1
|
Yang Q, Jin X, Zhang Y, Wu X, Lin H, Ji T, Li R. In vivo delivery of PBAE/ZIF-8 enhances the sensitivity of colorectal cancer to doxorubicin through sh-LncRNA ASB16-AS1. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-18. [PMID: 39428651 DOI: 10.1080/09205063.2024.2410060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/22/2024] [Indexed: 10/22/2024]
Abstract
The aim of this study is to investigate the impact of sh-LncRNA ASB16-AS1 on doxorubicin (DOX) resistance in colorectal cancer (CRC). First, an in vitro study was conducted to investigate the effects of LncRNA ASB16-AS1, miR-185-5p, and TEAD1 on drug resistance in CRC cells. Subsequently, utilizing nanotechnology, poly(beta amino esters) (PBAE)/zeolitic imidazolate framework-8 (ZIF-8)@sh-LncRNA ASB16-AS1 nanoparticles (PZSNP) were synthesized and characterized, evaluating their cellular toxicity and hemolytic activity. Finally, a mouse subcutaneous tumor model was established by subcutaneous injection of SW480/DOX cell suspension to investigate the impact of PZSNP on the tumor. Under DOX treatment, downregulation of LncRNA ASB16-AS1, overexpression of miR-185-5p, or downregulation of TEAD1 suppressed the viability and proliferation of drug-resistant CRC cells while promoting apoptosis. Conversely, overexpression of LncRNA ASB16-AS1, inhibition of miR-185-5p, or overexpression of TEAD1 enhanced the viability and proliferation of drug-resistant CRC cells while inhibiting apoptosis. The synthesized PZSNP exhibited a spherical shape with an average particle size of 123.6 nm, possessed positive charge, displayed good stability. It effectively encapsulated shRNA and displayed low cellular toxicity and hemolytic activity. Under DOX treatment, significant tumor necrosis was observed in the PZSNP group, and tumor growth was suppressed without causing weight loss. LncRNA ASB16-AS1, miR-185-5p, and TEAD1 are involved in regulating cell viability, proliferation, and apoptosis, contributing to drug resistance in CRC cells. sh-LncRNA ASB16-AS1 enhances the sensitivity of CRC cells to DOX during treatment, and in vivo delivery of PZSNP may serve as an effective strategy to overcome chemotherapy resistance in CRC.
Collapse
Affiliation(s)
- Qing Yang
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiaosheng Jin
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yuansen Zhang
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiaoqiu Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Haiying Lin
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Tingting Ji
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Rongzhou Li
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
2
|
Ma X, He Y, Liu C, Zhu T, Li D, Li W, Sun G, Kang X. Long Noncoding RNA 6302 Regulates Chicken Preadipocyte Differentiation by Targeting SLC22A16. Genes (Basel) 2024; 15:758. [PMID: 38927694 PMCID: PMC11203196 DOI: 10.3390/genes15060758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The excessive deposition of abdominal adipocytes in chickens is detrimental to poultry production. However, the regulatory factors that affect abdominal adipogenesis in chickens are still poorly understood. SLC22A16 is differentially expressed in abdominal preadipocytes and 10-day differentiated adipocytes in chickens, but its role in regulating chicken adipogenesis has not been reported. In this study, the function of SLC22A16 in chicken abdominal preadipocytes was investigated. SLC22A16 is significantly upregulated during abdominal adipocyte differentiation. The overexpression of SLC2A16 upregulated the expression of adipogenic marker genes and proliferation-related genes, and promoted the proliferation of adipocytes and the accumulation of triglycerides. The knockdown of SLC22A16 downregulated the expression of adipogenic marker genes and proliferation-related genes, inhibited the proliferation of adipocytes, and impaired the accumulation of triglycerides in adipocytes. In addition, LNC6302 was differentially expressed in abdominal preadipocytes and mature adipocytes, and was significantly positively correlated with the expression of SLC22A16. Interference with LNC6302 inhibits the expression of adipogenic marker genes and proliferation-related genes. The data supported the notion that LNC6302 promotes the differentiation of chicken abdominal adipocytes by cis-regulating the expression of SLC22A16. This study identified the role of SLC22A16 in the differentiation and proliferation of chicken adipocytes, providing a potential target for improving abdominal adipogenesis in chickens.
Collapse
Affiliation(s)
- Xiangfei Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
| | - Yuehua He
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Cong Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
| | - Tingqi Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Guirong Sun
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (X.M.); (Y.H.); (C.L.); (T.Z.); (D.L.); (W.L.)
| |
Collapse
|
3
|
Li W, Cao Z, Xu F, Zhang X, Sun Y, Xie Z, Ning C, Zhang Q, Wang D, Tang H. Whole transcriptome sequencing reveals key genes and ceRNA regulatory networks associated with pimpled eggs in hens. Poult Sci 2024; 103:103715. [PMID: 38652954 PMCID: PMC11063507 DOI: 10.1016/j.psj.2024.103715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024] Open
Abstract
Eggshell is one of the most important indicators of egg quality, and due to low shell strength, pimple eggs (PE) are more susceptible to breakage, thus causing huge economic losses to the egg industry. At the current time, the molecular mechanisms that regulate the formation of pimple eggs are poorly understood. In this study, uterine tissues of PE-laying hens (n = 8) and normal egg (NE) -laying hens (n = 8) were analyzed by whole transcriptome sequencing, and a total of 619 differentially expressed mRNAs (DE mRNAs), 122 differentially expressed lncRNAs (DE lncRNAs) and 21 differentially expressed miRNAs (DE miRNAs) were obtained. Based on the targeting relationship among DE mRNAs, DE lncRNAs and DE miRNAs, we constructed a competitive endogenous RNA (ceRNA) network including 12 DE miRNAs, 19 DE lncRNAs, and 128 DE mRNAs. Considering the large amount of information contained in the network, we constructed a smaller ceRNA network to better understand the complex mechanisms of pimple egg formation. The smaller ceRNA network network contains 7 DE lncRNAs (LOC107056551, LOC121109367, LOC121108909, LOC121108862, LOC112530033, LOC121113165, LOC107054145), 5 DE miRNAs (gga-miR-6568-3p, gga-miR-31-5p, gga-miR-18b-3p, gga-miR-1759-3p, gga-miR-12240-3p) and 7 DE mRNAs (CABP1, DNAJC5, HCN3, HPCA, IBSP, KCNT1, OTOP3), and these differentially expressed genes may play key regulatory roles in the formation of pimpled eggs in hens. This study provides the overall expression profiles of mRNAs, lncRNAs and miRNAs in the uterine tissues of hens, which provides a theoretical basis for further research on the molecular mechanisms of pimpled egg formation, and has potential applications in improving eggshell quality.
Collapse
Affiliation(s)
- Wenqiang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Zhi Cao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Fei Xu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Xuguang Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Yifei Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Zhongbiao Xie
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Chao Ning
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Dan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Hui Tang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology, Shandong Agricultural University, Taian City, Shandong Province, 271018, China.
| |
Collapse
|
4
|
Xiong H, Li W, Wang L, Wang X, Tang B, Cui Z, Liu L. Whole transcriptome analysis revealed the regulatory network and related pathways of non-coding RNA regulating ovarian atrophy in broody hens. Front Vet Sci 2024; 11:1399776. [PMID: 38868501 PMCID: PMC11168117 DOI: 10.3389/fvets.2024.1399776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024] Open
Abstract
Poultry broodiness can cause ovarian atresia, which has a detrimental impact on egg production. Non-coding RNAs (ncRNAs) have become one of the most talked-about topics in life sciences because of the increasing evidence of their novel biological roles in regulatory systems. However, the molecular mechanisms of ncRNAs functions and processes in chicken ovarian development remain largely unknown. Whole-transcriptome RNA sequencing of the ovaries of broodiness and laying chickens was thus performed to identify the ncRNA regulatory mechanisms associated with ovarian atresia in chickens. Subsequent analysis revealed that the ovaries of laying chickens and those with broodiness had 40 differentially expressed MicroRNA (miRNAs) (15 up-regulated and 25 down-regulated), 379 differentially expressed Long Noncoding RNA (lncRNAs) (213 up-regulated and 166 down-regulated), and 129 differentially expressed circular RNA (circRNAs) (63 up-regulated and 66 down-regulated). The competing endogenous RNAs (ceRNA) network analysis further revealed the involvement of ECM-receptor interaction, AGE-RAGE signaling pathway, focal adhesion, cytokine-cytokine receptor interaction, inflammatory mediator regulation of TRP channels, renin secretion, gap junction, insulin secretion, serotonergic synapse, and IL-17 signaling pathways in broodiness. Upon further analysis, it became evident that THBS1 and MYLK are significant candidate genes implicated in the regulation of broodiness. The expression of these genes is linked to miR-155-x, miR-211-z, miR-1682-z, gga-miR-155, and gga-miR-1682, as well as to the competitive binding of novel_circ_014674 and MSTRG.3306.4. The findings of this study reveal the existence of a regulatory link between non-coding RNAs and their competing mRNAs, which provide a better comprehension of the ncRNA function and processes in chicken ovarian development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Cendron F, Cassandro M, Penasa M. Genome-wide investigation to assess copy number variants in the Italian local chicken population. J Anim Sci Biotechnol 2024; 15:2. [PMID: 38167097 PMCID: PMC10763469 DOI: 10.1186/s40104-023-00965-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Copy number variants (CNV) hold significant functional and evolutionary importance. Numerous ongoing CNV studies aim to elucidate the etiology of human diseases and gain insights into the population structure of livestock. High-density chips have enabled the detection of CNV with increased resolution, leading to the identification of even small CNV. This study aimed to identify CNV in local Italian chicken breeds and investigate their distribution across the genome. RESULTS Copy number variants were mainly distributed across the first six chromosomes and primarily associated with loss type CNV. The majority of CNV in the investigated breeds were of types 0 and 1, and the minimum length of CNV was significantly larger than that reported in previous studies. Interestingly, a high proportion of the length of chromosome 16 was covered by copy number variation regions (CNVR), with the major histocompatibility complex being the likely cause. Among the genes identified within CNVR, only those present in at least five animals across breeds (n = 95) were discussed to reduce the focus on redundant CNV. Some of these genes have been associated to functional traits in chickens. Notably, several CNVR on different chromosomes harbor genes related to muscle development, tissue-specific biological processes, heat stress resistance, and immune response. Quantitative trait loci (QTL) were also analyzed to investigate potential overlapping with the identified CNVR: 54 out of the 95 gene-containing regions overlapped with 428 QTL associated to body weight and size, carcass characteristics, egg production, egg components, fat deposition, and feed intake. CONCLUSIONS The genomic phenomena reported in this study that can cause changes in the distribution of CNV within the genome over time and the comparison of these differences in CNVR of the local chicken breeds could help in preserving these genetic resources.
Collapse
Affiliation(s)
- Filippo Cendron
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, 35020, Legnaro, PD, Italy.
| | - Martino Cassandro
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, 35020, Legnaro, PD, Italy
- Federazione Delle Associazioni Nazionali Di Razza E Specie, Via XXIV Maggio 43, 00187, Rome, Italy
| | - Mauro Penasa
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, 35020, Legnaro, PD, Italy
| |
Collapse
|
6
|
Yuan M, Liu X, Wang M, Li Z, Li H, Leng L, Wang S. A Functional Variant Alters the Binding of Bone morphogenetic protein 2 to the Transcription Factor NF-κB to Regulate Bone morphogenetic protein 2 Gene Expression and Chicken Abdominal Fat Deposition. Animals (Basel) 2023; 13:3401. [PMID: 37958155 PMCID: PMC10650395 DOI: 10.3390/ani13213401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
In this study, we employed a dual-luciferase reporter assay and electrophoretic mobility shift analysis (EMSA) in vitro to explore whether a 12-base pair (bp) insertion/deletion (InDel) variant (namely g.14798187_14798188insTCCCTGCCCCCT) within intron 2 of the chicken BMP2 gene, which was significantly associated with chicken abdominal fat weight and abdominal fat percentage, is a functional marker and its potential regulatory mechanism. The reporter analysis demonstrated that the luciferase activity of the deletion allele was extremely significantly higher than that of the insertion allele (p < 0.01). A bioinformatics analysis revealed that compared to the deletion allele, the insertion allele created a transcription factor binding site of nuclear factor-kappa B (NF-κB), which exhibited an inhibitory effect on fat deposition. A dual-luciferase reporter assay demonstrated that the inhibitory effect of NF-κB on the deletion allele was stronger than that on the insertion allele. EMSA indicated that the binding affinity of NF-κB for the insertion allele was stronger than that for the deletion allele. In conclusion, the 12-bp InDel chicken BMP2 gene variant is a functional variant affecting fat deposition in chickens, which may partially regulate BMP2 gene expression by affecting the binding of transcription factor NF-κB to the BMP2 gene.
Collapse
Affiliation(s)
- Meng Yuan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xin Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Mengdie Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Ziwei Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Li Leng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Shouzhi Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
7
|
Liu Y, Xing K, Ao H, Zhang F, Zhao X, Liu H, Shi Y, Yu Y, Wang C. Competing endogenous RNA network construction based on long non-coding RNAs, microRNAs, and mRNAs related to fat deposition in Songliao black swine. Anim Genet 2023; 54:132-143. [PMID: 36596449 DOI: 10.1111/age.13283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/19/2022] [Accepted: 11/24/2022] [Indexed: 01/05/2023]
Abstract
China has a long history of pig breeding and a number of local breeds. The Songliao Black pig, bred in China in 2009, shows high variation in backfat thickness and therefore is well-suited to fat deposition research. Fat deposition is a complex trait, and the underlying regulatory factors are not fully characterized. In this study, the molecular basis of fat deposition traits was evaluated by comparisons between three individuals with extremely high-backfat thickness and three with extremely low-backfat thickness selected from 53 gilts. Subcutaneous adipose tissues of the back were collected for strand-specific library RNA sequencing (RNA-seq) and small RNA-seq. We identified 13 184 mRNAs, 2046 long non-coding (lnc)RNAs, and 494 micro (mi)RNAs by high-throughput sequencing. Furthermore, we detected 150 differentially expressed mRNAs, 66 differentially expressed lncRNAs, and eight differentially expressed miRNAs. A functional enrichment analysis indicated that these genes are involved in multiple fat metabolism-related pathways, including positive regulation of fat cell differentiation, and fat digestion and absorption. We used various algorithms (miRanda, TargetScan, and RNAhybrid) to predict targeting relationships and constructed a competing endogenous RNA network containing seven lncRNAs, three miRNAs, and six mRNAs. All these genes were differentially expressed between the extremely high and low backfat thickness groups or enriched in pathways related to fat metabolism. Our results provide insight into the regulatory mechanisms by which non-coding RNAs and their target genes influence backfat deposition in pigs. Furthermore, our newly constructed competing endogenous RNA (lncRNA-miRNA-mRNA) network provides a basis for further exploration of fat deposition traits and non-coding RNA functions.
Collapse
Affiliation(s)
- Yibing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Hong Ao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengxia Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xitong Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Huatao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yong Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chuduan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Lu J, Zhu D, Zhang X, Wang J, Cao H, Li L. The crucial role of LncRNA MIR210HG involved in the regulation of human cancer and other disease. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:137-150. [PMID: 36088513 DOI: 10.1007/s12094-022-02943-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) have evoked considerable interest in recent years due to their critical functions in the regulation of disease processes. Abnormal expression of lncRNAs is found in multiple diseases, and lncRNAs have been exploited for diverse medical applications. The lncRNA MIR210HG is a recently discovered lncRNA that is widely dysregulated in human disease. MIR210HG was described to have biological functions with potential roles in disease development, including cell proliferation, invasion, migration, and energy metabolism. And MIR210HG dysregulation was confirmed to have promising clinical values in disease diagnosis, treatment, and prognosis. In this review, we systematically summarize the expression profiles, roles, underlying mechanisms, and clinical applications of MIR210HG in human disease.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xiaoqian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
9
|
Jing Y, Cheng B, Wang H, Bai X, Zhang Q, Wang N, Li H, Wang S. The landscape of the long non-coding RNAs and circular RNAs of the abdominal fat tissues in the chicken lines divergently selected for fatness. BMC Genomics 2022; 23:790. [PMID: 36456907 PMCID: PMC9714206 DOI: 10.1186/s12864-022-09045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Excessive deposition of abdominal fat poses serious problems in broilers owing to rapid growth. Recently, the evolution of the existing knowledge on long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have established their indispensable roles in multiple physiological metabolic processes, including adipogenesis and fat deposition. However, not much has been explored on their profiles in the abdominal fat tissues of broilers to date. In the study, we aimed to characterize the vital candidates of lncRNAs and circRNAs and their underlying regulations for abdominal fat deposition in broilers. RESULTS The present study sequenced the lncRNAs and circRNAs expression profiles in the abdominal fat tissues isolated from 7-week-old broilers, who were divergently selected for their fatness. It identified a total of 3359 lncRNAs and 176 circRNAs, demonstrating differential expressed (DE) 30 lncRNAs and 17 circRNAs between the fat- and lean-line broilers (|log2FC| ≥ 1, P < 0.05). Subsequently, the 20 cis-targets and 48 trans-targets of the candidate DE lncRNAs were identified for depositing abdominal fat by adjacent gene analysis and co-expression analysis, respectively. In addition, the functional enrichment analysis showed the DE lncRNAs targets and DE circRNAs host genes to be mainly involved in the cellular processes, amino/fatty acid metabolism, and immune inflammation-related pathways and GO terms. Finally, the vital 16 DE lncRNAs located in cytoplasm and specifically expressed in fat/lean line and their targets were used to construct the lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) regulatory network, comprising 7 DE lncRNAs, 28 miRNAs, 11 DE mRNAs. Notably, three lncRNAs including XR_001468036.2, XR_003077610.1 and XR_001466431.2 with the most connected degrees might play hub regulatory roles in abdominal fat deposition of broilers. CONCLUSIONS This study characterized the whole expression difference of lncRNAs and circRNAs between the two lines broilers with divergently ability of abdominal fat. The vital candidate DE lncRNAs/circRNAs and ceRNA regulations were identified related to the deposition of abdominal fat in chicken. These results might further improve our understanding of regulating the non-coding RNAs in obesity.
Collapse
Affiliation(s)
- Yang Jing
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Bohan Cheng
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Haoyu Wang
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Xue Bai
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Qi Zhang
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Ning Wang
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Hui Li
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Shouzhi Wang
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| |
Collapse
|
10
|
Han H, Wang X, Li W, Liu J, Fan Y, Zhang H, Yang J, Gao Y, Liu Y. Identification and Characterization of lncRNAs Expression Profile Related to Goat Skeletal Muscle at Different Development Stages. Animals (Basel) 2022; 12:ani12192683. [PMID: 36230427 PMCID: PMC9558979 DOI: 10.3390/ani12192683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
LncRNAs are essential for regulating skeletal muscle. However, the expression profile and function of lncRNAs in goat muscle remains unclear. Here, an average of ~14.58 Gb high-quality reads were obtained from longissimus dorsi tissues of 1-month-old (n = 3) and 9-month-old (n = 3) Wu'an black goats using RNA sequencing. Of a total of 3441 lncRNAs, 1281 were lincRNAs, 805 were antisense lncRNAs, and 1355 were sense_overlapping lncRNAs. These lncRNAs shared some properties with goats, such as fewer exons, shorter transcript, and open reading frames (ORFs) length. Among them, 36 differentially expressed lncRNAs (DE lncRNA) were identified, and then 10 random lncRNAs were validated by RT-qPCR. Furthermore, 30 DE lncRNAs were neighboring 71 mRNAs and several genes were functionally enriched in muscle development-related pathways, such as APC, IFRD1, NKX2-5, and others. Additionally, 36 DE lncRNAs and 2684 mRNAs were included in co-expression interactions. A lncRNA-miRNA-mRNA network containing 4 lncRNAs, 3 miRNAs, and 8 mRNAs was finally constructed, of which XR_001296113.2 might regulate PDLIM7 expression by interaction with chi-miR-1296 to affect skeletal muscle development. This study revealed the expression profile of goat lncRNAs for further investigative studies and provides a fuller understanding of skeletal muscle development.
Collapse
Affiliation(s)
- Haiyin Han
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Xianwei Wang
- Henan Animal Husbandry Service, Zhengzhou 450046, China
| | - Wentao Li
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Jiannan Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056021, China
| | - Yekai Fan
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Hui Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Junqi Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Yahui Gao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
- Correspondence: (Y.G.); (Y.L.); Tel./Fax: +86-0310-8573021 (Y.G.); +86-0310-8573009 (Y.L.)
| | - Yufang Liu
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
- Correspondence: (Y.G.); (Y.L.); Tel./Fax: +86-0310-8573021 (Y.G.); +86-0310-8573009 (Y.L.)
| |
Collapse
|
11
|
Xiao C, Sun T, Yang Z, Zou L, Deng J, Yang X. Whole transcriptome RNA Sequencing Reveals the Global Molecular Responses and circRNA/lncRNA-miRNA-mRNA ceRNA Regulatory Network in Chicken Fat Deposition. Poult Sci 2022; 101:102121. [PMID: 36116349 PMCID: PMC9485216 DOI: 10.1016/j.psj.2022.102121] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/21/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
Abstract
Fat deposition is a vital factor affecting the economics of poultry production. Numerous studies on fat deposition have been done. However, the molecular regulatory mechanism is still unclear. In the present study, the whole-transcriptome RNA sequencing in abdominal fat, back skin, and liver both high- and low-abdominal fat groups was used to uncover the competitive endogenous RNA (ceRNA) regulation network related to chicken fat deposition. The results showed that differentially expressed (DE) genes in abdominal fat, back skin, liver were 1207(784 mRNAs, 330 lncRNAs, 41 circRNAs, 52 miRNAs), 860 (607 mRNAs, 166 lncRNAs, 26 circRNAs, 61 miRNAs), and 923 (501 mRNAs, 262 lncRNAs, 15 circRNAs, 145 miRNAs), respectively. The ceRNA regulatory network analysis indicated that the fatty acid metabolic process, monocarboxylic acid metabolic process, carboxylic acid metabolic process, glycerolipid metabolism, fatty acid metabolism, and peroxisome proliferator-activated receptor (PPAR) signaling pathway took part in chicken fat deposition. Meanwhile, we scan the important genes, FADS2, HSD17B12, ELOVL5, AKR1E2, DGKQ, GPAM, PLIN2, which were regulated by gga-miR-460b-5p, gga-miR-199-5p, gga-miR-7470-3p, gga-miR-6595-5p, gga-miR-101-2-5p. While these miRNAs were competitive combined by lncRNAs including MSTRG.18043, MSTRG.7738, MSTRG.21310, MSTRG.19577, and circRNAs including novel_circ_PTPN2, novel_circ_CTNNA1, novel_circ_PTPRD. This finding provides new insights into the regulatory mechanism of mRNA, miRNA, lncRNA, and circRNA in chicken fat deposition.
Collapse
Affiliation(s)
- Cong Xiao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Tiantian Sun
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhuliang Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Leqin Zou
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jixian Deng
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiurong Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
12
|
Tian W, Hao X, Nie R, Ling Y, Zhang B, Zhang H, Wu C. Comparative Transcriptome Analysis Reveals Regulatory Mechanism of Long Non-Coding RNAs during Abdominal Preadipocyte Adipogenic Differentiation in Chickens. Animals (Basel) 2022; 12:1099. [PMID: 35565526 PMCID: PMC9101879 DOI: 10.3390/ani12091099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 11/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are implicated in mammalian adipogenesis and obesity. However, their genome-wide distribution, expression profiles, and regulatory mechanisms during chicken adipogenesis remain rarely understood. In the present study, lncRNAs associated with adipogenesis were identified from chicken abdominal adipocytes at multiple differentiation stages using Ribo-Zero RNA-seq. A total of 15,179 lncRNAs were identified and characterized by stage-specific expression patterns. Of these, 840 differentially expressed lncRNAs were detected, and their cis- and trans-target genes were significantly enriched in multiple lipid-related pathways. Through weighted gene co-expression network analysis (WGCNA) and time-series expression profile clustering analysis, 14 key lncRNAs were identified as candidate regulatory lncRNAs in chicken adipogenic differentiation. The cis- and trans-regulatory interactions of key lncRNAs were constructed based on their differentially expressed cis- and trans-target genes, respectively. We also constructed a competing endogenous RNA (ceRNA) network based on the key lncRNAs, differentially expressed miRNAs, and differentially expressed mRNAs. MSTRG.25116.1 was identified as a potential regulator of chicken abdominal preadipocyte adipogenic differentiation by acting as a transcriptional trans-regulator of fatty acid amide hydrolase (FAAH) gene expression and/or a ceRNA that post-transcriptionally mediates FAAH gene expression by sponging gga-miR-1635.
Collapse
Affiliation(s)
| | | | | | | | - Bo Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (W.T.); (X.H.); (R.N.); (Y.L.); (C.W.)
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (W.T.); (X.H.); (R.N.); (Y.L.); (C.W.)
| | | |
Collapse
|
13
|
Zhai B, Zhao Y, Fan S, Yuan P, Li H, Li S, Li Y, Zhang Y, Huang H, Li H, Kang X, Li G. Differentially Expressed lncRNAs Related to the Development of Abdominal Fat in Gushi Chickens and Their Interaction Regulatory Network. Front Genet 2022; 12:802857. [PMID: 35003230 PMCID: PMC8740130 DOI: 10.3389/fgene.2021.802857] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/03/2023] Open
Abstract
Chickens are one of the most important sources of meat worldwide, and the growth status of abdominal fat is closely related to production efficiency. Long noncoding RNAs (lncRNAs) play an important role in lipid metabolism and deposition regulation. However, research on the expression profile of lncRNAs related to the development of abdominal fat in chickens after hatching and their interaction regulatory networks is still lacking. To characterize the lncRNA expression profile during the development of chicken abdominal fat, abdominal adipose tissues from 6-, 14-, 22-, and 30-week-old Chinese Gushi chickens were herein used to construct 12 cDNA libraries, and a total of 3,827 new lncRNAs and 5,466 previously annotated lncRNAs were revealed. At the same time, based on the comparative analysis of five combinations, 276 differentially expressed lncRNAs (DE-lncRNAs) were screened. Functional enrichment analysis showed that the predicted target genes of these DE-lncRNAs were significantly enriched in pathways related to the posttranscriptional regulation of gene expression, negative regulation of cell proliferation, cell adhesion and other biological processes, glycosphingolipid biosynthesis, PPAR signaling, fatty acid degradation, fatty acid synthesis and others. In addition, association analysis of the lncRNA transcriptome profile was performed, and DE-lncRNA-related lncRNA-mRNA, lncRNA-miRNA and lncRNA-miRNA-mRNA interaction regulatory networks were constructed. The results showed that DE-lncRNA formed a complex network with PPAR pathway components, including PPARD, ACOX1, ADIPOQ, CPT1A, FABP5, ASBG2, LPL, PLIN2 and related miRNAs, including mir-200b-3p, mir-130b-3p, mir-215-5p, mir-122-5p, mir-223 and mir-125b-5p, and played an important regulatory role in biological processes such as lipid metabolism, adipocyte proliferation and differentiation. This study described the dynamic expression profile of lncRNAs in the abdominal fat of Gushi chickens for the first time and constructed the DE-lncRNA interaction regulatory network. The results expand the number of known lncRNAs in chicken abdominal fat and provide valuable resources for further elucidating the posttranscriptional regulatory mechanism of chicken abdominal fat development or deposition.
Collapse
Affiliation(s)
- Bin Zhai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yinli Zhao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shengxin Fan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Pengtao Yuan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hongtai Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Shuaihao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yuanfang Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China
| | - Hetian Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China
| |
Collapse
|
14
|
Lagarrigue S, Lorthiois M, Degalez F, Gilot D, Derrien T. LncRNAs in domesticated animals: from dog to livestock species. Mamm Genome 2021; 33:248-270. [PMID: 34773482 PMCID: PMC9114084 DOI: 10.1007/s00335-021-09928-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Animal genomes are pervasively transcribed into multiple RNA molecules, of which many will not be translated into proteins. One major component of this transcribed non-coding genome is the long non-coding RNAs (lncRNAs), which are defined as transcripts longer than 200 nucleotides with low coding-potential capabilities. Domestic animals constitute a unique resource for studying the genetic and epigenetic basis of phenotypic variations involving protein-coding and non-coding RNAs, such as lncRNAs. This review presents the current knowledge regarding transcriptome-based catalogues of lncRNAs in major domesticated animals (pets and livestock species), covering a broad phylogenetic scale (from dogs to chicken), and in comparison with human and mouse lncRNA catalogues. Furthermore, we describe different methods to extract known or discover novel lncRNAs and explore comparative genomics approaches to strengthen the annotation of lncRNAs. We then detail different strategies contributing to a better understanding of lncRNA functions, from genetic studies such as GWAS to molecular biology experiments and give some case examples in domestic animals. Finally, we discuss the limitations of current lncRNA annotations and suggest research directions to improve them and their functional characterisation.
Collapse
Affiliation(s)
| | - Matthias Lorthiois
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 2 av Prof Leon Bernard, F-35000, Rennes, France
| | - Fabien Degalez
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, 35590, Saint-Gilles, France
| | - David Gilot
- CLCC Eugène Marquis, INSERM, Université Rennes, UMR_S 1242, 35000, Rennes, France
| | - Thomas Derrien
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 2 av Prof Leon Bernard, F-35000, Rennes, France.
| |
Collapse
|
15
|
Integrated Analysis Reveals a lncRNA-miRNA-mRNA Network Associated with Pigeon Skeletal Muscle Development. Genes (Basel) 2021; 12:genes12111787. [PMID: 34828393 PMCID: PMC8625974 DOI: 10.3390/genes12111787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
Growing evidence has demonstrated the emerging role of long non-coding RNA as competitive endogenous RNA (ceRNA) in regulating skeletal muscle development. However, the mechanism of ceRNA regulated by lncRNA in pigeon skeletal muscle development remains unclear. To reveal the function and regulatory mechanisms of lncRNA, we first analyzed the expression profiles of lncRNA, microRNA (miRNA), and mRNA during the development of pigeon skeletal muscle using high-throughput sequencing. We then constructed a lncRNA-miRNA-mRNA ceRNA network based on differentially expressed (DE) lncRNAs, miRNAs, and mRNAs according to the ceRNA hypothesis. Functional enrichment and short time-series expression miner (STEM) analysis were performed to explore the function of the ceRNA network. Hub lncRNA-miRNA-mRNA interactions were identified by connectivity degree and validated using dual-luciferase activity assay. The results showed that a total of 1625 DE lncRNAs, 11,311 DE mRNAs, and 573 DE miRNAs were identified. A ceRNA network containing 9120 lncRNA-miRNA-mRNA interactions was constructed. STEM analysis indicated that the function of the lncRNA-associated ceRNA network might be developmental specific. Functional enrichment analysis identified potential pathways regulating pigeon skeletal muscle development, such as cell cycle and MAPK signaling. Based on the connectivity degree, lncRNAs TCONS_00066712, TCONS_00026594, TCONS_00001557, TCONS_00001553, and TCONS_00003307 were identified as hub genes in the ceRNA network. lncRNA TCONS_00026594 might regulate the FSHD region gene 1 (FRG1)/ SRC proto-oncogene, non-receptor tyrosine kinase (SRC) by sponge adsorption of cli-miR-1a-3p to affect the development of pigeon skeletal muscle. Our findings provide a data basis for in-depth elucidation of the lncRNA-associated ceRNA mechanism underlying pigeon skeletal muscle development.
Collapse
|
16
|
Zhang Y, Sun L, Zhu R, Zhang S, Liu S, Wang Y, Wu Y, Liao X, Mi J. Absence of Circadian Rhythm in Fecal Microbiota of Laying Hens under Common Light. Animals (Basel) 2021; 11:2065. [PMID: 34359193 PMCID: PMC8300245 DOI: 10.3390/ani11072065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022] Open
Abstract
The circadian rhythm of gut microbiota is an important biological rhythm that plays a crucial role in host health. However, few studies have determined the associations between the circadian rhythm and gut microbiota in laying hens. The present experiment investigated the circadian rhythm of fecal microbiota in laying hens. Feces samples were collected from 10 laying hens at nine different time points (06:00-12:00-18:00-00:00-06:00-12:00-18:00-00:00-06:00) to demonstrate the circadian rhythm of fecal microbiota. The results showed that the α and β diversity of the fecal microbiota fluctuated significantly at different time points. Beta nearest taxon index analysis suggested that assembly strategies of the abundant and rare amplicon sequence variant (ASV) sub-communities were different. Abundant ASVs preferred dispersal limitation (weak selection), and rare ASVs were randomly formed due to the "non-dominant" fractions. Highly robust fluctuations of fecal microbiota at the phylum level were found. For example, Firmicutes and Proteobacteria fluctuated inversely to each other, but the total ratio remained in a dynamic balance over 48 h. We identified that temporal dynamic changes had a significant effect on the relative abundance of the important bacteria in the feces microbial community using the random forest algorithm. Eight bacteria, Ruminococcus gnavus, Faecalibacterium, Ruminococcaceae, Enterococcus cecorum, Lachnospiraceae, Clostridium, Clostridiales, and Megamonas, showed significant changes over time. One unexpected finding was the fact that these eight bacteria belong to Firmicutes. The pathways showed significant fluctuation, including xenobiotic biodegradation and metabolism, carbohydrate metabolism, and amino acid metabolism, which were consistent with the metabolic functions of amino acids and carbohydrates from the feed. This study showed that the defecation time may be an important factor in the diversity, proportion, and functions of the feces microbial community. However, there was no circadian rhythm of microbial community assembly confirmed by JTK_Cycle analysis. These results might suggest there was no obvious circadian rhythm of fecal microbiota in laying hens under common light.
Collapse
Affiliation(s)
- Yu Zhang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agriculture University, Guangzhou 510642, China; (Y.Z.); (L.S.); (R.Z.); (S.Z.); (S.L.); (Y.W.); (Y.W.)
- Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Lan Sun
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agriculture University, Guangzhou 510642, China; (Y.Z.); (L.S.); (R.Z.); (S.Z.); (S.L.); (Y.W.); (Y.W.)
- Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Run Zhu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agriculture University, Guangzhou 510642, China; (Y.Z.); (L.S.); (R.Z.); (S.Z.); (S.L.); (Y.W.); (Y.W.)
- Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Shiyu Zhang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agriculture University, Guangzhou 510642, China; (Y.Z.); (L.S.); (R.Z.); (S.Z.); (S.L.); (Y.W.); (Y.W.)
- Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Shuo Liu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agriculture University, Guangzhou 510642, China; (Y.Z.); (L.S.); (R.Z.); (S.Z.); (S.L.); (Y.W.); (Y.W.)
- Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Yan Wang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agriculture University, Guangzhou 510642, China; (Y.Z.); (L.S.); (R.Z.); (S.Z.); (S.L.); (Y.W.); (Y.W.)
- Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Yinbao Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agriculture University, Guangzhou 510642, China; (Y.Z.); (L.S.); (R.Z.); (S.Z.); (S.L.); (Y.W.); (Y.W.)
- Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Xindi Liao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agriculture University, Guangzhou 510642, China; (Y.Z.); (L.S.); (R.Z.); (S.Z.); (S.L.); (Y.W.); (Y.W.)
- Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Jiandui Mi
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agriculture University, Guangzhou 510642, China; (Y.Z.); (L.S.); (R.Z.); (S.Z.); (S.L.); (Y.W.); (Y.W.)
- Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| |
Collapse
|
17
|
Kaczmarek I, Suchý T, Prömel S, Schöneberg T, Liebscher I, Thor D. The relevance of adhesion G protein-coupled receptors in metabolic functions. Biol Chem 2021; 403:195-209. [PMID: 34218541 DOI: 10.1515/hsz-2021-0146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/08/2021] [Indexed: 01/06/2023]
Abstract
G protein-coupled receptors (GPCRs) modulate a variety of physiological functions and have been proven to be outstanding drug targets. However, approximately one-third of all non-olfactory GPCRs are still orphans in respect to their signal transduction and physiological functions. Receptors of the class of Adhesion GPCRs (aGPCRs) are among these orphan receptors. They are characterized by unique features in their structure and tissue-specific expression, which yields them interesting candidates for deorphanization and testing as potential therapeutic targets. Capable of G-protein coupling and non-G protein-mediated function, aGPCRs may extend our repertoire of influencing physiological function. Besides their described significance in the immune and central nervous systems, growing evidence indicates a high importance of these receptors in metabolic tissue. RNAseq analyses revealed high expression of several aGPCRs in pancreatic islets, adipose tissue, liver, and intestine but also in neurons governing food intake. In this review, we focus on aGPCRs and their function in regulating metabolic pathways. Based on current knowledge, this receptor class represents high potential for future pharmacological approaches addressing obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Tomáš Suchý
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Simone Prömel
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
- Institute of Cell Biology, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| |
Collapse
|
18
|
Li Z, Liu X, Li Y, Wang W, Wang N, Xiao F, Gao H, Guo H, Li H, Wang S. Chicken C/EBPζ gene: Expression profiles, association analysis, and identification of functional variants for abdominal fat. Domest Anim Endocrinol 2021; 76:106631. [PMID: 33979717 DOI: 10.1016/j.domaniend.2021.106631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
CCAAT enhancer binding protein ζ (C/EBPζ) plays an important role in adipose proliferation and differentiation in humans. However, very little is known about the effect of C/EBPζ on the growth and development of adipose tissues in domesticated animals. The present study attempted to investigate the mRNA expression profiles of chicken C/EBPζ in a variety of tissues; analyze the association of its variants with abdominal fat; and identify the functional variants for abdominal fat. The tissue expression profiles revealed that C/EBPζ was highly expressed in 19 tissues obtained from broilers. The expression level of C/EBPζ in fat broilers was significantly lower than that in lean broilers in the duodenum, ileum, cecum, kidney, pectoral muscle, and liver (P < 0.05). Among 170 polymorphic loci of C/EBPζ, 9 single nucleotide polymorphisms (SNPs) demonstrated a significant association with chicken abdominal fat traits (P < 0.05) as well as significant discrepancies in their allelic frequencies between fat and lean birds. Particularly, only C/EBPζ g.7085A>C exhibited significant correlation with abdominal fat traits (P < 0.00015) using the Bonferroni method. The results revealed that, in preadipocyte immortalized cells (ICPI), the luciferase activity of the A allele of g.7085A>C locus was remarkably stronger than that of the C allele (P < 0.05). In silico analysis showed that g.7085A>C locus was located in the binding region of the transcription factor SOX5, which possesses the ability to transform C/EBPζ transcription efficiency through binding with SOX5. In summary, the data obtained from this study suggested that C/EBPζ is a potential candidate gene responsible for abdominal fat deposition in chicken and that g.7085A>C is a functional SNP that can be promisingly leveraged for marker assisted selection (MAS) in future chicken breeding programs.
Collapse
Affiliation(s)
- Z Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - X Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Y Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - W Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - N Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - F Xiao
- Fujian Sunnzer Biotechnology Development Co., Ltd, 354100, Guangze, Fujian Province, China
| | - H Gao
- Fujian Sunnzer Biotechnology Development Co., Ltd, 354100, Guangze, Fujian Province, China
| | - H Guo
- Fujian Sunnzer Biotechnology Development Co., Ltd, 354100, Guangze, Fujian Province, China
| | - H Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - S Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
19
|
Chen F, Han J, Tang B. Patterns of Immune Infiltration and the Key Immune-Related Genes in Acute Type A Aortic Dissection in Bioinformatics Analyses. Int J Gen Med 2021; 14:2857-2869. [PMID: 34211294 PMCID: PMC8242140 DOI: 10.2147/ijgm.s317405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Background Immune-inflammatory mechanisms contribute greatly to the complex process leading to type A aortic dissection (TAAD). This study aims to explore immune infiltration and key immune-related genes in acute TAAD. Methods ImmuCellAI algorithm was applied to analyze patterns of immune infiltration in TAAD samples and normal aortic vessel samples in the GSE153434 dataset. Differentially expressed genes (DEGs) were screened. Immune-related genes were obtained from overlapping DEGs of GSE153434 and immune genes of the ImmPort database. The hub genes were obtained based on the protein–protein interaction (PPI) network. The hub genes in TAAD were validated in the GSE52093 dataset. The correlation between the key immune-related genes and infiltrating immune cells was further analyzed. Results In the study, the abundance of macrophages, neutrophils, natural killer T cells (NKT cells), natural regulatory T cells (nTreg), T-helper 17 cells (Th17 cells) and monocytes was increased in TAAD samples, whereas that of dendritic cells (DCs), CD4 T cells, central memory T cells (Tcm), mucosa associated invariant T cells (MAIT cells) and B cells was decreased. Interleukin 6 (IL-6), C-C motif chemokine ligand 2 (CCL2) and hepatocyte growth factor (HGF) were identified and validated in the GSE52093 dataset as the key immune-related genes. Furthermore, IL-6, CCL2 and HGF were correlated with different types of immune cells. Conclusion In conclusion, several immune cells such as macrophages, neutrophils, NKT cells, and nTreg may be involved in the development of TAAD. IL-6, CCL2 and HGF were identified and validated as the key immune-related genes of TAAD via bioinformatics analyses. The key immune cells and immune-related genes have the potential to be developed as targets of prevention and immunotherapy for patients with TAAD.
Collapse
Affiliation(s)
- Fengshou Chen
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Jie Han
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Bing Tang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| |
Collapse
|
20
|
Wang A, Ji Z, Xuan R, Zhao X, Hou L, Li Q, Chu Y, Chao T, Wang J. Differentially Expressed MiRNAs of Goat Submandibular Glands Among Three Developmental Stages Are Involved in Immune Functions. Front Genet 2021; 12:678194. [PMID: 34211501 PMCID: PMC8239366 DOI: 10.3389/fgene.2021.678194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/24/2021] [Indexed: 01/14/2023] Open
Abstract
Submandibular glands (SMGs) are one of the primary components of salivary glands in goats. The proteins and biologically active substances secreted by the SMGs change with growth and development. Our previous studies showed that most of the differentially expressed genes in the SMGs of goats at different developmental stages are involved in immune-related signaling pathways, but the miRNA expression patterns in the same tissues are unknown. The aim of this study was to reveal the expression profile of miRNAs at three different developmental stages, detect differentially expressed miRNAs (DE miRNAs) and predict disease-related DE miRNAs. SMG tissue samples were collected from groups of 1-month-old kids, 12-month-old maiden goats and 24-month-old adult goats (three samples from each group), and high-throughout transcriptome sequencing was conducted. A total of 178, 241 and 7 DE miRNAs were discovered between 1-month-old kids and 12-month-old maiden goats, between 1-month-old kids and 24-month-old adult goats, and between 12-month-old maiden goats and 24-month-old adult goats, respectively. Among these DE miRNAs, 88 DE miRNAs with medium or high expression levels (TPM ≥50) were classified into five expression pattern clusters. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that some of the predicted target genes of the DE miRNAs in the five clusters were enriched in disease-related GO terms and pathways. MiRNA target genes in significant pathways were significantly enriched in Hepatitis B (FDR = 9.03E-10) and Pathways in cancer (FDR = 4.2E-10). Further analysis was performed with a PPI network, and 10 miRNAs were predicted to play an important role in the occurrence and prevention of diseases during the growth and development of goats.
Collapse
Affiliation(s)
- Aili Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China.,Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, China
| | - Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Xiaodong Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Lei Hou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yunpeng Chu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| |
Collapse
|
21
|
Wang WJ, Guo YQ, Xie KJ, Li YD, Li ZW, Wang N, Xiao F, Guo HS, Li H, Wang SZ. A functional variant in the promoter region of IGF1 gene is associated with chicken abdominal fat deposition. Domest Anim Endocrinol 2021; 75:106584. [PMID: 33276215 DOI: 10.1016/j.domaniend.2020.106584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022]
Abstract
Insulin-like growth factor 1 (IGF1) plays an important role in the regulation of cell growth, proliferation, differentiation, and apoptosis. Previously several studies revealed that genotypes of chicken IGF1 c.-366A > C were significantly associated with abdominal fat weight and body weight in chickens. But the underlying mechanism is still unknown. To investigate the mechanism underlying the association, herein, we performed IGF1 gene mRNA expression profiling, a dual-luciferase reporter assay and electrophoretic mobility shift assay (EMSA). Quantitative real-time PCR results showed that IGF1 gene was widely expressed in 14 tissues. The mRNA expression levels of IGF1 gene in both abdominal fat and jejunum were significantly higher in fat broilers than in lean broilers. However, the opposite results were observed in the pancreas. The reporter gene assay showed that the promoter luciferase activity of allele A was significantly higher than that of allele C (P < 0.05). In addition, the luciferase activity of allele A promoted by the transcription factor AP1 and OCT1 was higher than that of allele C (P < 0.05). Electrophoretic mobility shift assay result showed that allele A binding to the transcription factor AP1 and OCT1 was stronger than that of allele C. All in all, our data indicated that the IGF1 gene c.-366A > C is a functional SNP responsible for chicken adipose deposition.
Collapse
Affiliation(s)
- W J Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Y Q Guo
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - K J Xie
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Y D Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Z W Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - N Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - F Xiao
- Fujian Sunnzer Biotechnology Development Co, Ltd, Guangze, Fujian Province 354100, China
| | - H S Guo
- Fujian Sunnzer Biotechnology Development Co, Ltd, Guangze, Fujian Province 354100, China
| | - H Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - S Z Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
22
|
Wang W, Li Y, Li Z, Wang N, Xiao F, Gao H, Guo H, Li H, Wang S. Polymorphisms of KLF3 gene coding region and identification of their functionality for abdominal fat in chickens. Vet Med Sci 2020; 7:792-799. [PMID: 33369233 PMCID: PMC8136968 DOI: 10.1002/vms3.422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
KLF3 is a member of the Kruppel‐like factor (KLF) family of transcription factors, and plays an important role in several biological processes, including adipogenesis, erythropoiesis and B‐cell development. The purposes of this study are to search for polymorphisms of KLF3 coding region and to provide functional evidence for abdominal fat in chickens. A total of 168 SNPs in KLF3 coding region were detected in a unique chicken population, the Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF). Of which three single nucleotide polymorphisms (g.3452T > C, g.8663A > G and g.10751G > A) were significantly correlated with abdominal fat weight (AFW) and abdominal fat percentage (AFP) of 329 birds from the 19th generation of NEAUHLF (FDR < 0.05). The reporter gene assay was performed to verify functionality of these three SNPs in both ICP‐1 and DF1 cells. Results showed that the luciferase activity of G allele was significantly higher than that of A allele in g.10751G > A (p < 0.05). However, there were no significant differences between different alleles of others two SNPs in luciferase activity. Overall, KLF3 is an important candidate gene that affects chicken abdominal fat content, and the g.10751G > A is a functional variant that potential would be applied to marker‐assisted selection (MAS) for selective breeding programme.
Collapse
Affiliation(s)
- Weijia Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yudong Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ziwei Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Fan Xiao
- Fujian Sunnzer Biotechnology Development Co., Ltd., Guangze, Fujian Province, China
| | - Haihe Gao
- Fujian Sunnzer Biotechnology Development Co., Ltd., Guangze, Fujian Province, China
| | - Huaishun Guo
- Fujian Sunnzer Biotechnology Development Co., Ltd., Guangze, Fujian Province, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Shouzhi Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
23
|
Shang Q, Shen G, Chen G, Zhang Z, Yu X, Zhao W, Zhang P, Chen H, Tang K, Yu F, Tang J, Liang D, Jiang X, Ren H. The emerging role of miR-128 in musculoskeletal diseases. J Cell Physiol 2020; 236:4231-4243. [PMID: 33241566 DOI: 10.1002/jcp.30179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/24/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
MicroRNA-128 (miR-128) is associated with cell proliferation, differentiation, migration, apoptosis, and survival. Genetic analysis studies have demonstrated that miR-128 participates in bone metabolism, which involves bone marrow-derived mesenchymal stem cells, osteoblasts, osteoclasts, and adipocytes. miR-128 also participates in regeneration of skeletal muscles by targeting myoblast-associated proteins. The deregulation of miR-128 could lead to a series of musculoskeletal diseases. In this review, we discuss recent findings of miR-128 in relation to bone metabolism and muscle regeneration to determine its potential therapeutic effects in musculoskeletal diseases, and to propose directions for future research in this significant field.
Collapse
Affiliation(s)
- Qi Shang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengyang Shen
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guifeng Chen
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Zhao
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Zhang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglin Chen
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai Tang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fuyong Yu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Tang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobing Jiang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Ren
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
24
|
Transcriptome Analysis of the Chicken Follicular Theca Cells with miR-135a-5p Suppressed. G3-GENES GENOMES GENETICS 2020; 10:4071-4081. [PMID: 32900904 PMCID: PMC7642930 DOI: 10.1534/g3.120.401701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As a class of transcription regulators, numerous miRNAs have been verified to participate in regulating ovary follicular development in chickens (Gallus gallus). Previously we showed that gga-miR-135a-5p has significant differential expression between high and low-yield chicken ovaries, and the abundance of gga-miR-135a-5p is significantly higher in follicular theca cells than in granulosa cells. However, the exact role of gga-miR-135a-5p in chicken follicular theca cells is unclear. In this study, primary chicken follicular theca cells were isolated and then transfected with gga-miR-135a-5p inhibitor. Transcriptome sequencing was performed in chicken follicular theca cells with or without transfection. Differentially expressed genes (DEGs) were analyzed using bioinformatics. A dual-luciferase reporter assay was used to verify the target relationship between gga-miR-135a-5p and predicted targets within the DEGs. Compared with the normal chicken follicle theca cells, 953 up-regulated and 1060 down-regulated genes were detected in cells with gga-miR-135a-5p inhibited. The up-regulated genes were significantly enriched in Gene Ontology terms and pathways involved in cell proliferation and differentiation. In chicken follicular theca cells, Krüppel-like factor 4 (KLF4), ATPase phospholipid transporting 8A1 (ATP8A1), and Complexin-1 (CPLX1) were significantly up-regulated when the expression of gga-miR-135a-5p was inhibited. In addition, KLF4, ATP8A1, and CPLX1 confirmed as targets of gga-miR-135a-5p by using a dual-luciferase assay in vitro. The results suggest that gga-mir-135a-5p may involve in proliferation and differentiation in chicken ovarian follicular theca cells by targeting KLF4, ATP8A1, and CPLX1.
Collapse
|
25
|
A novel long noncoding RNA, ENSGALG00000021686, regulates the intracellular transport of fatty acids by targeting the FABP3 gene in chicken. Biochem Biophys Res Commun 2020; 528:706-712. [PMID: 32507601 DOI: 10.1016/j.bbrc.2020.05.133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022]
Abstract
Fatty acids (FAs) are essential for the vital movement of humans and animals. Their metabolism is, in part, regulated by FABP3. In our previous study, a novel lncRNA (ENSGALG00000021686, L21686) was identified, and FABP3 was predicted as its target gene. Here, using chicken myocytes, lymphocytes, and different tissues, L21686 target on the FABP3 gene, FABP3 mRNA expression, and their effect on FA metabolism are explored. The results show that the highest expression of L21686 is in muscle tissue, a significant energy-consuming tissue. L21686 expression is consistent with FABP3 mRNA expression. We also show that under the different treatments, the levels of FABP3 mRNA and protein in myocytes and lymphocytes change in tandem with L21686 expression. Moreover, the dual-luciferase reporter assay provided direct evidence that L21686 targets the FABP3 gene. Finally, it was found that the content of free FAs increases along with the up-regulation of L21686 and the FABP3 gene. Malonyl CoA content does not change under the different treatments, suggesting that L21686 regulates the intake of extracellular FAs in chicken. Further, the changes in lipoprotein lipase (LPL), sterol-regulatory element binding protein 1 (SREBP-1), fatty acid synthase (FASN), and acetyl-CoA carboxylase (ACC) mRNA levels support this view. In summary, our data show that the new lncRNA (L21686) regulates the intake of extracellular FAs in chicken cells in vitro by targeting the expression of the FABP3 gene. Our findings will help to establish the groundwork and provide a new clue for deciphering the regulation of FAs metabolism in chicken.
Collapse
|