivity, specificity, data output, costs, and time work.
Collapse
Affiliation(s)
- Michela Tebaldi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy.
| | - Samanta Salvi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
21
|
Ghosh M, Sharma N, Singh AK, Gera M, Pulicherla KK, Jeong DK. Transformation of animal genomics by next-generation sequencing technologies: a decade of challenges and their impact on genetic architecture. Crit Rev Biotechnol 2018; 38:1157-1175. [PMID: 29631431 DOI: 10.1080/07388551.2018.1451819] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
For more than a quarter of a century, sequencing technologies from Sanger's method to next-generation high-throughput techniques have provided fascinating opportunities in the life sciences. The continuing upward trajectory of sequencing technologies will improve livestock research and expedite the development of various new genomic and technological studies with farm animals. The use of high-throughput technologies in livestock research has increased interest in metagenomics, epigenetics, genome-wide association studies, and identification of single nucleotide polymorphisms and copy number variations. Such studies are beginning to provide revolutionary insights into biological and evolutionary processes. Farm animals, such as cattle, swine, and horses, have played a dual role as economically and agriculturally important animals as well as biomedical research models. The first part of this study explores the current state of sequencing methods, many of which are already used in animal genomic studies, and the second part summarizes the state of cattle, swine, horse, and chicken genome sequencing and illustrates its achievements during the last few years. Finally, we describe several high-throughput sequencing approaches for the improved detection of known, unknown, and emerging infectious agents, leading to better diagnosis of infectious diseases. The insights from viral metagenomics and the advancement of next-generation sequencing will strongly support specific and efficient vaccine development and provide strategies for controlling infectious disease transmission among animal populations and/or between animals and humans. However, prospective sequencing technologies will require further research and in-field testing before reaching the marketplace.
Collapse
Affiliation(s)
- Mrinmoy Ghosh
- a Department of Animal Biotechnology , Jeju National University , Jeju-Do , Republic of Korea
| | - Neelesh Sharma
- b Department of Veterinary Science and Animal Husbandry , Sher-e-Kashmir University of Agricultural Sciences and Technology , R.S. Pura , India
| | - Amit Kumar Singh
- a Department of Animal Biotechnology , Jeju National University , Jeju-Do , Republic of Korea
| | - Meeta Gera
- a Department of Animal Biotechnology , Jeju National University , Jeju-Do , Republic of Korea
| | | | - Dong Kee Jeong
- a Department of Animal Biotechnology , Jeju National University , Jeju-Do , Republic of Korea
| |
Collapse
|
22
|
Szigyarto CAK, Spitali P. Biomarkers of Duchenne muscular dystrophy: current findings. Degener Neurol Neuromuscul Dis 2018; 8:1-13. [PMID: 30050384 PMCID: PMC6053903 DOI: 10.2147/dnnd.s121099] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Numerous biomarkers have been unveiled in the rapidly evolving biomarker discovery field, with an aim to improve the clinical management of disorders. In rare diseases, such as Duchenne muscular dystrophy, this endeavor has created a wealth of knowledge that, if effectively exploited, will benefit affected individuals, with respect to health care, therapy, improved quality of life and increased life expectancy. The most promising findings and molecular biomarkers are inspected in this review, with an aim to provide an overview of currently known biomarkers and the technological developments used. Biomarkers as cells, genetic variations, miRNAs, proteins, lipids and/or metabolites indicative of disease severity, progression and treatment response have the potential to improve development and approval of therapies, clinical management of DMD and patients’ life quality. We highlight the complexity of translating research results to clinical use, emphasizing the need for biomarkers, fit for purpose and describe the challenges associated with qualifying biomarkers for clinical applications.
Collapse
Affiliation(s)
- Cristina Al-Khalili Szigyarto
- Division of Proteomics, School of Biotechnology, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden, .,Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden,
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands,
| |
Collapse
|
23
|
Daliri EBM, Wei S, Oh DH, Lee BH. The human microbiome and metabolomics: Current concepts and applications. Crit Rev Food Sci Nutr 2018; 57:3565-3576. [PMID: 27767329 DOI: 10.1080/10408398.2016.1220913] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mammalian gastrointestinal tract has co-developed with a large number of microbes in a symbiotic relationship over millions of years. Recent studies indicate that indigenous bacteria are intimate with the intestine and play essential roles in health and disease. In the quest to maintain a stable niche, these prokaryotes influence multiple host metabolic pathways, resulting from an interactive host-microbiota metabolic signaling and impacting strongly on the metabolic phenotypes of the host. Since dysbiosis of the gut bacteria result in alteration in the levels of certain microbial and host co-metabolites, identifying these markers could enhance early detection of diseases. Also, identification of these metabolic fingerprints could give us clues as to how to manipulate the microbiome to promote health or treat diseases. This review provides an overview of our current knowledge of the microbiome and metablomics, applications and the future perspectives.
Collapse
Affiliation(s)
- Eric Banan-Mwine Daliri
- a Department of Food Science and Biotechnology , Kangwon National University , Chuncheon , South Korea
| | - Shuai Wei
- a Department of Food Science and Biotechnology , Kangwon National University , Chuncheon , South Korea
| | - Deog H Oh
- a Department of Food Science and Biotechnology , Kangwon National University , Chuncheon , South Korea
| | - Byong H Lee
- a Department of Food Science and Biotechnology , Kangwon National University , Chuncheon , South Korea.,b Department of Food Science/Agricultural Chemistry , McGill University , Ste.-Anne-de-Bellevue , Quebec , Canada
| |
Collapse
|
24
|
Pool deconvolution approach for high-throughput gene mining from Bacillus thuringiensis. Appl Microbiol Biotechnol 2017; 102:1467-1482. [DOI: 10.1007/s00253-017-8633-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/24/2017] [Accepted: 11/05/2017] [Indexed: 11/27/2022]
|
25
|
Niu X, Chuang JC, Berry GJ, Wakelee HA. Anaplastic Lymphoma Kinase Testing: IHC vs. FISH vs. NGS. Curr Treat Options Oncol 2017; 18:71. [PMID: 29143897 DOI: 10.1007/s11864-017-0513-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OPINION STATEMENT Personalized targeted therapy has emerged as a promising strategy in lung cancer treatment, with current attention focused on elucidation and detection of oncogenic drivers responsible for tumor initiation and maintenance and development of drug resistance. In lung cancer, several oncogenic drivers have been reported, triggering the application of tyrosine kinase inhibitors (TKIs) to target these dysfunctional genes. The anaplastic lymphoma kinase (ALK) rearrangement is responsible for about 4-7% of all non-small cell lung cancers (NSCLCs) and perhaps as high as a third in specific patient populations such as younger, male, non-smokers with advanced stage, epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene (KRAS) wild type, and signet ring cell adenocarcinoma with abundant intracytoplasmic mucin. The selection of patients based on their ALK status is vital on account of the high response rates with the ALK-targeted agents in this subset of patients. Standardization and validation of ALK rearrangement detection methods is essential for accurate and reproducible results. There are currently three detection methods widely available in clinical practice, including fluorescent in situ hybridization (FISH), immunohistochemistry (IHC), and polymerase chain reaction (PCR)-based next generation sequencing (NGS) technology. However, the choice of diagnostic methodology for ALK rearrangement detection in clinical practice remains a matter of debate. With accumulating data enumerating the advantages and disadvantages of each of the three methods, combining more than one testing method for ALK fusion detection may be beneficial for patients. In this review, we will discuss the current methods used in ALK rearrangement detection with emphasis on their key advantages and disadvantages.
Collapse
Affiliation(s)
- Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai, 200030, People's Republic of China.,Department of Medicine, Division of Oncology, Stanford University School of Medicine, CC-2233, 875 Blake Wilbur Drive, Palo Alto, CA, 94305, USA
| | - Jody C Chuang
- Department of Medicine, Divisions of Hematology and Oncology, Stanford University School of Medicine, CC-2233, 875 Blake Wilbur Drive, Palo Alto, CA, 94305, USA
| | - Gerald J Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Laboratory of Surgical Pathology, Stanford University Medical Center, Room H2110, 300 Pasteur Dr, Stanford, CA, 94305, USA
| | - Heather A Wakelee
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, CC-2233, 875 Blake Wilbur Drive, Palo Alto, CA, 94305, USA.
| |
Collapse
|
26
|
Ansari J, Yun JW, Kompelli AR, Moufarrej YE, Alexander JS, Herrera GA, Shackelford RE. The liquid biopsy in lung cancer. Genes Cancer 2017; 7:355-367. [PMID: 28191282 PMCID: PMC5302037 DOI: 10.18632/genesandcancer.127] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The incidence of lung cancer has significantly increased over the last century, largely due to smoking, and remains the most common cause of cancer deaths worldwide. This is often due to lung cancer first presenting at late stages and a lack of curative therapeutic options at these later stages. Delayed diagnoses, inadequate tumor sampling, and lung cancer misdiagnoses are also not uncommon due to the limitations of the tissue biopsy. Our better understanding of the tumor microenvironment and the systemic actions of tumors, combined with the recent advent of the liquid biopsy, may allow molecular diagnostics to be done on circulating tumor markers, particularly circulating tumor DNA. Multiple liquid biopsy molecular methods are presently being examined to determine their efficacy as surrogates to the tumor tissue biopsy. This review will focus on new liquid biopsy technologies and how they may assist in lung cancer detection, diagnosis, and treatment.
Collapse
Affiliation(s)
- Junaid Ansari
- Feist Weiller Cancer Center, LSU Health Shreveport, LA, USA; Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, USA
| | - Jungmi W Yun
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, USA
| | | | | | - Jonathan S Alexander
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, USA
| | | | | |
Collapse
|
27
|
Engel KL, Mackiewicz M, Hardigan AA, Myers RM, Savic D. Decoding transcriptional enhancers: Evolving from annotation to functional interpretation. Semin Cell Dev Biol 2016; 57:40-50. [PMID: 27224938 DOI: 10.1016/j.semcdb.2016.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/06/2016] [Accepted: 05/18/2016] [Indexed: 12/18/2022]
Abstract
Deciphering the intricate molecular processes that orchestrate the spatial and temporal regulation of genes has become an increasingly major focus of biological research. The differential expression of genes by diverse cell types with a common genome is a hallmark of complex cellular functions, as well as the basis for multicellular life. Importantly, a more coherent understanding of gene regulation is critical for defining developmental processes, evolutionary principles and disease etiologies. Here we present our current understanding of gene regulation by focusing on the role of enhancer elements in these complex processes. Although functional genomic methods have provided considerable advances to our understanding of gene regulation, these assays, which are usually performed on a genome-wide scale, typically provide correlative observations that lack functional interpretation. Recent innovations in genome editing technologies have placed gene regulatory studies at an exciting crossroads, as systematic, functional evaluation of enhancers and other transcriptional regulatory elements can now be performed in a coordinated, high-throughput manner across the entire genome. This review provides insights on transcriptional enhancer function, their role in development and disease, and catalogues experimental tools commonly used to study these elements. Additionally, we discuss the crucial role of novel techniques in deciphering the complex gene regulatory landscape and how these studies will shape future research.
Collapse
Affiliation(s)
- Krysta L Engel
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States
| | - Mark Mackiewicz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States
| | - Andrew A Hardigan
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States; Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States
| | - Daniel Savic
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States.
| |
Collapse
|
28
|
Abstract
Saenger sequencing has led the advances in molecular biology, while faster and cheaper next generation technologies are urgently needed. A newer approach exploits nanopores, natural or solid-state, set in an electrical field, and obtains base sequence information from current variations due to the passage of a ssDNA molecule through the pore. A hurdle in this approach is the fact that the four bases are chemically comparable to each other which leads to small differences in current obstruction. 'Base calling' becomes even more challenging because most nanopores sense a short sequence and not individual bases. Perhaps sequencing DNA via nanopores would be more manageable, if only the bases were two, and chemically very different from each other; a sequence of 1s and 0s comes to mind. Osmylated DNA comes close to such a sequence of 1s and 0s. Osmylation is the addition of osmium tetroxide bipyridine across the C5-C6 double bond of the pyrimidines. Osmylation adds almost 400% mass to the reactive base, creates a sterically and electronically notably different molecule, labeled 1, compared to the unreactive purines, labeled 0. If osmylated DNA were successfully sequenced, the result would be a sequence of osmylated pyrimidines (1), and purines (0), and not of the actual nucleobases. To solve this problem we studied the osmylation reaction with short oligos and with M13mp18, a long ssDNA, developed a UV-vis assay to measure extent of osmylation, and designed two protocols. Protocol A uses mild conditions and yields osmylated thymidines (1), while leaving the other three bases (0) practically intact. Protocol B uses harsher conditions and effectively osmylates both pyrimidines, but not the purines. Applying these two protocols also to the complementary of the target polynucleotide yields a total of four osmylated strands that collectively could define the actual base sequence of the target DNA.
Collapse
|
29
|
Hashmi U, Shafqat S, Khan F, Majid M, Hussain H, Kazi AG, John R, Ahmad P. Plant exomics: concepts, applications and methodologies in crop improvement. PLANT SIGNALING & BEHAVIOR 2015; 10:e976152. [PMID: 25482786 PMCID: PMC4622497 DOI: 10.4161/15592324.2014.976152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/17/2014] [Accepted: 08/18/2014] [Indexed: 05/17/2023]
Abstract
Molecular breeding has a crucial role in improvement of crops. Conventional breeding techniques have failed to ameliorate food production. Next generation sequencing has established new concepts of molecular breeding. Exome sequencing has proven to be a significant tool for assessing natural evolution in plants, studying host pathogen interactions and betterment of crop production as exons assist in interpretation of allelic variation with respect to their phenotype. This review covers the platforms for exome sequencing, next generation sequencing technologies that have revolutionized exome sequencing and led toward development of third generation sequencing. Also discussed in this review are the uses of these sequencing technologies to improve wheat, rice and cotton yield and how these technologies are used in exploring the biodiversity of crops, providing better understanding of plant-host pathogen interaction and assessing the process of natural evolution in crops and it also covers how exome sequencing identifies the gene pool involved in symbiotic and other co-existential systems. Furthermore, we conclude how integration of other methodologies including whole genome sequencing, proteomics, transcriptomics and metabolomics with plant exomics covers the areas which are left untouched with exomics alone and in the end how these integration will transform the future of crops.
Collapse
Key Words
- BAC, bacterial artificial chromosome
- BGR, bacterial grain rot
- CBOL, consortium for 860 the barcode of life
- ETI, effector-triggered immunity
- HPRT, hypoxanthineguanine phosphoribosyl transferase
- MMs, molecular markers
- NGS, next generation sequencing
- NITSR, nuclear internal transcribed spacer region
- OPC, open promoter complex
- QTL, quantitative trait locus
- SMRT, single molecule real time
- SNPs, single nucleotide poly-morphisms
- SOLiD, sequencing by oligonucleotide ligation and detection
- WES, whole exome sequencing
- WGS, whole genome sequencing
- WGS, whole genome shotgun
- biodiversity
- crop improvement
- dNMPs, deoxyribosenucleoside monophosphates
- exome sequencing
- plant biotechnology
- plant-host pathogen interactions
Collapse
Affiliation(s)
- Uzair Hashmi
- Atta ur Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Samia Shafqat
- Atta ur Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Faria Khan
- Atta ur Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Misbah Majid
- Atta ur Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Harris Hussain
- Atta ur Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Alvina Gul Kazi
- Atta ur Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Riffat John
- Department of Botany; University of Kashmir; Jammu and Kashmir, India
| | - Parvaiz Ahmad
- Department of Botany; S.P. College Srinagar; Jammu and Kashmir, India
- Correspondence to: Parvaiz Ahmad;
| |
Collapse
|
30
|
Unamba CIN, Nag A, Sharma RK. Next Generation Sequencing Technologies: The Doorway to the Unexplored Genomics of Non-Model Plants. FRONTIERS IN PLANT SCIENCE 2015; 6:1074. [PMID: 26734016 PMCID: PMC4679907 DOI: 10.3389/fpls.2015.01074] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/16/2015] [Indexed: 05/04/2023]
Abstract
Non-model plants i.e., the species which have one or all of the characters such as long life cycle, difficulty to grow in the laboratory or poor fecundity, have been schemed out of sequencing projects earlier, due to high running cost of Sanger sequencing. Consequently, the information about their genomics and key biological processes are inadequate. However, the advent of fast and cost effective next generation sequencing (NGS) platforms in the recent past has enabled the unearthing of certain characteristic gene structures unique to these species. It has also aided in gaining insight about mechanisms underlying processes of gene expression and secondary metabolism as well as facilitated development of genomic resources for diversity characterization, evolutionary analysis and marker assisted breeding even without prior availability of genomic sequence information. In this review we explore how different Next Gen Sequencing platforms, as well as recent advances in NGS based high throughput genotyping technologies are rewarding efforts on de-novo whole genome/transcriptome sequencing, development of genome wide sequence based markers resources for improvement of non-model crops that are less costly than phenotyping.
Collapse
Affiliation(s)
- Chibuikem I. N. Unamba
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource TechnologyPalampur, India
- Department of Plant Science and Biotechnology, Imo State UniversityOwerri, Nigeria
| | - Akshay Nag
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource TechnologyPalampur, India
| | - Ram K. Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource TechnologyPalampur, India
- *Correspondence: Ram K. Sharma ;
| |
Collapse
|
31
|
Abstract
Understanding human genetic variation and how it impacts on gene function is a major focus in genomic-based research. Translation of this knowledge into clinical care is exemplified by pharmacogenetics/pharmacogenomics. The identification of particular gene variants that might influence drug uptake, metabolism, distribution or excretion promises a more effective personalised medicine approach in choosing the right drug or its dose for any particular individual. Adverse drug responses can then be avoided or mitigated. An understanding of germline or acquired (somatic) DNA mutations can also be used to identify drugs that are more likely to be therapeutically beneficial. This represents an area of growing interest in the treatment of cancer.
Collapse
|
32
|
Padmanabhan R, Mishra AK, Raoult D, Fournier PE. Genomics and metagenomics in medical microbiology. J Microbiol Methods 2013; 95:415-24. [PMID: 24200711 DOI: 10.1016/j.mimet.2013.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 02/06/2023]
Abstract
Over the last two decades, sequencing tools have evolved from laborious time-consuming methodologies to real-time detection and deciphering of genomic DNA. Genome sequencing, especially using next generation sequencing (NGS) has revolutionized the landscape of microbiology and infectious disease. This deluge of sequencing data has not only enabled advances in fundamental biology but also helped improve diagnosis, typing of pathogen, virulence and antibiotic resistance detection, and development of new vaccines and culture media. In addition, NGS also enabled efficient analysis of complex human micro-floras, both commensal, and pathological, through metagenomic methods, thus helping the comprehension and management of human diseases such as obesity. This review summarizes technological advances in genomics and metagenomics relevant to the field of medical microbiology.
Collapse
Affiliation(s)
- Roshan Padmanabhan
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Aix-Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, Faculté de Médecine, 27 Bd. Jean Moulin, 13005 Marseille, France
| | | | | | | |
Collapse
|
33
|
Kalman LV, Lubin IM, Barker S, du Sart D, Elles R, Grody WW, Pazzagli M, Richards S, Schrijver I, Zehnbauer B. Current landscape and new paradigms of proficiency testing and external quality assessment for molecular genetics. Arch Pathol Lab Med 2013; 137:983-8. [PMID: 23808472 PMCID: PMC4684176 DOI: 10.5858/arpa.2012-0311-ra] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Participation in proficiency testing (PT) or external quality assessment (EQA) programs allows the assessment and comparison of test performance among different clinical laboratories and technologies. In addition to the approximately 2300 tests for individual genetic disorders, recent advances in technology have enabled the development of clinical tests that quickly and economically analyze the entire human genome. New PT/EQA approaches are needed to ensure the continued quality of these complex tests. OBJECTIVES To review the availability and scope of PT/EQA for molecular genetic testing for inherited conditions in Europe, Australasia, and the United States; to evaluate the successes and demonstrated value of available PT/EQA programs; and to examine the challenges to the provision of comprehensive PT/EQA posed by new laboratory practices and methodologies. DATA SOURCES The available literature on this topic was reviewed and supplemented with personal experiences of several PT/EQA providers. CONCLUSIONS Proficiency testing/EQA schemes are available for common genetic disorders tested in many clinical laboratories but are not available for most genetic tests offered by only one or a few laboratories. Provision of broad, method-based PT schemes, such as DNA sequencing, would allow assessment of many tests for which formal PT is not currently available. Participation in PT/EQA improves the quality of testing by identifying inaccuracies that laboratories can trace to errors in their testing processes. Areas of research and development to ensure that PT/EQA programs can meet the needs of new and evolving genetic tests and technologies are identified and discussed.
Collapse
Affiliation(s)
- Lisa V Kalman
- Laboratory Research and Evaluation Branch, Division of Laboratory Science and Standards, Office of Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhong L, Wang JTL, Wen D, Aris V, Soteropoulos P, Shapiro BA. Effective classification of microRNA precursors using feature mining and AdaBoost algorithms. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:486-93. [PMID: 23808606 DOI: 10.1089/omi.2013.0011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MicroRNAs play important roles in most biological processes, including cell proliferation, tissue differentiation, and embryonic development, among others. They originate from precursor transcripts (pre-miRNAs), which contain phylogenetically conserved stem-loop structures. An important bioinformatics problem is to distinguish the pre-miRNAs from pseudo pre-miRNAs that have similar stem-loop structures. We present here a novel method for tackling this bioinformatics problem. Our method, named MirID, accepts an RNA sequence as input, and classifies the RNA sequence either as positive (i.e., a real pre-miRNA) or as negative (i.e., a pseudo pre-miRNA). MirID employs a feature mining algorithm for finding combinations of features suitable for building pre-miRNA classification models. These models are implemented using support vector machines, which are combined to construct a classifier ensemble. The accuracy of the classifier ensemble is further enhanced by the utilization of an AdaBoost algorithm. When compared with two closely related tools on twelve species analyzed with these tools, MirID outperforms the existing tools on the majority of the twelve species. MirID was also tested on nine additional species, and the results showed high accuracies on the nine species. The MirID web server is fully operational and freely accessible at http://bioinformatics.njit.edu/MirID/ . Potential applications of this software in genomics and medicine are also discussed.
Collapse
Affiliation(s)
- Ling Zhong
- Bioinformatics Program and Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | | | | | | | | | | |
Collapse
|
35
|
Ben-Zvi S, Givati A, Shomron N. GenomeGems: evaluation of genetic variability from deep sequencing data. BMC Res Notes 2012; 5:338. [PMID: 22748151 PMCID: PMC3499170 DOI: 10.1186/1756-0500-5-338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 05/24/2012] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Detection of disease-causing mutations using Deep Sequencing technologies possesses great challenges. In particular, organizing the great amount of sequences generated so that mutations, which might possibly be biologically relevant, are easily identified is a difficult task. Yet, for this assignment only limited automatic accessible tools exist.
Findings
We developed GenomeGems to gap this need by enabling the user to view and compare Single Nucleotide Polymorphisms (SNPs) from multiple datasets and to load the data onto the UCSC Genome Browser for an expanded and familiar visualization. As such, via automatic, clear and accessible presentation of processed Deep Sequencing data, our tool aims to facilitate ranking of genomic SNP calling. GenomeGems runs on a local Personal Computer (PC) and is freely available athttp://www.tau.ac.il/~nshomron/GenomeGems.
Conclusions
GenomeGems enables researchers to identify potential disease-causing SNPs in an efficient manner. This enables rapid turnover of information and leads to further experimental SNP validation. The tool allows the user to compare and visualize SNPs from multiple experiments and to easily load SNP data onto the UCSC Genome browser for further detailed information.
Collapse
|
36
|
Schrijver I, Aziz N, Farkas DH, Furtado M, Gonzalez AF, Greiner TC, Grody WW, Hambuch T, Kalman L, Kant JA, Klein RD, Leonard DGB, Lubin IM, Mao R, Nagan N, Pratt VM, Sobel ME, Voelkerding KV, Gibson JS. Opportunities and challenges associated with clinical diagnostic genome sequencing: a report of the Association for Molecular Pathology. J Mol Diagn 2012; 14:525-40. [PMID: 22918138 PMCID: PMC6504171 DOI: 10.1016/j.jmoldx.2012.04.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/12/2012] [Accepted: 04/19/2012] [Indexed: 02/07/2023] Open
Abstract
This report of the Whole Genome Analysis group of the Association for Molecular Pathology illuminates the opportunities and challenges associated with clinical diagnostic genome sequencing. With the reality of clinical application of next-generation sequencing, technical aspects of molecular testing can be accomplished at greater speed and with higher volume, while much information is obtained. Although this testing is a next logical step for molecular pathology laboratories, the potential impact on the diagnostic process and clinical correlations is extraordinary and clinical interpretation will be challenging. We review the rapidly evolving technologies; provide application examples; discuss aspects of clinical utility, ethics, and consent; and address the analytic, postanalytic, and professional implications.
Collapse
Affiliation(s)
- Iris Schrijver
- Whole Genome Analysis Working Group, Association for Molecular Pathology Clinical Practice Committee, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cancer genome sequencing and its implications for personalized cancer vaccines. Cancers (Basel) 2011; 3:4191-211. [PMID: 24213133 PMCID: PMC3763418 DOI: 10.3390/cancers3044191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 10/31/2011] [Accepted: 11/09/2011] [Indexed: 12/31/2022] Open
Abstract
New DNA sequencing platforms have revolutionized human genome sequencing. The dramatic advances in genome sequencing technologies predict that the $1,000 genome will become a reality within the next few years. Applied to cancer, the availability of cancer genome sequences permits real-time decision-making with the potential to affect diagnosis, prognosis, and treatment, and has opened the door towards personalized medicine. A promising strategy is the identification of mutated tumor antigens, and the design of personalized cancer vaccines. Supporting this notion are preliminary analyses of the epitope landscape in breast cancer suggesting that individual tumors express significant numbers of novel antigens to the immune system that can be specifically targeted through cancer vaccines.
Collapse
|
38
|
|