1
|
Nery RLA, Santos TMS, Gois LL, Barral A, Khouri R, Feitosa CA, Santos LA. Leishmania spp. genetic factors associated with cutaneous leishmaniasis antimony pentavalent drug resistance: a systematic review. Mem Inst Oswaldo Cruz 2024; 119:e230240. [PMID: 39230137 PMCID: PMC11370656 DOI: 10.1590/0074-02760230240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/26/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Leishmaniasis is a neglected zoonosis caused by parasites of Leishmania spp. The main drug used to treat cutaneous leishmaniasis (CL) is the antimoniate of meglumine. This drug, which has strong adverse and toxic effects, is usually administered intravenously, further complicating the difficult treatment. Factors such as Leishmania gene expression and genomic mutations appear to play a role in the development of drug resistance. OBJECTIVES This systematic review summarises the results of the literature evaluating parasite genetic markers possibly associated with resistance to pentavalent antimony in CL. METHODS This study followed PRISMA guidelines and included articles from PubMed, SciELO, and LILACS databases. Inclusion criteria were studies that (i) investigated mutations in the genome and/or changes in gene expression of Leishmania associated with treatment resistance; (ii) used antimony drugs in the therapy of CL; (iii) used naturally resistant strains isolated from patients. The Joanna Briggs Institute Critical Appraisal Checklist was used to assess article quality and risk of bias. FINDINGS A total of 23 articles were selected, of which 18 investigated gene expression and nine genomic mutations. Of these 23 articles, four examined gene expression and genomic mutations in the same samples. Regarding gene expression, genes from the ABC transporter protein family, AQP1, MRPA, TDR1 and TRYR were most frequently associated with drug resistance. In one of the articles in which mutations were investigated, a mutation was found in HSP70 (T579A) and in three articles mutations were found in AQP1 (A516C, G562A and G700A). A limitation of this review is that in most of the included studies, parasites were isolated from cultured lesion samples and drug resistance was assessed using in vitro drug susceptibility testing. These approaches may not be ideal for accurate genetic evaluation and detection of treatment failure. MAIN CONCLUSIONS The development of further studies to evaluate the genetic resistance factors of Leishmania spp. is necessary to elucidate the mechanisms of the parasite and improve patient treatment and infection control.
Collapse
Affiliation(s)
- Raphaela Lisboa Andrade Nery
- Fundação Oswaldo Cruz-Fiocruz, Instituto Gonçalo Moniz, Salvador, BA, Brasil
- Universidade Federal da Bahia, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Salvador, BA, Brasil
| | | | - Luana Leandro Gois
- Escola Bahiana de Medicina e Saúde Pública, Salvador, BA, Brasil
- Universidade Federal da Bahia, Instituto de Ciências da Saúde, Departamento de Ciências da Biointeração, Salvador, BA, Brasil
| | - Aldina Barral
- Fundação Oswaldo Cruz-Fiocruz, Instituto Gonçalo Moniz, Salvador, BA, Brasil
- Universidade Federal da Bahia, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Salvador, BA, Brasil
| | - Ricardo Khouri
- Fundação Oswaldo Cruz-Fiocruz, Instituto Gonçalo Moniz, Salvador, BA, Brasil
- Universidade Federal da Bahia, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Salvador, BA, Brasil
| | | | - Luciane Amorim Santos
- Fundação Oswaldo Cruz-Fiocruz, Instituto Gonçalo Moniz, Salvador, BA, Brasil
- Universidade Federal da Bahia, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Salvador, BA, Brasil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, BA, Brasil
| |
Collapse
|
2
|
Llanes A, Cruz G, Morán M, Vega C, Pineda VJ, Ríos M, Penagos H, Suárez JA, Saldaña A, Lleonart R, Restrepo CM. Genomic diversity and genetic variation of Leishmania panamensis within its endemic range. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105342. [PMID: 35878820 DOI: 10.1016/j.meegid.2022.105342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Species belonging to the Leishmania (Viannia) subgenus are important causative agents of cutaneous and mucocutaneous leishmaniasis in Central and South America. These parasites possess several distinctive biological features that are influenced by their genetics, population structure, and genome instability. To date, several studies have revealed varying degrees of genetic diversity within Leishmania species. Particularly, in species of the L. (Viannia) subgenus, a generalized high intraspecific genetic diversity has been reported, although, conflicting conclusions have been drawn using different molecular techniques. Despite being the most common Leishmania species circulating in Panama and Colombia, few studies have analyzed clinical samples of Leishmania panamensis using whole-genome sequencing, and their restricted number of samples has limited the information they can provide to understand the population structure of L. panamensis. Here, we used next generation sequencing (NGS) to explore the genetic diversity of L. panamensis within its endemic range, analyzing data from 43 isolates of Colombian and Panamanian origin. Our results show the occurrence of three well-defined geographically correlated groups, and suggests the possible occurrence of additional phylogeographic groups. Furthermore, these results support the existence of a mixed mode of reproduction in L. panamensis, with varying frequencies of events of genetic recombination occurring primarily within subpopulations of closely related strains. This study offers important insights into the population genetics and reproduction mode of L. panamensis, paving the way to better understand their population structure and the emergence and maintenance of key eco-epidemiological traits.
Collapse
Affiliation(s)
- Alejandro Llanes
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama, Panama
| | - Génesis Cruz
- Escuela de Biología, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panama City, Panama, Panama
| | - Mitchelle Morán
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama, Panama
| | - Carlos Vega
- Escuela de Biología, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panama City, Panama, Panama
| | - Vanessa J Pineda
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama, Panama
| | - Margarita Ríos
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama, Panama
| | - Homero Penagos
- Hospital Regional Dr. Rafael Hernández, Caja de Seguro Social, David, Chiriquí, Panama; Sistema Nacional de Investigación-Secretaría Nacional de Ciencia, Tecnología e Innovación (SNI-SENACYT), Panama City, Panama, Panama
| | - José A Suárez
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama, Panama; Sistema Nacional de Investigación-Secretaría Nacional de Ciencia, Tecnología e Innovación (SNI-SENACYT), Panama City, Panama, Panama
| | - Azael Saldaña
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama, Panama; Sistema Nacional de Investigación-Secretaría Nacional de Ciencia, Tecnología e Innovación (SNI-SENACYT), Panama City, Panama, Panama
| | - Ricardo Lleonart
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama, Panama; Sistema Nacional de Investigación-Secretaría Nacional de Ciencia, Tecnología e Innovación (SNI-SENACYT), Panama City, Panama, Panama.
| | - Carlos M Restrepo
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama, Panama; Sistema Nacional de Investigación-Secretaría Nacional de Ciencia, Tecnología e Innovación (SNI-SENACYT), Panama City, Panama, Panama.
| |
Collapse
|
3
|
Santi AMM, Murta SMF. Impact of Genetic Diversity and Genome Plasticity of Leishmania spp. in Treatment and the Search for Novel Chemotherapeutic Targets. Front Cell Infect Microbiol 2022; 12:826287. [PMID: 35141175 PMCID: PMC8819175 DOI: 10.3389/fcimb.2022.826287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 11/21/2022] Open
Abstract
Leishmaniasis is one of the major public health concerns in Latin America, Africa, Asia, and Europe. The absence of vaccines for human use and the lack of effective vector control programs make chemotherapy the main strategy to control all forms of the disease. However, the high toxicity of available drugs, limited choice of therapeutic agents, and occurrence of drug-resistant parasite strains are the main challenges related to chemotherapy. Currently, only a small number of drugs are available for leishmaniasis treatment, including pentavalent antimonials (SbV), amphotericin B and its formulations, miltefosine, paromomycin sulphate, and pentamidine isethionate. In addition to drug toxicity, therapeutic failure of leishmaniasis is a serious concern. The occurrence of drug-resistant parasites is one of the causes of therapeutic failure and is closely related to the diversity of parasites in this genus. Owing to the enormous plasticity of the genome, resistance can occur by altering different metabolic pathways, demonstrating that resistance mechanisms are multifactorial and extremely complex. Genetic variability and genome plasticity cause not only the available drugs to have limitations, but also make the search for new drugs challenging. Here, we examined the biological characteristics of parasites that hinder drug discovery.
Collapse
|
4
|
Silva GLA, Tosi LRO, McCulloch R, Black JA. Unpicking the Roles of DNA Damage Protein Kinases in Trypanosomatids. Front Cell Dev Biol 2021; 9:636615. [PMID: 34422791 PMCID: PMC8377203 DOI: 10.3389/fcell.2021.636615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 07/13/2021] [Indexed: 12/31/2022] Open
Abstract
To preserve genome integrity when faced with DNA lesions, cells activate and coordinate a multitude of DNA repair pathways to ensure timely error correction or tolerance, collectively called the DNA damage response (DDR). These interconnecting damage response pathways are molecular signal relays, with protein kinases (PKs) at the pinnacle. Focused efforts in model eukaryotes have revealed intricate aspects of DNA repair PK function, including how they direct DDR pathways and how repair reactions connect to wider cellular processes, including DNA replication and transcription. The Kinetoplastidae, including many parasites like Trypanosoma spp. and Leishmania spp. (causative agents of debilitating, neglected tropical infections), exhibit peculiarities in several core biological processes, including the predominance of multigenic transcription and the streamlining or repurposing of DNA repair pathways, such as the loss of non-homologous end joining and novel operation of nucleotide excision repair (NER). Very recent studies have implicated ATR and ATM kinases in the DDR of kinetoplastid parasites, whereas DNA-dependent protein kinase (DNA-PKcs) displays uncertain conservation, questioning what functions it fulfills. The wide range of genetic manipulation approaches in these organisms presents an opportunity to investigate DNA repair kinase roles in kinetoplastids and to ask if further kinases are involved. Furthermore, the availability of kinase inhibitory compounds, targeting numerous eukaryotic PKs, could allow us to test the suitability of DNA repair PKs as novel chemotherapeutic targets. Here, we will review recent advances in the study of trypanosomatid DNA repair kinases.
Collapse
Affiliation(s)
- Gabriel L A Silva
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz R O Tosi
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Jennifer Ann Black
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
5
|
Medina J, Cruz-Saavedra L, Patiño LH, Muñoz M, Ramírez JD. Comparative analysis of the transcriptional responses of five Leishmania species to trivalent antimony. Parasit Vectors 2021; 14:419. [PMID: 34419127 PMCID: PMC8380399 DOI: 10.1186/s13071-021-04915-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leishmaniasis is a neglected tropical disease caused by several species of Leishmania. The resistance phenotype of these parasites depends on the characteristics of each species, which contributes to increased therapeutic failures. Understanding the mechanism used by the parasite to survive under treatment pressure in order to identify potential common and specific therapeutic targets is essential for the control of leishmaniasis. The aim of this study was to investigate the expression profiles and potential shared and specific resistance markers of the main Leishmania species of medical importance [subgenus L. (Leishmania): L. donovani, L. infantum and L. amazonensis; subgenus L. (Viannia): L. panamensis and L. braziliensis)] resistant and sensitive to trivalent stibogluconate (SbIII). METHODS We conducted comparative analysis of the transcriptomic profiles (only coding sequences) of lines with experimentally induced resistance to SbIII from biological replicates of five Leishmania species available in the databases of four articles based on ortholog attribution. Simultaneously, we carried out functional analysis of ontology and reconstruction of metabolic pathways of the resulting differentially expressed genes (DEGs). RESULTS Resistant lines for each species had differential responses in metabolic processes, compound binding, and membrane components concerning their sensitive counterpart. One hundred and thirty-nine metabolic pathways were found, with the three main pathways comprising cysteine and methionine metabolism, glycolysis, and the ribosome. Differentially expressed orthologous genes assigned to species-specific responses predominated, with 899 self-genes. No differentially expressed genes were found in common among the five species. Two common upregulated orthologous genes were found among four species (L. donovani, L. braziliensis, L. amazonensis, and L. panamensis) related to an RNA-binding protein and the NAD(P)H cytochrome-B5-oxidoreductase complex, associated with transcriptional control and de novo synthesis of linoleic acid, critical mechanisms in resistance to antimonials. CONCLUSION Herein, we identified potential species-specific genes related to resistance to SbIII. Therefore, we suggest that future studies consider a treatment scheme that is species-specific. Despite the limitations of our study, this is the first approach toward unraveling the pan-genus genetic mechanisms of resistance in leishmaniasis.
Collapse
Affiliation(s)
- Julián Medina
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
6
|
Patino LH, Muñoz M, Cruz-Saavedra L, Muskus C, Ramírez JD. Genomic Diversification, Structural Plasticity, and Hybridization in Leishmania (Viannia) braziliensis. Front Cell Infect Microbiol 2020; 10:582192. [PMID: 33178631 PMCID: PMC7596589 DOI: 10.3389/fcimb.2020.582192] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/28/2020] [Indexed: 01/12/2023] Open
Abstract
Leishmania (Viannia) braziliensis is an important Leishmania species circulating in several Central and South American countries. Among Leishmania species circulating in Brazil, Argentina and Colombia, L. braziliensis has the highest genomic variability. However, genomic variability at the whole genome level has been only studied in Brazilian and Peruvian isolates; to date, no Colombian isolates have been studied. Considering that in Colombia, L. braziliensis is a species with great clinical and therapeutic relevance, as well as the role of genetic variability in the epidemiology of leishmaniasis, we analyzed and evaluated intraspecific genomic variability of L. braziliensis from Colombian and Bolivian isolates and compared them with Brazilian isolates. Twenty-one genomes were analyzed, six from Colombian patients, one from a Bolivian patient, and 14 Brazilian isolates downloaded from public databases. The results obtained of Phylogenomic analysis showed the existence of four well-supported clades, which evidenced intraspecific variability. The whole-genome analysis revealed structural variations in the somy, mainly in the Brazilian genomes (clade 1 and clade 3), low copy number variations, and a moderate number of single-nucleotide polymorphisms (SNPs) in all genomes analyzed. Interestingly, the genomes belonging to clades 2 and 3 from Colombia and Brazil, respectively, were characterized by low heterozygosity (~90% of SNP loci were homozygous) and regions suggestive of loss of heterozygosity (LOH). Additionally, we observed the drastic whole genome loss of heterozygosity and possible hybridization events in one genome belonging to clade 4. Unique/shared SNPs between and within the four clades were identified, revealing the importance of some of them in biological processes of L. braziliensis. Our analyses demonstrate high genomic variability of L. braziliensis in different regions of South America, mainly in Colombia and suggest that this species exhibits striking genomic diversity and a capacity of genomic hybridization; additionally, this is the first study to report whole-genome sequences of Colombian L. braziliensis isolates.
Collapse
Affiliation(s)
- Luz H Patino
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Lissa Cruz-Saavedra
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Muskus
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
7
|
Pinho N, Wiśniewski JR, Dias-Lopes G, Saboia-Vahia L, Bombaça ACS, Mesquita-Rodrigues C, Menna-Barreto R, Cupolillo E, de Jesus JB, Padrón G, Cuervo P. In-depth quantitative proteomics uncovers specie-specific metabolic programs in Leishmania (Viannia) species. PLoS Negl Trop Dis 2020; 14:e0008509. [PMID: 32804927 PMCID: PMC7451982 DOI: 10.1371/journal.pntd.0008509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/27/2020] [Accepted: 06/22/2020] [Indexed: 11/18/2022] Open
Abstract
Leishmania species are responsible for a broad spectrum of diseases, denominated Leishmaniasis, affecting over 12 million people worldwide. During the last decade, there have been impressive efforts for sequencing the genome of most of the pathogenic Leishmania spp. as well as hundreds of strains, but large-scale proteomics analyses did not follow these achievements and the Leishmania proteome remained mostly uncharacterized. Here, we report a comprehensive comparative study of the proteomes of strains representing L. braziliensis, L. panamensis and L. guyanensis species. Proteins extracted by SDS-mediated lysis were processed following the multi-enzyme digestion-filter aided sample preparation (FASP) procedure and analysed by high accuracy mass spectrometry. "Total Protein Approach" and "Proteomic Ruler" were applied for absolute quantification of proteins. Principal component analysis demonstrated very high reproducibility among biological replicates and a very clear differentiation of the three species. Our dataset comprises near 7000 proteins, representing the most complete Leishmania proteome yet known, and provides a comprehensive quantitative picture of the proteomes of the three species in terms of protein concentration and copy numbers. Analysis of the abundance of proteins from the major energy metabolic processes allow us to highlight remarkably differences among the species and suggest that these parasites depend on distinct energy substrates to obtain ATP. Whereas L. braziliensis relies the more on glycolysis, L. panamensis and L. guyanensis seem to depend mainly on mitochondrial respiration. These results were confirmed by biochemical assays showing opposite profiles for glucose uptake and O2 consumption in these species. In addition, we provide quantitative data about different membrane proteins, transporters, and lipids, all of which contribute for significant species-specific differences and provide rich substrate for explore new molecules for diagnosing purposes. Data are available via ProteomeXchange with identifier PXD017696.
Collapse
Affiliation(s)
- Nathalia Pinho
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Geovane Dias-Lopes
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Leonardo Saboia-Vahia
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | | | - Rubem Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Elisa Cupolillo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Jose Batista de Jesus
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
- Departamento de Medicina–Universidade Federal de São João Del Rei, Campus Dom Bosco, São João del Rei, MG, Brazil
| | - Gabriel Padrón
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Patricia Cuervo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
8
|
Intraspecific Genomic Divergence and Minor Structural Variations in Leishmania (Viannia) panamensis. Genes (Basel) 2020; 11:genes11030252. [PMID: 32120946 PMCID: PMC7140786 DOI: 10.3390/genes11030252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/07/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Leishmania (Viannia) panamensis is one of the most important Leishmania species associated with cutaneous leishmaniasis (CL) in Latin America. Despite its wide geographic distribution and pathogenic potential in humans and animals, the genomic variability of this species is low compared with other Leishmania species circulating in the same geographical area. No studies have reported a detailed analysis of the whole genome of L. panamensis from clinical isolates using DNA high-throughput sequencing to clarify its intraspecific genomic variability or plausible divergence. Therefore, this study aimed to evaluate the intraspecific genomic variability of L. panamensis from Colombia and Panama. A total of 22 genomes were analyzed, 19 from Colombian patients with CL and three genomes from Panama obtained from public databases. The phylogenomic analysis revealed the potential existence of three well-supported clades as evidence of intraspecific divergence. Additionally, the whole-genome analysis showed low structural variations in terms of ploidy, copy number variations, and single-nucleotide polymorphisms (SNPs). SNPs shared among all clades were identified, revealing their importance in different biological processes of L. panamensis. The findings not only expand our knowledge of intraspecific genomic variability of one of the most important Leishmania species in South America but also highlights the possible existence of different clades/lineages/subpopulations across a geographic scale.
Collapse
|