1
|
Li S, Chen X, Guo M, Zhu X, Huang W, Guo C, Shu Y. Genome-Wide Identification and Expression Analysis of the Alfalfa ( Medicago sativa L.) U-Box Gene Family in Response to Abiotic Stresses. Int J Mol Sci 2024; 25:12324. [PMID: 39596388 PMCID: PMC11595061 DOI: 10.3390/ijms252212324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
E3 ubiquitin ligases known as plant U-box (PUB) proteins regulate a variety of aspects of plant growth, development, and stress response. However, the functions and characteristics of the PUB gene family in alfalfa remain unclear. This work involved a genome-wide examination of the alfalfa U-box E3 ubiquitin ligase gene. In total, 210 members were identified and divided into five categories according to their homology with the members of the U-box gene family in Arabidopsis thaliana. The phylogenetic analysis, conserved motifs, chromosomal localization, promoters, and regulatory networks of this gene were investigated. Chromosomal localization and covariance analyses indicated that the MsPUB genes expanded MsPUB gene family members through gene duplication events during evolution. MsPUB genes may be involved in the light response, phytohormone response, growth, and development of several biological activities, according to cis-acting element analysis of promoters. In addition, transcriptome analysis and expression analysis by qRT-PCR indicated that most MsPUB genes were significantly upregulated under cold stress, drought stress, and salt stress treatments. Among them, MsPUBS106 and MsPUBS185 were significantly and positively correlated with cold resistance in alfalfa. MsPUBS110, MsPUBS067, MsPUBS111 and MsPUB155 were comprehensively involved in drought stress, low temperature, and salt stress resistance. All things considered, these discoveries offer fresh perspectives on the composition, development, and roles of the PUB gene family in alfalfa. They also provide theoretical guidance for further investigations into the mechanisms regulating the development, evolution, and stress tolerance of MsPUB.
Collapse
Affiliation(s)
- Shuaixian Li
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (S.L.); (M.G.); (X.Z.); (C.G.)
| | - Xiuhua Chen
- International Agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China;
| | - Meiyan Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (S.L.); (M.G.); (X.Z.); (C.G.)
| | - Xiaoyue Zhu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (S.L.); (M.G.); (X.Z.); (C.G.)
| | - Wangqi Huang
- National Engineering Research Center for Ornamental Horticulture, Yunnan Flower Breeding Key Laboratory, Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (S.L.); (M.G.); (X.Z.); (C.G.)
| | - Yongjun Shu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (S.L.); (M.G.); (X.Z.); (C.G.)
| |
Collapse
|
2
|
Liu S, Liu R, Chen P, Chu B, Gao S, Yan L, Gou Y, Tian T, Wen S, Zhao C, Sun S. Genome-wide identification and expression analysis of the U-box gene family related to biotic and abiotic stresses in Coffea canephora L. BMC Genomics 2024; 25:916. [PMID: 39354340 PMCID: PMC11443674 DOI: 10.1186/s12864-024-10745-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Abstract
Plant U-box genes play an important role in the regulation of plant hormone signal transduction, stress tolerance, and pathogen resistance; however, their functions in coffee (Coffea canephora L.) remain largely unexplored. In this study, we identified 47 CcPUB genes in the C. canephora L. genome, clustering them into nine groups via phylogenetic tree. The CcPUB genes were unevenly distributed across the 11 chromosomes of C. canephora L., with the majority (11) on chromosome 2 and none on chromosome 8. The cis-acting elements analysis showed that CcPUB genes were involved in abiotic and biotic stresses, phytohormone responsive, and plant growth and development. RNA-seq data revealed diverse expression patterns of CcPUB genes across leaves, stems, and fruits tissues. qRT-PCR analyses under dehydration, low temperature, SA, and Colletotrichum stresses showed significant up-regulation of CcPUB2, CcPUB24, CcPUB34, and CcPUB40 in leaves. Furthermore, subcellular localization showed CcPUB2 and CcPUB34 were located in the plasma membrane and nucleus, and CcPUB24 and CcPUB40 were located in the nucleus. This study provides valuable insights into the roles of PUB genes in stress responses and phytohormone signaling in C. canephora L., and provided basis for functional characterization of PUB genes in C. canephora L.
Collapse
Affiliation(s)
- Shichao Liu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan Province, Wanning, Hainan, 571533, China
| | - Ruibing Liu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China
| | - Pengyun Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Bo Chu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shengfeng Gao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan Province, Wanning, Hainan, 571533, China
| | - Lin Yan
- Key Laboratory of Genetic Resource Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, Hainan, 571533, China
| | - Yafeng Gou
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan Province, Wanning, Hainan, 571533, China
| | - Tian Tian
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China
| | - Siwei Wen
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China
| | - Chenchen Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Shiwei Sun
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China.
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan Province, Wanning, Hainan, 571533, China.
| |
Collapse
|
3
|
Wu S, Hu C, Zhu C, Fan Y, Zhou J, Xia X, Shi K, Zhou Y, Foyer CH, Yu J. The MYC2-PUB22-JAZ4 module plays a crucial role in jasmonate signaling in tomato. MOLECULAR PLANT 2024; 17:598-613. [PMID: 38341757 DOI: 10.1016/j.molp.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/06/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Jasmonates (JAs), a class of lipid-derived stress hormones, play a crucial role across an array of plant physiological processes and stress responses. Although JA signaling is thought to rely predominantly on the degradation of specific JAZ proteins by SCFCOI1, it remains unclear whether other pathways are involved in the regulation of JAZ protein stability. Here, we report that PUB22, a plant U-box type E3 ubiquitin ligase, plays a critical role in the regulation of plant resistance against Helicoverpa armigera and other JA responses in tomato. Whereas COI1 physically interacts with JAZ1/2/5/7, PUB22 physically interacts with JAZ1/3/4/6. PUB22 ubiquitinates JAZ4 to promote its degradation via the 26S proteasome pathway. Importantly, we observed that pub22 mutants showreduced resistance to H. armigera, whereas jaz4 single mutants and jaz1 jaz3 jaz4 jaz6 quadruple mutants have enhanced resistance. The hypersensitivity of pub22 mutants to herbivores could be partially rescued by JAZ4 mutation. Moreover, we found that expression of PUB22 can be transcriptionally activated by MYC2, thus forming a positive feedback circuit in JA signaling. We noticed that the PUB22-JAZ4 module also regulates other JA responses, including defense against B. cinerea, inhibition of root elongation, and anthocyanin accumulation. Taken together, these results indicate that PUB22 plays a crucial role in plant growth and defense responses, together with COI1-regulated JA signaling, by targeting specific JAZs.
Collapse
Affiliation(s)
- Shaofang Wu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Chaoyi Hu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
| | - Changan Zhu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yanfen Fan
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; College of Horticulture, Northwest Agriculture & Forestry University, Xianyang 712100, China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Xiaojia Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China; Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Zhou X, Li Y, Wang J, Zhao Y, Wang H, Han Y, Lin X. Genome-wide identification of U-box gene family and expression analysis in response to saline-alkali stress in foxtail millet ( Setaria italica L. Beauv). Front Genet 2024; 15:1356807. [PMID: 38435060 PMCID: PMC10904469 DOI: 10.3389/fgene.2024.1356807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024] Open
Abstract
E3 ubiquitin ligases are central modifiers of plant signaling pathways that regulate protein function, localization, degradation, and other biological processes by linking ubiquitin to target proteins. E3 ubiquitin ligases include proteins with the U-box domain. However, there has been no report about the foxtail millet (Setaria italica L. Beauv) U-box gene family (SiPUB) to date. To explore the function of SiPUBs, this study performed genome-wide identification of SiPUBs and expression analysis of them in response to saline-alkali stress. A total of 70 SiPUBs were identified, which were unevenly distributed on eight chromosomes. Phylogenetic and conserved motif analysis demonstrated that SiPUBs could be clustered into six subfamilies (I-VI), and most SiPUBs were closely related to the homologues in rice. Twenty-eight types of cis-acting elements were identified in SiPUBs, most of which contained many light-responsive elements and plant hormone-responsive elements. Foxtail millet had 19, 78, 85, 18, and 89 collinear U-box gene pairs with Arabidopsis, rice, sorghum, tomato, and maize, respectively. Tissue specific expression analysis revealed great variations in SiPUB expression among different tissues, and most SiPUBs were relatively highly expressed in roots, indicating that SiPUBs may play important roles in root development or other growth and development processes of foxtail millet. Furthermore, the responses of 15 SiPUBs to saline-alkali stress were detected by qRT-PCR. The results showed that saline-alkali stress led to significantly differential expression of these 15 SiPUBs, and SiPUB20/48/70 may play important roles in the response mechanism against saline-alkali stress. Overall, this study provides important information for further exploration of the biological function of U-box genes.
Collapse
Affiliation(s)
- Xiaoke Zhou
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yun Li
- Research Center of Rural Vitalization, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jian Wang
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yuxue Zhao
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Huimin Wang
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yucui Han
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xiaohu Lin
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
5
|
Liu Y, Li C, Qin A, Deng W, Chen R, Yu H, Wang Y, Song J, Zeng L. Genome-wide identification and transcriptome profiling expression analysis of the U-box E3 ubiquitin ligase gene family related to abiotic stress in maize (Zea mays L.). BMC Genomics 2024; 25:132. [PMID: 38302871 PMCID: PMC10832145 DOI: 10.1186/s12864-024-10040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND The U-box gene family encodes E3 ubiquitin ligases involved in plant hormone signaling pathways and abiotic stress responses. However, there has yet to be a comprehensive analysis of the U-box gene family in maize (Zea mays L.) and its responses to abiotic stress. RESULTS In this study, 85 U-box family proteins were identified in maize and were classified into four subfamilies based on phylogenetic analysis. In addition to the conserved U-box domain, we identified additional functional domains, including Pkinase, ARM, KAP and Tyr domains, by analyzing the conserved motifs and gene structures. Chromosomal localization and collinearity analysis revealed that gene duplications may have contributed to the expansion and evolution of the U-box gene family. GO annotation and KEGG pathway enrichment analysis identified a total of 105 GO terms and 21 KEGG pathways that were notably enriched, including ubiquitin-protein transferase activity, ubiquitin conjugating enzyme activity and ubiquitin-mediated proteolysis pathway. Tissue expression analysis showed that some ZmPUB genes were specifically expressed in certain tissues and that this could be due to their functions. In addition, RNA-seq data for maize seedlings under salt stress revealed 16 stress-inducible plant U-box genes, of which 10 genes were upregulated and 6 genes were downregulated. The qRT-PCR results for genes responding to abiotic stress were consistent with the transcriptome analysis. Among them, ZmPUB13, ZmPUB18, ZmPUB19 and ZmPUB68 were upregulated under all three abiotic stress conditions. Subcellular localization analysis showed that ZmPUB19 and ZmPUB59 were located in the nucleus. CONCLUSIONS Overall, our study provides a comprehensive analysis of the U-box gene family in maize and its responses to abiotic stress, suggesting that U-box genes play an important role in the stress response and providing insights into the regulatory mechanisms underlying the response to abiotic stress in maize.
Collapse
Affiliation(s)
- Yongle Liu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
- College of Life Sciences, Nanjing University, Nanjing, 210095, People's Republic of China
| | - Changgen Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Aokang Qin
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Wenli Deng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Rongrong Chen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Hongyang Yu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Yihua Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Jianbo Song
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
- Jiangxi Provincial Key Laboratory of Conservation Biology, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Liming Zeng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| |
Collapse
|
6
|
Liu Z, Wang L, Li Y, Zhu J, Li Z, Chen L, Li H, Shi T, Yao P, Bi Z, Sun C, Bai J, Zhang J, Liu Y. Genome-wide analysis of the U-box E3 ligases gene family in potato (Solanum tuberosum L.) and overexpress StPUB25 enhance drought tolerance in transgenic Arabidopsis. BMC Genomics 2024; 25:10. [PMID: 38166714 PMCID: PMC10759479 DOI: 10.1186/s12864-023-09890-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Plant U-box (PUB) E3 ubiquitin ligases have vital effects on various biological processes. Therefore, a comprehensive and systematic identification of the members of the U-box gene family in potato will help to understand the evolution and function of U-box E3 ubiquitin ligases in plants. RESULTS This work identified altogether 74 PUBs in the potato (StPUBs) and examined their gene structures, chromosomal distributions, and conserved motifs. There were seventy-four StPUB genes on ten chromosomes with diverse densities. As revealed by phylogenetic analysis on PUBs within potato, Arabidopsis, tomato (Solanum lycopersicum), cabbage (Brassica oleracea), rice (Oryza sativa), and corn (Zea mays), were clustered into eight subclasses (C1-C8). According to synteny analysis, there were 40 orthologous StPUB genes to Arabidopsis, 58 to tomato, 28 to cabbage, 7 to rice, and 8 to corn. In addition, RNA-seq data downloaded from PGSC were utilized to reveal StPUBs' abiotic stress responses and tissue-specific expression in the doubled-monoploid potato (DM). Inaddition, we performed RNA-seq on the 'Atlantic' (drought-sensitive cultivar, DS) and the 'Qingshu NO.9' (drought-tolerant cultivar, DT) in early flowering, full-blooming, along with flower-falling stages to detect genes that might be involved in response to drought stress. Finally, quantitative real-time PCR (qPCR) was carried out to analyze three candidate genes for their expression levels within 100 mM NaCl- and 10% PEG 6000 (w/v)-treated potato plantlets for a 24-h period. Furthermore, we analyzed the drought tolerance of StPUB25 transgenic plants and found that overexpression of StPUB25 significantly increased peroxidase (POD) activity, reduced ROS (reactive oxygen species) and MDA (malondialdehyde) accumulation compared with wild-type (WT) plants, and enhancing drought tolerance of the transgenic plants. CONCLUSION In this study, three candidate genes related to drought tolerance in potato were excavated, and the function of StPUB25 under drought stress was verified. These results should provide valuable information to understand the potato StPUB gene family and investigate the molecular mechanisms of StPUBs regulating potato drought tolerance.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lei Wang
- Hebei North University, Zhangjiakou, 075000, China
| | - Yuanming Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinyong Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhitao Li
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Limin Chen
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hongyang Li
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Tianbin Shi
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Panfeng Yao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhenzhen Bi
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Chao Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiangping Bai
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Junlian Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
7
|
Li S, Yao X, Zhang B, Tang H, Lu L. Genome-wide characterization of the U-box gene in Camellia sinensis and functional analysis in transgenic tobacco under abiotic stresses. Gene 2023; 865:147301. [PMID: 36813060 DOI: 10.1016/j.gene.2023.147301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/16/2022] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Plants U-box genes are crucial for plant survival, and they extensively regulate plant growth, reproduction and development as well as coping with stress and other processes. In this study, we identified 92 CsU-box genes through genome-wide analysis in the tea plant (Camellia sinensis), all of them contained the conserved U-box domain and were divided into 5 groups, which supported by the further genes structure analysis. The expression profiles in eight tea plant tissues and under abiotic and hormone stresses were analyzed using the TPIA database. 7 CsU-box genes (CsU-box27/28/39/46/63/70/91) were selected to verify and analyze expression patterns under PEG-induced drought and heat stress in tea plant respectively, the qRT-PCR results showed consistent with transcriptome datasets; and the CsU-box39 were further heterologous expressed in tobacco to perform gene function analysis. Phenotypic analyses of overexpression transgenic tobacco seedlings and physiological experiments revealed that CsU-box39 positively regulated the plant response to drought stress. These results lay a solid foundation for studying the biological function of CsU-box, and will provide breeding strategy basis for tea plant breeders.
Collapse
Affiliation(s)
- Shiyu Li
- College of Tea Sciences, Guizhou University, Guiyang 550025, China
| | - Xinzhuan Yao
- College of Tea Sciences, Guizhou University, Guiyang 550025, China
| | - Baohui Zhang
- Institute of Agricultural Bioengineering/College of Life Sciences, Key Laboratory of Mountain Plant Resources Conservation and Germplasm Innovation, Ministry of Education, Collaborative Innovation Center for Mountain Ecology and Agricultural Bioengineering, Guiyang 550025, China
| | - Hu Tang
- College of Tea Sciences, Guizhou University, Guiyang 550025, China; Institute of Agricultural Bioengineering/College of Life Sciences, Key Laboratory of Mountain Plant Resources Conservation and Germplasm Innovation, Ministry of Education, Collaborative Innovation Center for Mountain Ecology and Agricultural Bioengineering, Guiyang 550025, China.
| | - Litang Lu
- College of Tea Sciences, Guizhou University, Guiyang 550025, China; Institute of Agricultural Bioengineering/College of Life Sciences, Key Laboratory of Mountain Plant Resources Conservation and Germplasm Innovation, Ministry of Education, Collaborative Innovation Center for Mountain Ecology and Agricultural Bioengineering, Guiyang 550025, China.
| |
Collapse
|
8
|
Wang P, Zhu L, Li Z, Cheng M, Chen X, Wang A, Wang C, Zhang X. Genome-Wide Identification of the U-Box E3 Ubiquitin Ligase Gene Family in Cabbage ( Brassica oleracea var. capitata) and Its Expression Analysis in Response to Cold Stress and Pathogen Infection. PLANTS (BASEL, SWITZERLAND) 2023; 12:1437. [PMID: 37050063 PMCID: PMC10097260 DOI: 10.3390/plants12071437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Plant U-box E3 ubiquitin ligases (PUBs) play an important role in growth, development, and stress responses in many species. However, the characteristics of U-box E3 ubiquitin ligase genes in cabbage (Brassica oleracea var. capitata) are still unclear. Here, we carry out the genome-wide analysis of U-box E3 ubiquitin ligase genes in cabbage and identify 65 Brassica oleracea var. capitata U-box E3 ubiquitin ligase (BoPUB) genes in the cabbage genome. Phylogenetic analysis indicates that all 65 BoPUB genes are grouped into six subfamilies, whose members are relatively conserved in the protein domain and exon-intron structure. Chromosomal localization and synteny analyses show that segmental and tandem duplication events contribute to the expansion of the U-box E3 ubiquitin ligase gene family in cabbage. Protein interaction prediction presents that heterodimerization may occur in BoPUB proteins. In silico promoter analysis and spatio-temporal expression profiling of BoPUB genes reveal their involvement in light response, phytohormone response, and growth and development. Furthermore, we find that BoPUB genes participate in the biosynthesis of cuticular wax and in response to cold stress and pathogenic attack. Our findings provide a deep insight into the U-box E3 ubiquitin ligase gene family in cabbage and lay a foundation for the further functional analysis of BoPUB genes in different biological processes.
Collapse
Affiliation(s)
- Peiwen Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Lin Zhu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Ziheng Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Mozhen Cheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Chao Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoxuan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Zizelski Valenci G, Raveh D, Bar-Zvi D. The activity of the stress modulated Arabidopsis ubiquitin ligases PUB46 and PUB48 is partially redundant. PLANT SIGNALING & BEHAVIOR 2022; 17:2072111. [PMID: 35546519 PMCID: PMC9116408 DOI: 10.1080/15592324.2022.2072111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
The Arabidopsis ubiquitin ligases PUB46, PUB47 and PUB48 are encoded by paralogus genes. Single gene pub46 and pub48 mutants display increased drought sensitivity compared to wild type (WT) suggesting that each has specific biological activity. The high sequence homology between PUB46 and PUB48 activity suggested that they may also share some aspects of their activity. Unfortunately, the close proximity of the PUB46 and PUB48 gene loci precludes obtaining a double mutant required to study if they are partially redundant by crossing the available single mutants. We thus applied microRNA technology to reduce the activity of all three gene products of the PUB46-48 subfamily by constructing an artificial microRNA (aMIR) targeted to this subfamily. Expressing aMIR46-48 in WT plants resulted in increased drought-sensitivity, a phenotype resembling that of each of the single pub46 and pub48 mutants, and enhanced sensitivity to methyl viologen, similar to that observed for the pub46 mutant. The WT plants expressing aMIR46-48 plants also revealed reduced inhibition by ABA at seed germination, a phenotype not evident in the single mutants. Expressing aMIR46-48 in pub46 and pub48 mutants further enhanced the drought sensitivity of each parental single mutant and of WT expressing aMIR46-48. These results suggest that the biological activities of PUB46 and PUB48 in abiotic stress response are partially redundant.
Collapse
Affiliation(s)
- Gal Zizelski Valenci
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dina Raveh
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dudy Bar-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the NegevThe Doris and Bertie I. , Beer-Sheva, Israel
| |
Collapse
|
10
|
Fang Y, Du Q, Yang Q, Jiang J, Hou X, Yang Z, Zhao D, Li X, Xie X. Identification, characterization, and expression profiling of the putative U-box E3 ubiquitin ligase gene family in Sorghum bicolor. Front Microbiol 2022; 13:942302. [PMID: 36187972 PMCID: PMC9520534 DOI: 10.3389/fmicb.2022.942302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
The U-box family is one of the main E3 ubiquitin ligase families in plants. The U-box family has been characterized in several species. However, genome-wide gene identification and expression profiling of the U-box family in response to abiotic stress in Sorghum bicolor remain unclear. In this study, we broadly identified 68 U-box genes in the sorghum genome, including 2 CHIP genes, and 1 typical UFD2 (Ub fusion degradation 2) gene. The U-box gene family was divided into eight subclasses based on homology and conserved domain characteristics. Evolutionary analysis identified 14, 66, and 82 U-box collinear gene pairs in sorghum compared with arabidopsis, rice, and maize, respectively, and a unique tandem repeat pair (SbPUB26/SbPUB27) is present in the sorghum genome. Gene Ontology (GO) enrichment analysis showed that U-box proteins were mainly related to ubiquitination and modification, and various stress responses. Comprehensive analysis of promoters, expression profiling, and gene co-regulation networks also revealed that many sorghum U-box genes may be correlated with multiple stress responses. In summary, our results showed that sorghum contains 68 U-box genes, which may be involved in multiple abiotic stress responses. The findings will support future gene functional studies related to ubiquitination in sorghum.
Collapse
Affiliation(s)
- Yuanpeng Fang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Qiaoli Du
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Qian Yang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xiaolong Hou
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Zaifu Yang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Degang Zhao
- College of Life Sciences, Ministry of Education, Institute of Agricultural Bioengineering, Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation, Guizhou University, Guiyang, China
- Guizhou Academy of Agricultural Sciences, Guizhou Conservation Technology Application Engineering Research Center, Guizhou Institute of Prataculture, Guizhou Institute of Biotechnology, Guiyang, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
- Guizhou Academy of Agricultural Sciences, Guizhou Conservation Technology Application Engineering Research Center, Guizhou Institute of Prataculture, Guizhou Institute of Biotechnology, Guiyang, China
- *Correspondence: Xin Xie,
| |
Collapse
|
11
|
Trenner J, Monaghan J, Saeed B, Quint M, Shabek N, Trujillo M. Evolution and Functions of Plant U-Box Proteins: From Protein Quality Control to Signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:93-121. [PMID: 35226816 DOI: 10.1146/annurev-arplant-102720-012310] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Posttranslational modifications add complexity and diversity to cellular proteomes. One of the most prevalent modifications across eukaryotes is ubiquitination, which is orchestrated by E3 ubiquitin ligases. U-box-containing E3 ligases have massively expanded in the plant kingdom and have diversified into plant U-box proteins (PUBs). PUBs likely originated from two or three ancestral forms, fusing with diverse functional subdomains that resulted in neofunctionalization. Their emergence and diversification may reflect adaptations to stress during plant evolution, reflecting changes in the needs of plant proteomes to maintain cellular homeostasis. Through their close association with protein kinases, they are physically linked to cell signaling hubs and activate feedback loops by dynamically pairing with E2-ubiquitin-conjugating enzymes to generate distinct ubiquitin polymers that themselves act as signals. Here, we complement current knowledgewith comparative genomics to gain a deeper understanding of PUB function, focusing on their evolution and structural adaptations of key U-box residues, as well as their various roles in plant cells.
Collapse
Affiliation(s)
- Jana Trenner
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany; ,
| | | | - Bushra Saeed
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany; ,
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany; ,
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California, USA;
| | - Marco Trujillo
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany; ,
| |
Collapse
|
12
|
Liao HZ, Liao WJ, Zou DX, Zhang RQ, Ma JL. Identification and expression analysis of PUB genes in tea plant exposed to anthracnose pathogen and drought stresses. PLANT SIGNALING & BEHAVIOR 2021; 16:1976547. [PMID: 34633911 PMCID: PMC9208792 DOI: 10.1080/15592324.2021.1976547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The plant U-box (PUB) gene family, one of the major ubiquitin ligase families in plants, plays important roles in multiple cellular processes including environmental stress responses and resistance. The function of U-box genes has been well characterized in Arabidopsis and other plants. However, little is known about the tea plant (Camellia sinensis) PUB genes. Here, 89 U-box proteins were identified from the chromosome-scale referenced genome of tea plant. According to the domain organization and phylogenetic analysis, the tea plant PUB family were classified into ten classes, named Class I to X, respectively. Using previously released stress-related RNA-seq data in tea plant, we identified 34 stress-inducible CsPUB genes. Specifically, eight CsPUB genes were expressed differentially under both anthracnose pathogen and drought stresses. Moreover, six of the eight CsPUBs were upregulated in response to these two stresses. Expression profiling performed by qRT-PCR was consistent with the RNA-seq analysis, and stress-related cis-acting elements were identified in the promoter regions of the six upregulated CsPUB genes. These results strongly implied the putative functions of U-box ligase genes in response to biotic and abiotic stresses in tea plant.
Collapse
Affiliation(s)
- Hong-Ze Liao
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, NanningChina
- Key Laboratory of Ministry of Education for Non-Wood Forest Cultivation and Protection, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Protection and Utilization of Marine Resources, Guangxi University for Nationalities, Nanning, China
| | - Wang-Jiao Liao
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, NanningChina
| | - Dong-Xia Zou
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, NanningChina
| | - Ri-Qing Zhang
- Key Laboratory of Ministry of Education for Non-Wood Forest Cultivation and Protection, Central South University of Forestry and Technology, Changsha, China
| | - Jin-Lin Ma
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, NanningChina
| |
Collapse
|
13
|
Analysis of SI-Related BoGAPDH Family Genes and Response of BoGAPC to SI Signal in Brassica oleracea L. Genes (Basel) 2021; 12:genes12111719. [PMID: 34828325 PMCID: PMC8618600 DOI: 10.3390/genes12111719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/04/2022] Open
Abstract
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is not only involved in carbohydrate metabolism, but also plays an important role in stress resistance. However, it has not been reported in Brassica oleracea. In this study, we performed a genome-wide identification of BoGAPDH in B. oleracea and performed cloning and expression analysis of one of the differentially expressed genes, BoGAPC. A total of 16 members of the BoGAPDH family were identified in B. oleracea, which were conserved, distributed unevenly on chromosomes and had tandem repeat genes. Most of the genes were down-regulated during self-pollination, and the highest expression was found in stigmas and sepals. Different transcriptome data showed that BoGAPDH genes were differentially expressed under stress, which was consistent with the results of qRT-PCR. We cloned and analyzed the differentially expressed gene BoGAPC and found that it was in the down-regulated mode 1 h after self-pollination, and the expression was the highest in the stigma, which was consistent with the result of GUS staining. The promoter region of the gene not only has stress response elements and plant hormone response elements, but also has a variety of specific elements for regulating floral organ development. Subcellular localization indicates that the BoGAPC protein is located in the cytoplasm and belongs to the active protein in the cytoplasm. The results of prokaryotic expression showed that the size of the BoGAPC protein was about 37 kDa, which was consistent with the expected results, indicating that the protein was induced in prokaryotic cells. The results of yeast two-hybrid and GST pull-down showed that the SRK kinase domain interacted with the BoGAPC protein. The above results suggest that the BoGAPDH family of B. oleracea plays an important role in the process of plant stress resistance, and the BoGAPC gene may be involved in the process of self-incompatibility in B. oleracea, which may respond to SI by encoding proteins directly interacting with SRK.
Collapse
|
14
|
Genome-wide identification and expression analysis of U-box gene family in wild emmer wheat (Triticum turgidum L. ssp. dicoccoides). Gene 2021; 799:145840. [PMID: 34274467 DOI: 10.1016/j.gene.2021.145840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022]
Abstract
In this study, 82 U-box genes were identified in wild emmer wheat (TdPUBs) through a genome-search method. Phylogenetic analysis classified them into seven groups and the genes belonging to the same group shared the similar exon-intron structure, motif organization and cis-element compositions. Synteny analysis of the U-box genes between different species revealed that segmental duplication and polyploidization mainly contributed to the expansion of TdPUBs. Furthermore, the genetic variations of U-box were investigated in wild emmer, domesticated emmer and durum wheat. Results showed that significant genetic bottleneck has occurred during domestication process of tetraploid emmer wheat. Meanwhile, 12 TdPUBs were co-located with known domestication related QTLs. Finally, the tissue-specific and stress-responsive TdPUB genes were identified through RNA-seq analysis. Combined with qPCR validation of 19 salt-responsive TdPUBs, the candidates involving in salt response were obtained. It lays the foundation to better understand the regulatory roles of U-box family in emmer wheat and beyond.
Collapse
|
15
|
Ventura M, Antonacci F. Special Issue: A Tale of Genes and Genomes. Genes (Basel) 2021; 12:genes12050774. [PMID: 34069634 PMCID: PMC8161243 DOI: 10.3390/genes12050774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
Variability is the source on which selective pressure acts, allowing genome evolution and adaptation [...].
Collapse
|
16
|
Xu Z, Marowa P, Liu H, Du H, Zhang C, Li Y. Genome-Wide Identification and Analysis of P-Type Plasma Membrane H +-ATPase Sub-Gene Family in Sunflower and the Role of HHA4 and HHA11 in the Development of Salt Stress Resistance. Genes (Basel) 2020; 11:genes11040361. [PMID: 32230880 PMCID: PMC7231311 DOI: 10.3390/genes11040361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/02/2023] Open
Abstract
The P-type plasma membrane (PM) H+-ATPase plays a major role during the growth and development of a plant. It is also involved in plant resistance to a variety of biotic and abiotic factors, including salt stress. The PM H+-ATPase gene family has been well characterized in Arabidopsis and other crop plants such as rice, cucumber, and potato; however, the same cannot be said in sunflower (Helianthus annuus). In this study, a total of thirteen PM H+-ATPase genes were screened from the recently released sunflower genome database with a comprehensive genome-wide analysis. According to a systematic phylogenetic classification with a previously reported species, the sunflower PM H+-ATPase genes (HHAs) were divided into four sub-clusters (I, II, IV, and V). In addition, systematic bioinformatics analyses such as gene structure analysis, chromosome location analysis, subcellular localization predication, conserved motifs, and Cis-acting elements of promoter identification were also done. Semi-quantitative PCR analysis data of HHAs in different sunflower tissues revealed the specificity of gene spatiotemporal expression and sub-cluster grouping. Those belonging to sub-cluster I and II exhibited wide expression in almost all of the tissues studied while sub-cluster IV and V seldom showed expression. In addition, the expression of HHA4, HHA11, and HHA13 was shown to be induced by salt stress. The transgenic plants overexpressing HHA4 and HHA11 showed higher salinity tolerance compared with wild-type plants. Further analysis showed that the Na+ content of transgenic Arabidopsis plants decreased under salt stress, which indicates that PM H+ ATPase participates in the physiological process of Na+ efflux, resulting in salt resistance of the plants. This study is the first to identify and analyze the sunflower PM H+ ATPase gene family. It does not only lay foundation for future research but also demonstrates the role played by HHAs in salt stress tolerance.
Collapse
Affiliation(s)
- Zongchang Xu
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Z.X.); (C.Z.)
| | - Prince Marowa
- Crop Science Department, University of Zimbabwe, Harare 00263, Zimbabwe;
| | - Han Liu
- College of Agriculture, Qingdao Agricultural University, Qingdao 266109, China; (H.L.); (H.D.)
| | - Haina Du
- College of Agriculture, Qingdao Agricultural University, Qingdao 266109, China; (H.L.); (H.D.)
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Z.X.); (C.Z.)
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Z.X.); (C.Z.)
- Correspondence: ; Tel.: +86-0532-6671-5597
| |
Collapse
|