1
|
Hallahan BF. One Hundred Years of Progress and Pitfalls: Maximising Heterosis through Increasing Multi-Locus Nuclear Heterozygosity. BIOLOGY 2024; 13:817. [PMID: 39452126 PMCID: PMC11504056 DOI: 10.3390/biology13100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
The improvement in quantitative traits (e.g., yield, size) in F1 offspring over parent lines is described as hybrid vigour, or heterosis. There exists a fascinating relationship between parental genetic distance and genome dosage (polyploidy), and heterosis effects. The contribution of nuclear heterozygosity to heterosis is not uniform across diploid and polyploid crops, even within same species, thus demonstrating that polyploid crops should be part of any discussion on the mechanisms of heterosis. This review examines the records of correlating heterosis with parental genetic distance and the influence of adding supplementary genomes in wide crosses. Increasing nuclear heterozygosity through parental genetic distance has been shown to be an imperfect predictor for heterosis in a variety of commercial crops such as maize, rice, and pepper. However, increasing the ploidy level raises the maximum number of alleles that can be harboured at any one locus, and studies on crops such as oilseed rape, potato, alfalfa, maize, and rice have demonstrated that heterosis may be maximised upon increasing multi-locus nuclear heterozygosity. The novel heterotic phenotypes observed above the diploid level will contribute to our understanding on the mechanisms of heterosis and aid plant breeders in achieving the righteous goal of producing more food with fewer inputs.
Collapse
Affiliation(s)
- Brendan F Hallahan
- Public Analyst's Laboratory, St. Finbarr's Hospital, Cork T12 XH60, Ireland
| |
Collapse
|
2
|
Wang Y, Li X, Feng Y, Wang J, Zhang J, Liu Z, Wang H, Chen T, He W, Wu Z, Lin Y, Zhang Y, Li M, Chen Q, Zhang Y, Luo Y, Tang H, Wang X. Autotetraploid Origin of Chinese Cherry Revealed by Chromosomal Karyotype and In Situ Hybridization of Seedling Progenies. PLANTS (BASEL, SWITZERLAND) 2023; 12:3116. [PMID: 37687365 PMCID: PMC10490022 DOI: 10.3390/plants12173116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/10/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Polyploidy is considered a driving force in plant evolution and diversification. Chinese cherry [Cerasus pseudocerasus (Lindl.) G.Don], an economically important fruit crop native to China, has evolved at the tetraploid level, with a few pentaploid and hexaploid populations. However, its auto- or allo-polyploid origin remains unclear. To address this issue, we analyzed the ploidy levels and rDNA chromosomal distribution in self- and open-pollinated seedling progenies of tetraploid and hexaploid Chinese cherry. Genomic in situ hybridization (GISH) analysis was conducted to reveal the genomic relationships between Chinese cherry and diploid relatives from the genus Cerasus. Both self- and open-pollinated progenies of tetraploid Chinese cherry exhibited tetraploids, pentaploids, and hexaploids, with tetraploids being the most predominant. In the seedling progenies of hexaploid Chinese cherry, the majority of hexaploids and a few pentaploids were observed. A small number of aneuploids were also observed in the seedling progenies. Chromosome 1, characterized by distinct length characteristics, could be considered the representative chromosome of Chinese cherry. The basic Chinese cherry genome carried two 5S rDNA signals with similar intensity, and polyploids had the expected multiples of this copy number. The 5S rDNA sites were located at the per-centromeric regions of the short arm on chromosomes 4 and 5. Three 45S rDNA sites were detected on chr. 3, 4 and 7 in the haploid complement of Chinese cherry. Tetraploids exhibited 12 signals, while pentaploids and hexaploids showed fewer numbers than expected multiples. Based on the GISH signals, Chinese cherry demonstrated relatively close relationships with C. campanulata and C. conradinae, while being distantly related to another fruiting cherry, C. avium. In combination with the above results, our findings suggested that Chinese cherry likely originated from autotetraploidy.
Collapse
Affiliation(s)
- Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.L.); (Y.F.); (J.W.); (J.Z.); (Z.L.); (H.W.); (W.H.); (Z.W.); (Y.L.); (Y.Z.); (M.L.); (Q.C.); (Y.Z.); (Y.L.); (H.T.)
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| | - Xueou Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.L.); (Y.F.); (J.W.); (J.Z.); (Z.L.); (H.W.); (W.H.); (Z.W.); (Y.L.); (Y.Z.); (M.L.); (Q.C.); (Y.Z.); (Y.L.); (H.T.)
| | - Yan Feng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.L.); (Y.F.); (J.W.); (J.Z.); (Z.L.); (H.W.); (W.H.); (Z.W.); (Y.L.); (Y.Z.); (M.L.); (Q.C.); (Y.Z.); (Y.L.); (H.T.)
- Rural Revitalization Service Center, Agricultural and Rural Bureau of Cuiping District Yibin City, Yibin 644000, China
| | - Juan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.L.); (Y.F.); (J.W.); (J.Z.); (Z.L.); (H.W.); (W.H.); (Z.W.); (Y.L.); (Y.Z.); (M.L.); (Q.C.); (Y.Z.); (Y.L.); (H.T.)
| | - Jing Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.L.); (Y.F.); (J.W.); (J.Z.); (Z.L.); (H.W.); (W.H.); (Z.W.); (Y.L.); (Y.Z.); (M.L.); (Q.C.); (Y.Z.); (Y.L.); (H.T.)
| | - Zhenshan Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.L.); (Y.F.); (J.W.); (J.Z.); (Z.L.); (H.W.); (W.H.); (Z.W.); (Y.L.); (Y.Z.); (M.L.); (Q.C.); (Y.Z.); (Y.L.); (H.T.)
| | - Hao Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.L.); (Y.F.); (J.W.); (J.Z.); (Z.L.); (H.W.); (W.H.); (Z.W.); (Y.L.); (Y.Z.); (M.L.); (Q.C.); (Y.Z.); (Y.L.); (H.T.)
| | - Tao Chen
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China;
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.L.); (Y.F.); (J.W.); (J.Z.); (Z.L.); (H.W.); (W.H.); (Z.W.); (Y.L.); (Y.Z.); (M.L.); (Q.C.); (Y.Z.); (Y.L.); (H.T.)
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| | - Zhiwei Wu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.L.); (Y.F.); (J.W.); (J.Z.); (Z.L.); (H.W.); (W.H.); (Z.W.); (Y.L.); (Y.Z.); (M.L.); (Q.C.); (Y.Z.); (Y.L.); (H.T.)
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.L.); (Y.F.); (J.W.); (J.Z.); (Z.L.); (H.W.); (W.H.); (Z.W.); (Y.L.); (Y.Z.); (M.L.); (Q.C.); (Y.Z.); (Y.L.); (H.T.)
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.L.); (Y.F.); (J.W.); (J.Z.); (Z.L.); (H.W.); (W.H.); (Z.W.); (Y.L.); (Y.Z.); (M.L.); (Q.C.); (Y.Z.); (Y.L.); (H.T.)
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.L.); (Y.F.); (J.W.); (J.Z.); (Z.L.); (H.W.); (W.H.); (Z.W.); (Y.L.); (Y.Z.); (M.L.); (Q.C.); (Y.Z.); (Y.L.); (H.T.)
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.L.); (Y.F.); (J.W.); (J.Z.); (Z.L.); (H.W.); (W.H.); (Z.W.); (Y.L.); (Y.Z.); (M.L.); (Q.C.); (Y.Z.); (Y.L.); (H.T.)
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.L.); (Y.F.); (J.W.); (J.Z.); (Z.L.); (H.W.); (W.H.); (Z.W.); (Y.L.); (Y.Z.); (M.L.); (Q.C.); (Y.Z.); (Y.L.); (H.T.)
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.L.); (Y.F.); (J.W.); (J.Z.); (Z.L.); (H.W.); (W.H.); (Z.W.); (Y.L.); (Y.Z.); (M.L.); (Q.C.); (Y.Z.); (Y.L.); (H.T.)
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.L.); (Y.F.); (J.W.); (J.Z.); (Z.L.); (H.W.); (W.H.); (Z.W.); (Y.L.); (Y.Z.); (M.L.); (Q.C.); (Y.Z.); (Y.L.); (H.T.)
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (X.L.); (Y.F.); (J.W.); (J.Z.); (Z.L.); (H.W.); (W.H.); (Z.W.); (Y.L.); (Y.Z.); (M.L.); (Q.C.); (Y.Z.); (Y.L.); (H.T.)
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| |
Collapse
|
3
|
Katsuoka H, Hamabe N, Kato C, Hisamatsu S, Baba F, Taneishi M, Sasaki T. Obtainment and confirmation of intergeneric hybrids between marguerite ( Argyranthemum frutescens (L.) Sch.Bip.) and two Rhodanthemum species ( R. hosmariense (Ball) B. H. Wilcox, K. Bremer & Humphries and R. catananche (Ball) B. H. Wilcox, K. Bremer & Humphries). PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:135-143. [PMID: 38250296 PMCID: PMC10797515 DOI: 10.5511/plantbiotechnology.23.0202a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/02/2023] [Indexed: 01/23/2024]
Abstract
Argyranthemum frutescens (L.) Sch.Bip. and Rhodanthemum gayanum (Coss. & Durieu) B. H. Wilcox, K. Bremer & Humphries are capable of hybridization. To expand flower color variation in this intergeneric hybrid group, we performed crosses using A. frutescens as the seed parent and R. hosmariense (Ball) B. H. Wilcox, K. Bremer & Humphries, R. catananche (Ball) B. H. Wilcox, K. Bremer & Humphries as the pollen parent. One plantlet was obtained from each cross between the white to pale pink-flowered A. frutescens and white-flowered R. hosmariense, and from a cross between the pink-flowered A. frutescens and cream to pale yellow-flowered R. catananche, via ovule culture. The cross with R. hosmariense produced an individual with white to pale pink ray florets, and the cross with R. catananche produced an individual with red ray florets. The flower and leaf shape of the progenies was intermediate between the parents, and other morphological traits were also characterized in the same manner. Morphological observations and a cleaved amplified polymorphic sequence marker-based determination, using the internal transcribed spacer region as a target for amplification and the restriction enzyme Afl II, revealed that both individuals are hybrids between A. frutescens and R. hosmariense, R. catananche. To the best of our knowledge, this is the first study to report that crossbreeding between A. frutescens (seed parent) and R. hosmariense, R. catananche (pollen parent) is possible. Moreover, further development of Argyranthemum breeding, especially that of a series of hybrid cultivars with different flower colors, is expected.
Collapse
Affiliation(s)
- Hiroyuki Katsuoka
- Izu Agricultural Research Center, Shizuoka Prefectural Research Institute of Agriculture and Forestry, 3012 Inatori, Higashiizu, Kamo, Shizuoka 413-0411, Japan
| | - Naoya Hamabe
- Izu Agricultural Research Center, Shizuoka Prefectural Research Institute of Agriculture and Forestry, 3012 Inatori, Higashiizu, Kamo, Shizuoka 413-0411, Japan
| | - Chiemi Kato
- Izu Agricultural Research Center, Shizuoka Prefectural Research Institute of Agriculture and Forestry, 3012 Inatori, Higashiizu, Kamo, Shizuoka 413-0411, Japan
| | - Susumu Hisamatsu
- Izu Agricultural Research Center, Shizuoka Prefectural Research Institute of Agriculture and Forestry, 3012 Inatori, Higashiizu, Kamo, Shizuoka 413-0411, Japan
| | - Fujio Baba
- Izu Agricultural Research Center, Shizuoka Prefectural Research Institute of Agriculture and Forestry, 3012 Inatori, Higashiizu, Kamo, Shizuoka 413-0411, Japan
| | - Motohiro Taneishi
- Izu Agricultural Research Center, Shizuoka Prefectural Research Institute of Agriculture and Forestry, 3012 Inatori, Higashiizu, Kamo, Shizuoka 413-0411, Japan
| | - Toshiyuki Sasaki
- Izu Agricultural Research Center, Shizuoka Prefectural Research Institute of Agriculture and Forestry, 3012 Inatori, Higashiizu, Kamo, Shizuoka 413-0411, Japan
| |
Collapse
|
4
|
Ortiz AM, Chalup L, Silvestri MC, Seijo G, Lavia GI. Genomic relationships of the polyploid rhizoma peanut (Arachis glabrata Benth.) inferred by genomic in situ hybridization (GISH). AN ACAD BRAS CIENC 2023; 95:e20210162. [PMID: 37075375 DOI: 10.1590/0001-3765202320210162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/11/2021] [Indexed: 04/21/2023] Open
Abstract
The rhizoma peanut (Arachis glabrata Benth., section Rhizomatosae) is a tetraploid perennial legume. Although several A. glabrata cultivars have been developed as forage and ornamental turf, the origin and genomic constitution of this species are still unknown. In this study, we evaluated the affinity between the genomes of A. glabrata and the probable diploid donors of the sections Rhizomatosae, Arachis, Erectoides and Procumbentes by genomic in situ hybridization (GISH). Single GISH analyses detected that species of the sections Erectoides (E2 subgenome) and Procumbentes (E3 subgenome) were the diploid species with the highest degree of genomic affinity with A. glabrata. Based on single GISH experiments and DNA sequence similarity, three species -A. duranensis, A. paraguariensis subsp. capibarensis, and A. rigonii-, which showed the most uniform and brightest hybridization patterns and lowest genetic distance, were selected as probes for double GISH experiments. Double GISH experiments showed that A. glabrata is constituted by four identical or very similar chromosome complements. In these assays, A. paraguariensis subsp. capibarensis showed the highest brightness onto A. glabrata chromosomes. Thus, our results support the autopolyploid origin of A. glabrata and show that the species with E2 subgenome are the most probable ancestors of this polyploid legume forage.
Collapse
Affiliation(s)
- Alejandra Marcela Ortiz
- CONICET-UNNE, Fac. Cs. Agrarias, Instituto de Botánica del Nordeste, Sargento Cabral 2131, C.C. 209, 3400 Corrientes, Argentina
| | - Laura Chalup
- CONICET-UNNE, Fac. Cs. Agrarias, Instituto de Botánica del Nordeste, Sargento Cabral 2131, C.C. 209, 3400 Corrientes, Argentina
- Universidad Nacional del Chaco Austral, UNCAUS, Comandante Fernandez 755, 3700, Pcia. Roque Sáenz Peña, Chaco, Argentina
| | - María Celeste Silvestri
- CONICET-UNNE, Fac. Cs. Agrarias, Instituto de Botánica del Nordeste, Sargento Cabral 2131, C.C. 209, 3400 Corrientes, Argentina
| | - Guillermo Seijo
- CONICET-UNNE, Fac. Cs. Agrarias, Instituto de Botánica del Nordeste, Sargento Cabral 2131, C.C. 209, 3400 Corrientes, Argentina
- Universidad Nacional del Nordeste (UNNE), Facultad de Ciencias Exactas y Naturales y Agrimensura, Av. Libertad 5460, 3400, Corrientes, Argentina
| | - Graciela Inés Lavia
- CONICET-UNNE, Fac. Cs. Agrarias, Instituto de Botánica del Nordeste, Sargento Cabral 2131, C.C. 209, 3400 Corrientes, Argentina
- Universidad Nacional del Nordeste (UNNE), Facultad de Ciencias Exactas y Naturales y Agrimensura, Av. Libertad 5460, 3400, Corrientes, Argentina
| |
Collapse
|
5
|
Chaves ALA, Carvalho PHM, Ferreira MTM, Benites FRG, Techio VH. Genomic constitution, allopolyploidy, and evolutionary proposal for Cynodon Rich. based on GISH. PROTOPLASMA 2022; 259:999-1011. [PMID: 34709474 DOI: 10.1007/s00709-021-01716-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Polyploidy is the main mechanism for chromosome number variation in Cynodon. Taxonomic boundaries are difficult to define and, although phylogenetic studies indicate that some species are closely related, the degree of genomic similarity remains unknown. Furthermore, the Cynodon species classification as auto or allopolyploids is still controversial. Thus, this study aimed to investigate the genomic constitution in diploid and polyploid species using different approaches of genomic in situ hybridization (GISH). To better understand the hybridization events, we also investigated the occurrence of unreduced gametes in C. dactylon diploid pollen grains. We suggest a genomic nomenclature of diploid species as DD, D1D1, and D2D2 for C. dactylon, C. incompletus, and C. nlemfuensis, and DDD2D2 and DD2D1D1 for the segmental allotetraploids of Cynodon dactylon and C. transvaalensis, respectively. Furthermore, an evolutionary proposal was built based on our results and previous data from other studies, showing possible crosses that may have occurred between Cynodon species.
Collapse
Affiliation(s)
- Ana Luisa Arantes Chaves
- Department of Biology (DBI), Plant Cytogenetics Laboratory, Federal University of Lavras (UFLA), P.O. Box 3037, Lavras, Minas Gerais State, Brazil
| | - Pedro Henrique Mendes Carvalho
- Department of Biology (DBI), Plant Cytogenetics Laboratory, Federal University of Lavras (UFLA), P.O. Box 3037, Lavras, Minas Gerais State, Brazil
| | - Marco Tulio Mendes Ferreira
- Department of Biology (DBI), Plant Cytogenetics Laboratory, Federal University of Lavras (UFLA), P.O. Box 3037, Lavras, Minas Gerais State, Brazil
| | | | - Vânia Helena Techio
- Department of Biology (DBI), Plant Cytogenetics Laboratory, Federal University of Lavras (UFLA), P.O. Box 3037, Lavras, Minas Gerais State, Brazil.
| |
Collapse
|
6
|
Jha TB. Critical review on karyotype diversity in lentil based on classical and molecular cytogenetics. Mol Biol Rep 2022; 49:9699-9714. [PMID: 35461437 DOI: 10.1007/s11033-022-07441-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022]
Abstract
Lentil is an annual protein rich valuable edible crop with only one cultivated and six wild taxa. Keeping in mind its narrow gene pool, the genus deserves critical assessment of genomic diversity at the chromosomal level. Genetic diversity represents the heritable variation within and between populations of organisms. Over the decades classical and molecular cytogenetics have played an immense role in the field of crop improvement. Lentil, though grown in different countries, country-wise chromosomal information is inadequate. Critical evaluation of more than seven decades chromosomal information has revealed unique karyotype diversity within the landraces of different countries. Application of fluorescent banding and fluorescent in situ hybridization (FISH) has helped to segregate cultivars based on cultivar specific chromosomal markers and landmarks. Selection of cultivated and wild cultivars based on qualitative and diseases related morpho-traits and new information from this critical review especially on molecular cytogenetics may provide more options for crop improvement. More research in the field of molecular cytogenetics from country specific species and cultivars are needed to enrich the repository of gene pool. Alien gene introgression from extended gene pool through the advanced genomics and biotechnological tools could facilitate the path of sustainable improvement of this crop.
Collapse
Affiliation(s)
- Timir Baran Jha
- Department of Botany, Maulana Azad College, Rafi Ahmed Kidwai Road, Kolkata, West Bengal, 700013, India.
| |
Collapse
|
7
|
Ansari HA, Ellison N, Stewart AV, Williams WM. Distribution patterns of rDNA loci in the Schedonorus- Lolium complex (Poaceae). COMPARATIVE CYTOGENETICS 2022; 16:39-54. [PMID: 35437460 PMCID: PMC8971122 DOI: 10.3897/compcytogen.v16.i1.79056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
The Schedonorus-Lolium complex of the subtribe Loliinae (Poaceae) includes several economically important forage and turf grasses. This complex encompasses Lolium Linnaeus, 1753, Festuca Linnaeus, 1753 subgenus Schedonorus (P. Beauvois, 1824) Petermann, 1849 and Micropyropsis Romero Zarco et Cabezudo, 1983. New FISH results of 5S and 18S-26S rDNA sequences are presented for three species and the results are interpreted in a review of distribution patterns of 5S and 18S-26S rDNA sequences among other species in the complex. Micropyropsistuberosa Romero Zarco et Cabezudo, 1983 (2n = 2x = 14) displayed a distribution pattern of rDNA sequences identical to that of F.pratensis Hudson, 1762, supporting a close phylogenetic relationship at the bottom of the phylogenetic tree. "Loliummultiflorum" Lamarck, 1779 accessions sourced from Morocco showed a different pattern from European L.multiflorum and could be a unique and previously uncharacterised taxon. North African Festucasimensis Hochstetter ex A. Richard, 1851 had a marker pattern consistent with allotetraploidy and uniparental loss of one 18S-26S rDNA locus. This allotetraploid has previously been suggested to have originated from a hybrid with Festucaglaucescens (Festucaarundinaceavar.glaucescens Boissier, 1844). However, the distribution patterns of the two rDNA sequences in this allotetraploid do not align with F.glaucescens, suggesting that its origin from this species is unlikely. Furthermore, comparisons with other higher alloploids in the complex indicate that F.simensis was a potential donor of two sub-genomes of allohexaploid Festucagigantea (Linnaeus) Villars, 1787. In the overall complex, the proximal locations of both rDNA markers were conserved among the diploid species. Two types of synteny of the two markers could, to a considerable extent, distinguish allo- and autogamous Lolium species. The ancestral parentage of the three Festuca allotetraploids has not yet been determined, but all three appear to have been sub-genome donors to the higher allopolypoids of sub-genus Schedonorus. Terminal locations of both the markers were absent from the diploids but were very frequently observed in the polyploids.
Collapse
Affiliation(s)
- Helal Ahmad Ansari
- AgResearch Ltd, Grasslands Research Centre, Palmerston North 4412, New ZealandGrasslands Research CentrePalmerston NorthNew Zealand
| | - Nicholas Ellison
- AgResearch Ltd, Grasslands Research Centre, Palmerston North 4412, New ZealandGrasslands Research CentrePalmerston NorthNew Zealand
| | - Alan Vincent Stewart
- PGG Wrightson Seeds, Kimihia Research Centre, 1375 Springs Road, RD4, Lincoln 7674, New ZealandKimihia Research CentreLincolnNew Zealand
| | - Warren Mervyn Williams
- AgResearch Ltd, Grasslands Research Centre, Palmerston North 4412, New ZealandGrasslands Research CentrePalmerston NorthNew Zealand
| |
Collapse
|
8
|
Heitkam T, Weber B, Walter I, Liedtke S, Ost C, Schmidt T. Satellite DNA landscapes after allotetraploidization of quinoa (Chenopodium quinoa) reveal unique A and B subgenomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:32-52. [PMID: 31981259 DOI: 10.1111/tpj.14705] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/10/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
If two related plant species hybridize, their genomes may be combined and duplicated within a single nucleus, thereby forming an allotetraploid. How the emerging plant balances two co-evolved genomes is still a matter of ongoing research. Here, we focus on satellite DNA (satDNA), the fastest turn-over sequence class in eukaryotes, aiming to trace its emergence, amplification, and loss during plant speciation and allopolyploidization. As a model, we used Chenopodium quinoa Willd. (quinoa), an allopolyploid crop with 2n = 4x = 36 chromosomes. Quinoa originated by hybridization of an unknown female American Chenopodium diploid (AA genome) with an unknown male Old World diploid species (BB genome), dating back 3.3-6.3 million years. Applying short read clustering to quinoa (AABB), C. pallidicaule (AA), and C. suecicum (BB) whole genome shotgun sequences, we classified their repetitive fractions, and identified and characterized seven satDNA families, together with the 5S rDNA model repeat. We show unequal satDNA amplification (two families) and exclusive occurrence (four families) in the AA and BB diploids by read mapping as well as Southern, genomic, and fluorescent in situ hybridization. Whereas the satDNA distributions support C. suecicum as possible parental species, we were able to exclude C. pallidicaule as progenitor due to unique repeat profiles. Using quinoa long reads and scaffolds, we detected only limited evidence of intergenomic homogenization of satDNA after allopolyploidization, but were able to exclude dispersal of 5S rRNA genes between subgenomes. Our results exemplify the complex route of tandem repeat evolution through Chenopodium speciation and allopolyploidization, and may provide sequence targets for the identification of quinoa's progenitors.
Collapse
Affiliation(s)
- Tony Heitkam
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Beatrice Weber
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Ines Walter
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Susan Liedtke
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Charlotte Ost
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
- Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Thomas Schmidt
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| |
Collapse
|
9
|
Yan X, Li Y, Wu Z, Li Y, Wen X, Li X, He R, Yang C, Zhao Y, Cheng M, Zhang P, Sam EK, Rong T, He J, Tang Q. Analysis of the genitor origin of an intergeneric hybrid clone between Zea and Tripsacum for forage production by McGISH. BREEDING SCIENCE 2020; 70:241-245. [PMID: 32523406 PMCID: PMC7272247 DOI: 10.1270/jsbbs.19107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/29/2019] [Indexed: 06/11/2023]
Abstract
In this study, the chromosome number and composition of a novel perennial forage crop, 'Yucao No. 6' (Yu6), was revealed by chromosome spread and McGISH (multicolor genomic in situ hybridization) techniques to clarify its genitor origin. Cytogenetic analysis showed that Yu6, which has 56 chromosomes, is an aneuploid representing 12, 17 and 27 chromosomes from Zea mays ssp. mays L. (Zm, 2n = 2x = 20), Tripsacum dactyloides L. (Td, 2n = 4x = 72), and Z. perennis (Hitchc.) Reeves & Mangelsd. (Zp, 2n = 4x = 40), respectively. This finding indicates that Yu6 is the product of a reduced egg (n = 36 = 12Zm + 17Td + 7Zp) of MTP (a near-allohexaploid hybrid, 2n = 74 = 20Zm + 34Td + 20Zp) fertilized by a haploid sperm nucleus (n = 20Zp) of Z. perennis. Moreover, 3 translocated chromosomes consisting of the maize-genome chromosome with the segment of Z. perennis were observed. These results suggest that it is practical to develop perennial forage maize by remodeling the chromosomal architecture of MTP offspring with Z. perennis as a pollen parent. Finally, the overview of forage breeding in the Zea and Tripsacum genera was discussed.
Collapse
Affiliation(s)
- Xu Yan
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huimin Road Wenjiang District, Chengdu, 611130, China P.R.
- Animal Husbandry Research Center & Sericulture Research Institute, Sichuan Academy of Agricultural Sciences, No. 52 Hezhong Street Shunqing District, Nanchong, 637000, China P.R.
| | - Yingzheng Li
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huimin Road Wenjiang District, Chengdu, 611130, China P.R.
| | - Zizhou Wu
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huimin Road Wenjiang District, Chengdu, 611130, China P.R.
| | - Yang Li
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huimin Road Wenjiang District, Chengdu, 611130, China P.R.
| | - Xiaodong Wen
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huimin Road Wenjiang District, Chengdu, 611130, China P.R.
| | - Xiaofeng Li
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huimin Road Wenjiang District, Chengdu, 611130, China P.R.
| | - Ruyu He
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huimin Road Wenjiang District, Chengdu, 611130, China P.R.
| | - Chunyan Yang
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huimin Road Wenjiang District, Chengdu, 611130, China P.R.
- Guizhou Prataculture Institute, No. 1 Jinnong Road Huaxi District, Guiyang, 550006, China P.R.
| | - Yanli Zhao
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huimin Road Wenjiang District, Chengdu, 611130, China P.R.
| | - Mingjun Cheng
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huimin Road Wenjiang District, Chengdu, 611130, China P.R.
- Sichuan Grass Industry Technology Research and Promotion Center, No. 4 Wuhouci Street, Chengdu, 610041, China P.R.
| | - Ping Zhang
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huimin Road Wenjiang District, Chengdu, 611130, China P.R.
| | - Ebenezer Kofi Sam
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huimin Road Wenjiang District, Chengdu, 611130, China P.R.
| | - Tingzhao Rong
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huimin Road Wenjiang District, Chengdu, 611130, China P.R.
| | - Jianmei He
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huimin Road Wenjiang District, Chengdu, 611130, China P.R.
| | - Qilin Tang
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huimin Road Wenjiang District, Chengdu, 611130, China P.R.
| |
Collapse
|
10
|
Chrtek J, Mráz P, Belyayev A, Paštová L, Mrázová V, Caklová P, Josefiová J, Zagorski D, Hartmann M, Jandová M, Pinc J, Fehrer J. Evolutionary history and genetic diversity of apomictic allopolyploids in Hieracium s.str.: morphological versus genomic features. AMERICAN JOURNAL OF BOTANY 2020; 107:66-90. [PMID: 31903548 DOI: 10.1002/ajb2.1413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/13/2019] [Indexed: 05/02/2023]
Abstract
PREMISE The origin of allopolyploids is believed to shape their evolutionary potential, ecology, and geographical ranges. Morphologically distinct apomictic types sharing the same parental species belong to the most challenging groups of polyploids. We evaluated the origins and variation of two triploid taxa (Hieracium pallidiflorum, H. picroides) presumably derived from the same diploid parental pair (H. intybaceum, H. prenanthoides). METHODS We used a suite of approaches ranging from morphological, phylogenetic (three unlinked molecular markers), and cytogenetic analyses (in situ hybridization) to genome size screening and genome skimming. RESULTS Genotyping proved the expected parentage of all analyzed accessions of H. pallidiflorum and H. picroides and revealed that nearly all of them originated independently. Genome sizes and genome dosage largely corresponded to morphology, whereas the maternal origin of the allopolyploids had no discernable effect. Polyploid accessions of both parental species usually contained genetic material from other species. Given the phylogenetic distance of the parents, their chromosomes appeared only weakly differentiated in genomic in situ hybridization (GISH), as well as in overall comparisons of the repetitive fraction of their genomes. Furthermore, the repeatome of a phylogenetically more closely related species (H. umbellatum) differed significantly more. CONCLUSIONS We proved (1) multiple origins of hybridogeneous apomicts from the same diploid parental taxa, and (2) allopolyploid origins of polyploid accessions of the parental species. We also showed that the evolutionary dynamics of very fast evolving markers such as satellite DNA or transposable elements does not necessarily follow patterns of speciation.
Collapse
Affiliation(s)
- Jindřich Chrtek
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ, 252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ, 128 01, Praha 2, Czech Republic
| | - Patrik Mráz
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ, 128 01, Praha 2, Czech Republic
| | - Alexander Belyayev
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ, 252 43, Průhonice, Czech Republic
| | - Ladislava Paštová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ, 252 43, Průhonice, Czech Republic
| | - Viera Mrázová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ, 252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ, 128 01, Praha 2, Czech Republic
| | - Petra Caklová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ, 252 43, Průhonice, Czech Republic
| | - Jiřina Josefiová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ, 252 43, Průhonice, Czech Republic
| | - Danijela Zagorski
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ, 252 43, Průhonice, Czech Republic
| | - Matthias Hartmann
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ, 252 43, Průhonice, Czech Republic
| | - Michaela Jandová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ, 252 43, Průhonice, Czech Republic
| | - Jan Pinc
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ, 128 01, Praha 2, Czech Republic
| | - Judith Fehrer
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ, 252 43, Průhonice, Czech Republic
| |
Collapse
|
11
|
Mandáková T, Zozomová-Lihová J, Kudoh H, Zhao Y, Lysak MA, Marhold K. The story of promiscuous crucifers: origin and genome evolution of an invasive species, Cardamine occulta (Brassicaceae), and its relatives. ANNALS OF BOTANY 2019; 124:209-220. [PMID: 30868165 PMCID: PMC6758578 DOI: 10.1093/aob/mcz019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/24/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Cardamine occulta (Brassicaceae) is an octoploid weedy species (2n = 8x = 64) originated in Eastern Asia. It has been introduced to other continents including Europe and considered to be an invasive species. Despite its wide distribution, the polyploid origin of C. occulta remained unexplored. The feasibility of comparative chromosome painting (CCP) in crucifers allowed us to elucidate the origin and genome evolution in Cardamine species. We aimed to investigate the genome structure of C. occulta in comparison with its tetraploid (2n = 4x = 32, C. kokaiensis and C. scutata) and octoploid (2n = 8x = 64, C. dentipetala) relatives. METHODS Genomic in situ hybridization (GISH) and large-scale CCP were applied to uncover the parental genomes and chromosome composition of the investigated Cardamine species. KEY RESULTS All investigated species descended from a common ancestral Cardamine genome (n = 8), structurally resembling the Ancestral Crucifer Karyotype (n = 8), but differentiated by a translocation between chromosomes AK6 and AK8. Allotetraploid C. scutata originated by hybridization between two diploid species, C. parviflora and C. amara (2n = 2x = 16). By contrast, C. kokaiensis has an autotetraploid origin from a parental genome related to C. parviflora. Interestingly, octoploid C. occulta probably originated through hybridization between the tetraploids C. scutata and C. kokaiensis. The octoploid genome of C. dentipetala probably originated from C. scutata via autopolyploidization. Except for five species-specific centromere repositionings and one pericentric inversion post-dating the polyploidization events, the parental subgenomes remained stable in the tetra- and octoploids. CONCLUSIONS Comparative genome structure, origin and evolutionary history was reconstructed in C. occulta and related species. For the first time, whole-genome cytogenomic maps were established for octoploid plants. Post-polyploid evolution in Asian Cardamine polyploids has not been associated with descending dysploidy and intergenomic rearrangements. The combination of different parental (sub)genomes adapted to distinct habitats provides an evolutionary advantage to newly formed polyploids by occupying new ecological niches.
Collapse
Affiliation(s)
- Terezie Mandáková
- Plant Cytogenomics research group, CEITEC – Central European Institute of Technology, and Faculty of Science, Masaryk University, Kamenice, Czech Republic
| | - Judita Zozomová-Lihová
- Plant Science and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Hirano, Japan
| | - Yunpeng Zhao
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, Institute of Ecology and Conservation Centre for Gene Resources of Endangered Wildlife, Zhejiang University, Hangzhou, China
| | - Martin A Lysak
- Plant Cytogenomics research group, CEITEC – Central European Institute of Technology, and Faculty of Science, Masaryk University, Kamenice, Czech Republic
| | - Karol Marhold
- Plant Science and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovak Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
12
|
Lancaster SM, Payen C, Smukowski Heil C, Dunham MJ. Fitness benefits of loss of heterozygosity in Saccharomyces hybrids. Genome Res 2019; 29:1685-1692. [PMID: 31548357 PMCID: PMC6771408 DOI: 10.1101/gr.245605.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 08/07/2019] [Indexed: 12/23/2022]
Abstract
With two genomes in the same organism, interspecific hybrids have unique fitness opportunities and costs. In both plants and yeasts, wild, pathogenic, and domesticated hybrids may eliminate portions of one parental genome, a phenomenon known as loss of heterozygosity (LOH). Laboratory evolution of hybrid yeast recapitulates these results, with LOH occurring in just a few hundred generations of propagation. In this study, we systematically looked for alleles that are beneficial when lost in order to determine how prevalent this mode of adaptation may be and to determine candidate loci that might underlie the benefits of larger-scale chromosome rearrangements. These aims were accomplished by mating Saccharomyces uvarum with the S. cerevisiae deletion collection to create hybrids such that each nonessential S. cerevisiae allele is deleted. Competitive fitness assays of these pooled, barcoded, hemizygous strains, and accompanying controls, revealed a large number of loci for which LOH is beneficial. We found that the fitness effects of hemizygosity are dependent on the species context, the selective environment, and the species origin of the deleted allele. Further, we found that hybrids have a wider distribution of fitness consequences versus matched S. cerevisiae hemizygous diploids. Our results suggest that LOH can be a successful strategy for adaptation of hybrids to new environments, and we identify candidate loci that drive the chromosomal rearrangements observed in evolution of yeast hybrids.
Collapse
Affiliation(s)
- Samuel M Lancaster
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Celia Payen
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Caiti Smukowski Heil
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
13
|
Xu D, Sember A, Zhu Q, Oliveira EAD, Liehr T, Al-Rikabi ABH, Xiao Z, Song H, Cioffi MDB. Deciphering the Origin and Evolution of the X 1X 2Y System in Two Closely-Related Oplegnathus Species (Oplegnathidae and Centrarchiformes). Int J Mol Sci 2019; 20:E3571. [PMID: 31336568 PMCID: PMC6678977 DOI: 10.3390/ijms20143571] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/05/2019] [Accepted: 07/13/2019] [Indexed: 01/18/2023] Open
Abstract
Oplegnathus fasciatus and O. punctatus (Teleostei: Centrarchiformes: Oplegnathidae), are commercially important rocky reef fishes, endemic to East Asia. Both species present an X1X2Y sex chromosome system. Here, we investigated the evolutionary forces behind the origin and differentiation of these sex chromosomes, with the aim to elucidate whether they had a single or convergent origin. To achieve this, conventional and molecular cytogenetic protocols, involving the mapping of repetitive DNA markers, comparative genomic hybridization (CGH), and whole chromosome painting (WCP) were applied. Both species presented similar 2n, karyotype structure and hybridization patterns of repetitive DNA classes. 5S rDNA loci, besides being placed on the autosomal pair 22, resided in the terminal region of the long arms of both X1 chromosomes in females, and on the X1 and Y chromosomes in males. Furthermore, WCP experiments with a probe derived from the Y chromosome of O. fasciatus (OFAS-Y) entirely painted the X1 and X2 chromosomes in females and the X1, X2, and Y chromosomes in males of both species. CGH failed to reveal any sign of sequence differentiation on the Y chromosome in both species, thereby suggesting the shared early stage of neo-Y chromosome differentiation. Altogether, the present findings confirmed the origin of the X1X2Y sex chromosomes via Y-autosome centric fusion and strongly suggested their common origin.
Collapse
Affiliation(s)
- Dongdong Xu
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Marine Fishery Institute of Zhejiang Province, Zhoushan 316100, China
- College of Fisheries, Zhejiang Ocean University, Zhoushan 316100, China
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Qihui Zhu
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Marine Fishery Institute of Zhejiang Province, Zhoushan 316100, China
| | - Ezequiel Aguiar de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos SP 13565-905, Brazil
- Secretaria de Estado de Educação de Mato Grosso-SEDUC-MT, Cuiabá MT 78049-909, Brazil
| | - Thomas Liehr
- University Clinic Jena, Institute of Human Genetics, 07747 Jena, Germany
| | | | - Zhizhong Xiao
- Laboratory for Marine Biology and Biotechnology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Hongbin Song
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Marine Fishery Institute of Zhejiang Province, Zhoushan 316100, China
- College of Fisheries, Zhejiang Ocean University, Zhoushan 316100, China
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos SP 13565-905, Brazil.
- University Clinic Jena, Institute of Human Genetics, 07747 Jena, Germany.
| |
Collapse
|
14
|
Paštová L, Belyayev A, Mahelka V. Molecular cytogenetic characterisation of Elytrigia ×mucronata, a natural hybrid of E. intermedia and E. repens (Triticeae, Poaceae). BMC PLANT BIOLOGY 2019; 19:230. [PMID: 31151385 PMCID: PMC6544950 DOI: 10.1186/s12870-019-1806-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 04/26/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Interspecific hybridisation resulting in polyploidy is one of the major driving forces in plant evolution. Here, we present data from the molecular cytogenetic analysis of three cytotypes of Elytrigia ×mucronata using sequential fluorescence (5S rDNA, 18S rDNA and pSc119.2 probes) and genomic in situ hybridisation (four genomic probes of diploid taxa, i.e., Aegilops, Dasypyrum, Hordeum and Pseudoroegneria). RESULTS The concurrent presence of Hordeum (descended from E. repens) and Dasypyrum + Aegilops (descended from E. intermedia) chromosome sets in all cytotypes of E. ×mucronata confirmed the assumed hybrid origin of the analysed plants. The following different genomic constitutions were observed for E. ×mucronata. Hexaploid plants exhibited three chromosome sets from Pseudoroegneria and one chromosome set each from Aegilops, Hordeum and Dasypyrum. Heptaploid plants harboured the six chromosome sets of the hexaploid plants and an additional Pseudoroegneria chromosome set. Nonaploid cytotypes differed in their genomic constitutions, reflecting different origins through the fusion of reduced and unreduced gametes. The hybridisation patterns of repetitive sequences (5S rDNA, 18S rDNA, and pSc119.2) in E. ×mucronata varied between and within cytotypes. Chromosome alterations that were not identified in the parental species were found in both heptaploid and some nonaploid plants. CONCLUSIONS The results confirmed that both homoploid hybridisation and heteroploid hybridisation that lead to the coexistence of four different haplomes within single hybrid genomes occur in Elytrigia allopolyploids. The chromosomal alterations observed in both heptaploid and some nonaploid plants indicated that genome restructuring occurs during and/or after the hybrids arose. Moreover, a specific chromosomal translocation detected in one of the nonaploids indicated that it was not a primary hybrid. Therefore, at least some of the hybrids are fertile. Hybridisation in Triticeae allopolyploids clearly and significantly contributes to genomic diversity. Different combinations of parental haplomes coupled with chromosomal alterations may result in the establishment of unique lineages, thus providing raw material for selection.
Collapse
Affiliation(s)
- Ladislava Paštová
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic
- Department of Botany, Charles University, Benátská 2, 128 01 Prague, Czech Republic
| | - Alexander Belyayev
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic
| | - Václav Mahelka
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic
| |
Collapse
|
15
|
Ibiapino A, García MA, Ferraz ME, Costea M, Stefanović S, Guerra M. Allopolyploid origin and genome differentiation of the parasitic species Cuscuta veatchii (Convolvulaceae) revealed by genomic in situ hybridization. Genome 2019; 62:467-475. [PMID: 31071271 DOI: 10.1139/gen-2018-0184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Interspecific hybridization and genome duplication to form allopolyploids are major evolutionary events in angiosperms. In the parasitic genus Cuscuta (Convolvulaceae), molecular data suggested the existence of species of hybrid origin. One of them, C. veatchii, has been proposed as a hybrid between C. denticulata and C. nevadensis, both included in sect. Denticulatae. To test this hypothesis, a cytogenetic analysis was performed with CMA/DAPI staining and fluorescent in situ hybridization using 5S and 35S rDNA and genomic probes. Chromosomes of C. denticulata were small with a well-defined centromeric region, whereas C. nevadensis had larger, densely stained chromosomes, and less CMA+ heterochromatic bands. Cuscuta veatchii had 2n = 60 chromosomes, about 30 of them similar to those of C. denticulata and the remaining to C. nevadensis. GISH analysis confirmed the presence of both subgenomes in the allotetraploid C. veatchii. However, the number of rDNA sites and the haploid karyotype length in C. veatchii were not additive. The diploid parentals had already diverged in their chromosomes structure, whereas the reduction in the number of rDNA sites more probably occurred after hybridization. As phylogenetic data suggested a recent divergence of the progenitors, these species should have a high rate of karyotype evolution.
Collapse
Affiliation(s)
- Amália Ibiapino
- a Laboratory of Plant Cytogenetics and Evolution - Federal University of Pernambuco, Department of Botany, Recife 50.372-970, PE, Brazil
| | - Miguel A García
- b Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.,c Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AE, United Kingdom
| | - Maria Eduarda Ferraz
- a Laboratory of Plant Cytogenetics and Evolution - Federal University of Pernambuco, Department of Botany, Recife 50.372-970, PE, Brazil
| | - Mihai Costea
- d Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Saša Stefanović
- b Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Marcelo Guerra
- a Laboratory of Plant Cytogenetics and Evolution - Federal University of Pernambuco, Department of Botany, Recife 50.372-970, PE, Brazil
| |
Collapse
|
16
|
Wang L, Jiang Y, Shi Q, Wang Y, Sha L, Fan X, Kang H, Zhang H, Sun G, Zhang L, Zhou Y. Genome constitution and evolution of Elytrigia lolioides inferred from Acc1, EF-G, ITS, TrnL-F sequences and GISH. BMC PLANT BIOLOGY 2019; 19:158. [PMID: 31023230 PMCID: PMC6485066 DOI: 10.1186/s12870-019-1779-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/15/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND Elytrigia lolioides (Kar. et Kir.) Nevski, which is a perennial, cross-pollinating wheatgrass that is distributed in Russia and Kazakhstan, is classified into Elytrigia, Elymus, and Lophopyrum genera by taxonomists on the basis of different taxonomic classification systems. However, the genomic constitution of E. lolioides is still unknown. To identify the genome constitution and evolution of E. lolioides, we used single-copy nuclear genes acetyl-CoA carboxylase (Acc1) and elongation factor G (EF-G), multi-copy nuclear gene internal transcribed space (ITS), chloroplast gene trnL-F together with fluorescence and genomic in situ hybridization. RESULTS Despite the widespread homogenization of ITS sequences, two distinct lineages (genera Pseudoroegneria and Hordeum) were identified. Acc1 and EF-G sequences suggested that in addition to Pseudoroegneria and Hordeum, unknown genome was the third potential donor of E. lolioides. Data from chloroplast DNA showed that Pseudoroegneria is the maternal donor of E. lolioides. Data from specific FISH marker for St genome indicated that E. lolioides has two sets of St genomes. Both genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) results confirmed the presence of Hordeum genome in this species. When E genome was used as the probe, no signal was found in 42 chromosomes. The E-like copy of Acc1 sequences was detected in E. lolioides possibly due to the introgression from E genome species. One of the H chromosomes in the accession W6-26586 from Kazakhstan did not hybridize H genome signals but had St genome signals on the pericentromeric regions in the two-color GISH. CONCLUSIONS Phylogenetic and in situ hybridization indicated the presence of two sets of Pseudoroegneria and one set of Hordeum genome in E. lolioides. The genome formula of E. lolioides was designed as StStStStHH. E. lolioides may have originated through the hybridization between tetraploid Elymus (StH) and diploid Pseudoroegneria species. E and unknown genomes may participate in the speciation of E. lolioides through introgression. According to the genome classification system, E. lolioides should be transferred into Elymus L. and renamed as Elymus lolioidus (Kar. er Kir.) Meld.
Collapse
Affiliation(s)
- Long Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Yuanyuan Jiang
- College of Science, Sichuan Agricultural University, Ya’an, 625014 Sichuan China
| | - Qinghua Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, 100101 China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Genlou Sun
- Biology Department, Saint Mary’s University, Halifax, Nova Scotia Canada
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Ya’an, 625014 Sichuan China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| |
Collapse
|
17
|
de Oliveira EA, Bertollo LAC, Rab P, Ezaz T, Yano CF, Hatanaka T, Jegede OI, Tanomtong A, Liehr T, Sember A, Maruyama SR, Feldberg E, Viana PF, Cioffi MDB. Cytogenetics, genomics and biodiversity of the South American and African Arapaimidae fish family (Teleostei, Osteoglossiformes). PLoS One 2019; 14:e0214225. [PMID: 30908514 PMCID: PMC6433368 DOI: 10.1371/journal.pone.0214225] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/09/2019] [Indexed: 11/19/2022] Open
Abstract
Osteoglossiformes represents one of the most ancestral teleost lineages, currently widespread over almost all continents, except for Antarctica. However, data involving advanced molecular cytogenetics or comparative genomics are yet largely limited for this fish group. Therefore, the present investigations focus on the osteoglossiform family Arapaimidae, studying a unique fish model group with advanced molecular cytogenetic genomic tools. The aim is to better explore and clarify certain events and factors that had impact on evolutionary history of this fish group. For that, both South American and African representatives of Arapaimidae, namely Arapaima gigas and Heterotis niloticus, were examined. Both species differed markedly by diploid chromosome numbers, with 2n = 56 found in A. gigas and 2n = 40 exhibited by H. niloticus. Conventional cytogenetics along with fluorescence in situ hybridization revealed some general trends shared by most osteoglossiform species analyzed thus far, such as the presence of only one chromosome pair bearing 18S and 5S rDNA sites and karyotypes dominated by acrocentric chromosomes, resembling thus the patterns of hypothetical ancestral teleost karyotype. Furthermore, the genomes of A. gigas and H. niloticus display remarkable divergence in terms of repetitive DNA content and distribution, as revealed by comparative genomic hybridization (CGH). On the other hand, genomic diversity of single copy sequences studied through principal component analyses (PCA) based on SNP alleles genotyped by the DArT seq procedure demonstrated a very low genetic distance between the South American and African Arapaimidae species; this pattern contrasts sharply with the scenario found in other osteoglossiform species. Underlying evolutionary mechanisms potentially explaining the obtained data have been suggested and discussed.
Collapse
Affiliation(s)
- Ezequiel Aguiar de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos, SP, Brazil
- Secretaria de Estado de Educação de Mato Grosso–SEDUC-MT, Cuiabá, MT, Brazil
| | - Luiz Antonio Carlos Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos, SP, Brazil
| | - Petr Rab
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Czech Republic
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Cassia Fernanda Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos, SP, Brazil
| | - Terumi Hatanaka
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos, SP, Brazil
| | | | - Alongklod Tanomtong
- Toxic Substances in Livestock and Aquatic Animals Research Group, KhonKaen University, Muang, KhonKaen, Thailand
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Czech Republic
| | - Sandra Regina Maruyama
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos, SP, Brazil
| | - Eliana Feldberg
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Laboratório de Genética Animal, Petrópolis, CEP: Manaus, AM, Brazil
| | - Patrik Ferreira Viana
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Laboratório de Genética Animal, Petrópolis, CEP: Manaus, AM, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos, SP, Brazil
| |
Collapse
|
18
|
Marques A, Moraes L, Aparecida Dos Santos M, Costa I, Costa L, Nunes T, Melo N, Simon MF, Leitch AR, Almeida C, Souza G. Origin and parental genome characterization of the allotetraploid Stylosanthes scabra Vogel (Papilionoideae, Leguminosae), an important legume pasture crop. ANNALS OF BOTANY 2018; 122:1143-1159. [PMID: 29982475 PMCID: PMC6324754 DOI: 10.1093/aob/mcy113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/28/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUNDS AND AIMS The genus Stylosanthes includes nitrogen-fixing and drought-tolerant species of considerable economic importance for perennial pasture, green manure and land recovery. Stylosanthes scabra is adapted to variable soil conditions, being cultivated to improve pastures and soils worldwide. Previous studies have proposed S. scabra as an allotetraploid species (2n = 40) with a putative diploid A genome progenitor S. hamata or S. seabrana (2n = 20) and the B genome progenitor S. viscosa (2n = 20). We aimed to provide conclusive evidence for the origin of S. scabra. METHODS We performed fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) experiments and Illumina paired-end sequencing of S. scabra, S. hamata and S. viscosa genomic DNA, to assemble and compare complete ribosomal DNA (rDNA) units and chloroplast genomes. Plastome- and genome-wide single nucleotide variation detection was also performed. KEY RESULTS GISH and phylogenetic analyses of plastid DNA and rDNA sequences support that S. scabra is an allotetraploid formed from 0.63 to 0.52 million years ago (Mya), from progenitors with a similar genome structure to the maternal donor S. hamata and the paternal donor S. viscosa. FISH revealed a non-additive number of 35S rDNA sites in S. scabra compared with its progenitors, indicating the loss of one locus from A genome origin. In S. scabra, most 5S rDNA units were similar to S. viscosa, while one 5S rDNA site of reduced size most probably came from an A genome species as revealed by GISH and in silico analysis. CONCLUSIONS Our approach combined whole-plastome and rDNA assembly with additional cytogenetic analysis to shed light successfully on the allotetraploid origin of S. scabra. We propose a Middle Pleistocene origin for S. scabra involving species with maternal A and paternal B genomes. Our data also suggest that variation found in rDNA units in S. scabra and its progenitors reveals differences that can be explained by homogenization, deletion and amplification processes that have occurred since its origin.
Collapse
Affiliation(s)
- André Marques
- Laboratory of Genetic Resources, Federal University of Alagoas, Arapiraca, AL, Brazil
| | - Lívia Moraes
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| | | | - Iara Costa
- Laboratory of Genetic Resources, Federal University of Alagoas, Arapiraca, AL, Brazil
| | - Lucas Costa
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| | - Tomáz Nunes
- Laboratory of Genetic Resources, Federal University of Alagoas, Arapiraca, AL, Brazil
| | - Natoniel Melo
- Laboratory of Biotechnology, Embrapa Semi-arid, Petrolina, Brazil
| | | | | | - Cicero Almeida
- Laboratory of Genetic Resources, Federal University of Alagoas, Arapiraca, AL, Brazil
| | - Gustavo Souza
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
19
|
|
20
|
Saenjundaeng P, de Bello Cioffi M, de Oliveira EA, Tanomtong A, Supiwong W, Phimphan S, Collares-Pereira MJ, Sember A, Bertollo LAC, Liehr T, Yano CF, Hatanaka T, Ráb P. Chromosomes of Asian cyprinid fishes: cytogenetic analysis of two representatives of small paleotetraploid tribe Probarbini. Mol Cytogenet 2018; 11:51. [PMID: 30202442 PMCID: PMC6123905 DOI: 10.1186/s13039-018-0399-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/23/2018] [Indexed: 12/01/2022] Open
Abstract
Background Polyploidy, although still poorly explored, represents an important evolutionary event in several cyprinid clades. Herein, Catlocarpio siamensis and Probarbus jullieni - representatives of the paleotetraploid tribe Probarbini, were characterized both by conventional and molecular cytogenetic methods. Results Alike most other paleotetraploid cyprinids (with 2n = 100), both species studied here shared 2n = 98 but differed in karyotypes: C. siamensis displayed 18m + 34sm + 46st/a; NF = 150, while P. jullieni exhibited 26m + 14sm + 58st/a; NF = 138. Fluorescence in situ hybridization (FISH) with rDNA probes revealed two (5S) and eight (18S) signals in C. siamensis, respectively, and six signals for both probes in P. jullieni. FISH with microsatellite motifs evidenced substantial genomic divergence between both species. The almost doubled size of the chromosome pairs #1 in C. siamensis and #14 in P. jullieni compared to the rest of corresponding karyotypes indicated chromosomal fusions. Conclusion Based on our findings, together with likely the same reduced 2n = 98 karyotypes in the remainder Probarbini species, we hypothesize that the karyotype 2n = 98 might represent a derived character, shared by all members of the Probarbini clade. Besides, we also witnessed considerable changes in the amount and distribution of certain repetitive DNA classes, suggesting complex post-polyploidization processes in this small paleotetraploid tribe.
Collapse
Affiliation(s)
- Pasakorn Saenjundaeng
- 1Toxic Substances in Livestock and Aquatic Animals Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Muang District, Khon Kaen, Thailand
| | - Marcelo de Bello Cioffi
- 2Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Ezequiel Aguiar de Oliveira
- 2Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP Brazil.,Secretaria de Estado de Educação de Mato Grosso - SEDUC-MT, Cuiabá, MT Brazil
| | - Alongklod Tanomtong
- 1Toxic Substances in Livestock and Aquatic Animals Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Muang District, Khon Kaen, Thailand
| | - Weerayuth Supiwong
- 4Faculty of Applied Science and Engineering, Khon Kaen University, Nong Kai Campus, Muang, Nong Kai Thailand
| | - Sumalee Phimphan
- 1Toxic Substances in Livestock and Aquatic Animals Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Muang District, Khon Kaen, Thailand
| | - Maria João Collares-Pereira
- 5Faculdade de Ciencias, Centre for Ecology, Evolution and Environmental Changes, Universidade de Lisboa, Campo Grande, PT-1749-016 Lisbon, Portugal
| | - Alexandr Sember
- 6Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | | | - Thomas Liehr
- 7Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Cassia Fernanda Yano
- 2Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Terumi Hatanaka
- 2Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Petr Ráb
- 6Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| |
Collapse
|
21
|
Skrzypek E, Warzecha T, Noga A, Warchoł M, Czyczyło-Mysza I, Dziurka K, Marcińska I, Kapłoniak K, Sutkowska A, Nita Z, Werwińska K, Idziak-Helmcke D, Rojek M, Hosiawa-Barańska M. Complex characterization of oat ( Avena sativa L.) lines obtained by wide crossing with maize ( Zea mays L.). PeerJ 2018; 6:e5107. [PMID: 29967749 PMCID: PMC6022724 DOI: 10.7717/peerj.5107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/06/2018] [Indexed: 01/13/2023] Open
Abstract
Background The oat × maize addition (OMA) lines are used for mapping of the maize genome, the studies of centromere-specific histone (CENH3), gene expression, meiotic chromosome behavior and also for introducing maize C4 photosynthetic system to oat. The aim of our study was the identification and molecular-cytogenetic characterization of oat × maize hybrids. Methods Oat DH lines and oat × maize hybrids were obtained using the wide crossing of Avena sativa L. with Zea mays L. The plants identified as having a Grande-1 retrotransposon fragment, which produced seeds, were used for genomic in situ hybridization (GISH). Results A total of 138 oat lines obtained by crossing of 2,314 oat plants from 80 genotypes with maize cv. Waza were tested for the presence of maize chromosomes. The presence of maize chromatin was indicated in 66 lines by amplification of the PCR product (500 bp) generated using primers specific for the maize retrotransposon Grande-1. Genomic in situ hybridization (GISH) detected whole maize chromosomes in eight lines (40%). All of the analyzed plants possessed full complement of oat chromosomes. The number of maize chromosomes differed between the OMA lines. Four OMA lines possessed two maize chromosomes similar in size, three OMA—one maize chromosome, and one OMA—four maize chromosomes. In most of the lines, the detected chromosomes were labeled uniformly. The presence of six 45S rDNA loci was detected in oat chromosomes, but none of the added maize chromosomes in any of the lines carried 45S rDNA locus. Twenty of the analyzed lines did not possess whole maize chromosomes, but the introgression of maize chromatin in the oat chromosomes. Five of 66 hybrids were shorter in height, grassy type without panicles. Twenty-seven OMA lines were fertile and produced seeds ranging in number from 1–102 (in total 613). Sixty-three fertile DH lines, out of 72 which did not have an addition of maize chromosomes or chromatin, produced seeds in the range of 1–343 (in total 3,758). Obtained DH and OMA lines were fertile and produced seeds. Discussion In wide hybridization of oat with maize, the complete or incomplete chromosomes elimination of maize occur. Hybrids of oat and maize had a complete set of oat chromosomes without maize chromosomes, and a complete set of oat chromosomes with one to four retained maize chromosomes.
Collapse
Affiliation(s)
- Edyta Skrzypek
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Tomasz Warzecha
- Department of Plant Breeding and Seed Science, University of Agriculture, Kraków, Polska
| | - Angelika Noga
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Marzena Warchoł
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Ilona Czyczyło-Mysza
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Kinga Dziurka
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Izabela Marcińska
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Kamila Kapłoniak
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Agnieszka Sutkowska
- Department of Plant Breeding and Seed Science, University of Agriculture, Kraków, Polska
| | - Zygmunt Nita
- Plant Breeding Strzelce Ltd., PBAI Group, Strzelce, Polska
| | | | - Dominika Idziak-Helmcke
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, Katowice, Polska
| | - Magdalena Rojek
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, Katowice, Polska
| | - Marta Hosiawa-Barańska
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, Katowice, Polska
| |
Collapse
|
22
|
Sember A, Bertollo LAC, Ráb P, Yano CF, Hatanaka T, de Oliveira EA, Cioffi MDB. Sex Chromosome Evolution and Genomic Divergence in the Fish Hoplias malabaricus (Characiformes, Erythrinidae). Front Genet 2018; 9:71. [PMID: 29556249 PMCID: PMC5845122 DOI: 10.3389/fgene.2018.00071] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/16/2018] [Indexed: 11/13/2022] Open
Abstract
The Erythrinidae family (Teleostei: Characiformes) is a small Neotropical fish group with a wide distribution throughout South America, where Hoplias malabaricus corresponds to the most widespread and cytogenetically studied taxon. This species possesses significant genetic variation, as well as huge karyotype diversity among populations, as reflected by its seven major karyotype forms (i.e., karyomorphs A-G) identified up to now. Although morphological differences in their bodies are not outstanding, H. malabaricus karyomorphs are easily identified by differences in 2n, morphology and size of chromosomes, as well as by distinct evolutionary steps of sex chromosomes development. Here, we performed comparative genomic hybridization (CGH) to analyse both the intra- and inter-genomic status in terms of repetitive DNA divergence among all but one (E) H. malabaricus karyomorphs. Our results indicated that they have close relationships, but with evolutionary divergences among their genomes, yielding a range of non-overlapping karyomorph-specific signals. Besides, male-specific regions were uncovered on the sex chromosomes, confirming their differential evolutionary trajectories. In conclusion, the hypothesis that H. malabaricus karyomorphs are result of speciation events was strengthened.
Collapse
Affiliation(s)
- Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czechia
| | - Luiz A. C. Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czechia
| | - Cassia F. Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Terumi Hatanaka
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Ezequiel A. de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
- Secretaria de Estado de Educação de Mato Grosso (SEDUC-MT), Cuiabá, Brazil
| | | |
Collapse
|
23
|
Gruenstaeudl M, Carstens BC, Santos-Guerra A, Jansen RK. Statistical hybrid detection and the inference of ancestral distribution areas in Tolpis (Asteraceae). Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blw014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Kolano B, McCann J, Orzechowska M, Siwinska D, Temsch E, Weiss-Schneeweiss H. Molecular and cytogenetic evidence for an allotetraploid origin of Chenopodium quinoa and C. berlandieri (Amaranthaceae). Mol Phylogenet Evol 2016; 100:109-123. [PMID: 27063253 DOI: 10.1016/j.ympev.2016.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 11/28/2022]
Abstract
Most of the cultivated chenopods are polyploids, but their origin and evolutionary history are still poorly understood. Phylogenetic analyses of DNA sequences of four plastid regions, nrITS and nuclear 5S rDNA spacer region (NTS) of two tetraploid chenopods (2n=4x=36), Andean C. quinoa and North American C. berlandieri, and their diploid relatives allowed inferences of their origin. The phylogenetic analyses confirmed allotetraploid origin of both tetraploids involving diploids of two different genomic groups (genomes A and B) and suggested that these two might share very similar parentage. The hypotheses on the origin of the two allopolyploid species were further tested using genomic in situ hybridization (GISH). Several diploid Chenopodium species belonging to the two lineages, genome A and B, suggested by phylogenetic analyses, were tested as putative parental taxa. GISH differentiated two sets of parental chromosomes in both tetraploids and further corroborated their allotetraploid origin. Putative diploid parental taxa have been suggested by GISH for C. quinoa and C. berlandieri. Genome sizes of the analyzed allotetraploids fit nearly perfectly the expected additive values of the putative parental taxa. Directional and uniparental loss of rDNA loci of the maternal A-subgenome was revealed for both C. berlandieri and C. quinoa.
Collapse
Affiliation(s)
- Bozena Kolano
- Department of Plant Anatomy and Cytology, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Jamie McCann
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, Austria
| | - Maja Orzechowska
- Department of Plant Anatomy and Cytology, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Dorota Siwinska
- Department of Plant Anatomy and Cytology, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Eva Temsch
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, Austria
| | - Hanna Weiss-Schneeweiss
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, Austria
| |
Collapse
|
25
|
Pawełkowicz M, Zieliński K, Zielińska D, Pląder W, Yagi K, Wojcieszek M, Siedlecka E, Bartoszewski G, Skarzyńska A, Przybecki Z. Next generation sequencing and omics in cucumber (Cucumis sativus L.) breeding directed research. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:77-88. [PMID: 26566826 DOI: 10.1016/j.plantsci.2015.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/29/2015] [Accepted: 07/28/2015] [Indexed: 05/10/2023]
Abstract
In the post-genomic era the availability of genomic tools and resources is leading us to novel generation methods in plant breeding, as they facilitate the study of the genotype and its relationship with the phenotype, in particular for complex traits. In this study we have mainly concentrated on the Cucumis sativus and (but much less) Cucurbitaceae family several important vegetable crops. There are many reports on research conducted in Cucurbitaceae plant breeding programs on the ripening process, phloem transport, disease resistance, cold tolerance and fruit quality traits. This paper presents the role played by new omic technologies in the creation of knowledge on the mechanisms of the formation of the breeding features. The analysis of NGS (NGS-next generation sequencing) data allows the discovery of new genes and regulatory sequences, their positions, and makes available large collections of molecular markers. Genome-wide expression studies provide breeders with an understanding of the molecular basis of complex traits. Firstly a high density map should be created for the reference genome, then each re-sequencing data could be mapped and new markers brought out into breeding populations. The paper also presents methods that could be used in the future for the creation of variability and genomic modification of the species in question. It has been shown also the state and usefulness in breeding the chloroplastomic and mitochondriomic study.
Collapse
Affiliation(s)
- Magdalena Pawełkowicz
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Konrad Zieliński
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Wojciech Pląder
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Kouhei Yagi
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Michał Wojcieszek
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Ewa Siedlecka
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Grzegorz Bartoszewski
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Agnieszka Skarzyńska
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Zbigniew Przybecki
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
26
|
Villano C, Miraglia V, Iorizzo M, Aversano R, Carputo D. Combined Use of Molecular Markers and High-Resolution Melting (HRM) to Assess Chromosome Dosage in Potato Hybrids. J Hered 2015; 107:187-92. [PMID: 26663623 DOI: 10.1093/jhered/esv094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/06/2015] [Indexed: 11/14/2022] Open
Abstract
In plants, the most widely used cytological techniques to assess parental genome contributions are based on in situ hybridization (FISH and GISH), but they are time-consuming and need specific expertise and equipment. Recent advances in genomics and molecular biology have made PCR-based markers a straightforward, affordable technique for chromosome typing. Here, we describe the development of a molecular assay that uses single-copy conserved ortholog set II (COSII)-based single nucleotide polymorphisms (SNPs) and the high-resolution melting (HRM) technique to assess the chromosome dosage of interspecific hybrids between a Solanum phureja-S. tuberosum diploid (2n = 2x = 24) hybrid and its wild relative S. commersonii. Screening and analysis of 45 COSII marker sequences allowed S. commersonii-specific SNPs to be identified for all 12 chromosomes. Combining the HRM technique with the establishment of synthetic DNA hybrids, SNP markers were successfully used to predict the expected parental chromosome ratio of 5 interspecific triploid hybrids. These results demonstrate the ability of this strategy to distinguish diverged genomes from each other, and to estimate chromosome dosage. The method could potentially be applied to any species as a tool to assess paternal to maternal ratios in the framework of a breeding program or following transformation techniques.
Collapse
Affiliation(s)
- Clizia Villano
- From the Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy (Villano, Miraglia, Aversano, and Carputo); and Plants for Human Health Institute, Department of Horticultural Science, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081 (Iorizzo)
| | - Valeria Miraglia
- From the Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy (Villano, Miraglia, Aversano, and Carputo); and Plants for Human Health Institute, Department of Horticultural Science, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081 (Iorizzo)
| | - Massimo Iorizzo
- From the Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy (Villano, Miraglia, Aversano, and Carputo); and Plants for Human Health Institute, Department of Horticultural Science, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081 (Iorizzo)
| | - Riccardo Aversano
- From the Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy (Villano, Miraglia, Aversano, and Carputo); and Plants for Human Health Institute, Department of Horticultural Science, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081 (Iorizzo).
| | - Domenico Carputo
- From the Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy (Villano, Miraglia, Aversano, and Carputo); and Plants for Human Health Institute, Department of Horticultural Science, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081 (Iorizzo)
| |
Collapse
|
27
|
González GE, Poggio L. Genomic affinities revealed by GISH suggests intergenomic restructuring between parental genomes of the paleopolyploid genus Zea. Genome 2015; 58:433-9. [PMID: 26506040 DOI: 10.1139/gen-2015-0081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present work compares the molecular affinities, revealed by GISH, with the analysis of meiotic pairing in intra- and interspecific hybrids between species of Zea obtained in previous works. The joint analysis of these data provided evidence about the evolutionary relationships among the species from the paleopolyploid genus Zea (maize and teosintes). GISH and meiotic pairing of intraspecific hybrids revealed high genomic affinity between maize (Zea mays subsp. mays) and both Zea mays subsp. parviglumis and Zea mays subsp. mexicana. On the other hand, when Zea mays subsp. huehuetenanguensis DNA was probed on maize chromosomes, a lower affinity was detected, and the pattern of hybridization suggested intergenomical restructuring between the parental genomes of maize. When DNA from Zea luxurians was used as probe, homogeneous hybridization signals were observed through all maize chromosomes. Lower genomic affinity was observed when DNA from Zea diploperennis was probed on maize chromosomes, especially at knob regions. Maize chromosomes hybridized with Zea perennis DNA showed hybridization signals on four chromosome pairs: two chromosome pairs presented hybridization signal in only one chromosomal arm, whereas four chromosome pairs did not show any hybridization. These results are in agreement with previous GISH studies, which have identified the genomic source of the chromosomes involved in the meiotic configurations of Z. perennis × maize hybrids. These findings allow postulating that maize has a parental genome not shared with Z. perennis, and the existence of intergenomic restructuring between the parental genomes of maize. Moreover, the absence of hybridization signals in all maize knobs indicate that these heterochromatic regions were lost during the Z. perennis genome evolution.
Collapse
Affiliation(s)
- Graciela Esther González
- Instituto de Ecología, Genética y Evolución (IEGEBA, Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET); Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Int. Güiraldes N° 2620, Pabellón II, Lab. 110, 4° Piso (1428), Ciudad Autónoma de Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución (IEGEBA, Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET); Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Int. Güiraldes N° 2620, Pabellón II, Lab. 110, 4° Piso (1428), Ciudad Autónoma de Buenos Aires, Argentina
| | - Lidia Poggio
- Instituto de Ecología, Genética y Evolución (IEGEBA, Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET); Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Int. Güiraldes N° 2620, Pabellón II, Lab. 110, 4° Piso (1428), Ciudad Autónoma de Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución (IEGEBA, Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET); Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Int. Güiraldes N° 2620, Pabellón II, Lab. 110, 4° Piso (1428), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
28
|
Wang S, Chen J, Zhang W, Hu Y, Chang L, Fang L, Wang Q, Lv F, Wu H, Si Z, Chen S, Cai C, Zhu X, Zhou B, Guo W, Zhang T. Sequence-based ultra-dense genetic and physical maps reveal structural variations of allopolyploid cotton genomes. Genome Biol 2015; 16:108. [PMID: 26003111 PMCID: PMC4469577 DOI: 10.1186/s13059-015-0678-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/18/2015] [Indexed: 11/23/2022] Open
Abstract
Background SNPs are the most abundant polymorphism type, and have been explored in many crop genomic studies, including rice and maize. SNP discovery in allotetraploid cotton genomes has lagged behind that of other crops due to their complexity and polyploidy. In this study, genome-wide SNPs are detected systematically using next-generation sequencing and efficient SNP genotyping methods, and used to construct a linkage map and characterize the structural variations in polyploid cotton genomes. Results We construct an ultra-dense inter-specific genetic map comprising 4,999,048 SNP loci distributed unevenly in 26 allotetraploid cotton linkage groups and covering 4,042 cM. The map is used to order tetraploid cotton genome scaffolds for accurate assembly of G. hirsutum acc. TM-1. Recombination rates and hotspots are identified across the cotton genome by comparing the assembled draft sequence and the genetic map. Using this map, genome rearrangements and centromeric regions are identified in tetraploid cotton by combining information from the publicly-available G. raimondii genome with fluorescent in situ hybridization analysis. Conclusions We report the genotype-by-sequencing method used to identify millions of SNPs between G. hirsutum and G. barbadense. We construct and use an ultra-dense SNP map to correct sequence mis-assemblies, merge scaffolds into pseudomolecules corresponding to chromosomes, detect genome rearrangements, and identify centromeric regions in allotetraploid cottons. We find that the centromeric retro-element sequence of tetraploid cotton derived from the D subgenome progenitor might have invaded the A subgenome centromeres after allotetrapolyploid formation. This study serves as a valuable genomic resource for genetic research and breeding of cotton. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0678-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sen Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiedan Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wenpan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yan Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Lijing Chang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Lei Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qiong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Fenni Lv
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Huaitong Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhanfeng Si
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shuqi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Caiping Cai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiefei Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
29
|
Wang Y, Wang X, Chen Q, Zhang L, Tang H, Luo Y, Liu Z. Phylogenetic insight into subgenera Idaeobatus and Malachobatus (Rubus, Rosaceae) inferring from ISH analysis. Mol Cytogenet 2015; 8:11. [PMID: 25674160 PMCID: PMC4324050 DOI: 10.1186/s13039-015-0114-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/21/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rubus is a large and taxonomically complex genus exhibiting agamospermy, polyploidy and frequent hybridization. The objective of this work was to elucidate rDNA disrtibution pattern and investigate genomic composition of polyploids in 16 Rubus taxa (2n = 2x, 3x, 4x, 8x) of two subgenera Idaeobatus and Malachobatus by ISH method. RESULTS The basic Rubus genome had one 45S rDNA locus, and all the polyploids (except R. setchuenensis) had the expected multiples of this number. Diploid and tetraploid Rubus taxa carried two 5S rDNA, whereas the triploid and octoploid species only had three. The duplicated 45S rDNA sites tended to be conserved, whereas those of 5S rDNA tended to be eliminated after polyploidization. The accession R03-20 was an autotriploid R. parvifolius, while R03-27 and R03-57 were naturally-occurred triploid hybrids between R. parvifolius and R. coreanus. GISH results suggested that R. parvifolius had close relationship with polyploids from Malachobatus. CONCLUSIONS The polyploids from Malachobatus were probable allopolyploid. In addition, Rubus parvifolius might be involved in hybridization, polyploidization and speciation of some Idaeobatus and Malachobatus species.
Collapse
Affiliation(s)
- Yan Wang
- />College of Horticulture, Sichuan Agricultural University, Ya’an, 625014 People’s Republic of China
| | - Xiaorong Wang
- />College of Horticulture, Sichuan Agricultural University, Ya’an, 625014 People’s Republic of China
- />Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Qing Chen
- />College of Horticulture, Sichuan Agricultural University, Ya’an, 625014 People’s Republic of China
| | - Li Zhang
- />College of Horticulture, Sichuan Agricultural University, Ya’an, 625014 People’s Republic of China
| | - Haoru Tang
- />College of Horticulture, Sichuan Agricultural University, Ya’an, 625014 People’s Republic of China
| | - Ya Luo
- />College of Horticulture, Sichuan Agricultural University, Ya’an, 625014 People’s Republic of China
| | - Zejing Liu
- />College of Horticulture, Sichuan Agricultural University, Ya’an, 625014 People’s Republic of China
| |
Collapse
|
30
|
Soltis PS, Liu X, Marchant DB, Visger CJ, Soltis DE. Polyploidy and novelty: Gottlieb's legacy. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130351. [PMID: 24958924 PMCID: PMC4071524 DOI: 10.1098/rstb.2013.0351] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nearly four decades ago, Roose & Gottlieb (Roose & Gottlieb 1976 Evolution 30, 818-830. (doi:10.2307/2407821)) showed that the recently derived allotetraploids Tragopogon mirus and T. miscellus combined the allozyme profiles of their diploid parents (T. dubius and T. porrifolius, and T. dubius and T. pratensis, respectively). This classic paper addressed the link between genotype and biochemical phenotype and documented enzyme additivity in allopolyploids. Perhaps more important than their model of additivity, however, was their demonstration of novelty at the biochemical level. Enzyme multiplicity-the production of novel enzyme forms in the allopolyploids-can provide an extensive array of polymorphism for a polyploid individual and may explain, for example, the expanded ranges of polyploids relative to their diploid progenitors. In this paper, we extend the concept of evolutionary novelty in allopolyploids to a range of genetic and ecological features. We observe that the dynamic nature of polyploid genomes-with alterations in gene content, gene number, gene arrangement, gene expression and transposon activity-may generate sufficient novelty that every individual in a polyploid population or species may be unique. Whereas certain combinations of these features will undoubtedly be maladaptive, some unique combinations of newly generated variation may provide tremendous evolutionary potential and adaptive capabilities.
Collapse
Affiliation(s)
- Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Xiaoxian Liu
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - D Blaine Marchant
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Clayton J Visger
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
31
|
Reis AC, Sousa SM, Vale AA, Pierre PMO, Franco AL, Campos JMS, Vieira RF, Viccini LF. Lippia alba (Verbenaceae): A new tropical autopolyploid complex? AMERICAN JOURNAL OF BOTANY 2014; 101:1002-1012. [PMID: 24920764 DOI: 10.3732/ajb.1400149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
• Premise of the study: Tropical regions have high species diversity, and polyploidization is a major mechanism of speciation in plants. However, few cases of natural polyploidy have been reported in tropical regions. Lippia alba, is a tropical, aromatic shrub with a wide distribution, extensive morphological plasticity, and several chemotypes. The species has long been recognized as a diploid with 2n = 30 chromosomes. Recently, two variations in chromosome number (2n = 60; 2n = 12-60) have been reported, suggesting the occurrence of polyploidy within the species.• Methods: Flow cytometry was used to investigate the genome size in 106 accessions from 14 Brazilian States. Conventional and molecular cytogenetic techniques and pollen viability analysis were employed to characterize each chromosome number observed.• Key results: The DNA 1C-value varied from 1.17 to 3.45 pg, showing a large variation in genome size. Five distinct chromosome numbers were observed (2n = 30, 38, 45, 60, 90); three are cytogenetically described here for the first time. The 5S rDNA signals varied proportionally according to each chromosome number, but 45S rDNA sites did not. High rates of meiotic irregularity were observed, mainly in cytotypes with higher chromosome numbers.• Conclusions: The data provide new support for the occurrence of a polyploid series in Lippia alba. We provide a hypothesis for how this complex may have arisen. Other cryptic polyploid complexes may remain undiscovered in tropical regions.
Collapse
Affiliation(s)
- Aryane C Reis
- Universidade Federal de Juiz de Fora, Departamento de Biologia/Laboratório de Genética 36036-900, Juiz de Fora, MG, Brazil
| | - Saulo M Sousa
- Universidade Federal de Juiz de Fora, Departamento de Biologia/Laboratório de Genética 36036-900, Juiz de Fora, MG, Brazil
| | - Aline A Vale
- Universidade Federal de Juiz de Fora, Departamento de Biologia/Laboratório de Genética 36036-900, Juiz de Fora, MG, Brazil
| | - Patrícia M O Pierre
- Universidade Federal de Santa Catarina, Campus Universitário Curitibanos, Rodovia Ulisses Gaboardi-km 3 89520-000, Curitibanos, SC, Brazil
| | - Ana L Franco
- Universidade Federal de Juiz de Fora, Departamento de Biologia/Laboratório de Genética 36036-900, Juiz de Fora, MG, Brazil
| | - José Marcello S Campos
- Universidade Federal de Juiz de Fora, Departamento de Biologia/Laboratório de Genética 36036-900, Juiz de Fora, MG, Brazil
| | - Roberto F Vieira
- Embrapa Recursos Genéticos e Biotecnologia, CEP 70.770-900, Distrito Federal, Brasília, Brazil
| | - Lyderson F Viccini
- Universidade Federal de Juiz de Fora, Departamento de Biologia/Laboratório de Genética 36036-900, Juiz de Fora, MG, Brazil
| |
Collapse
|
32
|
Winterfeld G, Schneider J, Perner K, Röser M. Polyploidy and hybridization as main factors of speciation: complex reticulate evolution within the grass genus Helictochloa. Cytogenet Genome Res 2014; 142:204-25. [PMID: 24731950 DOI: 10.1159/000361002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2013] [Indexed: 11/19/2022] Open
Abstract
To study the origin and evolution of naturally occurring polyploids, we performed phylogenetic analyses of nuclear ribosomal DNA spacers combined with molecular cytogenetics in 55 accessions of 27 taxa of the oat genus Helictochloa. A complex pattern of reticulate evolution was revealed with many diploid species and extensive polyploidy up to 20x. Altogether 11 groups of internal transcribed spacer (ITS) sequences can be distinguished. Sequences from 1-3 different ITS lineages were detected in polyploids. Cytogenetic data allow reconstruction of 8 basic monoploid chromosome sets. Six of these genomes occur in different combinations in the polyploid species. Two genomes are only found in diploids. Our sequence and karyological data highlight the occurrence of autopolyploidy and allopolyploidy, provide new information about the evolutionary history of taxa, and allow a more accurate systematic treatment of the concerned species. The geographical distribution of the 11 ITS lineages distinguished is highly structured and points to an origin of the genus in western Asia, presumably in grasslands like steppes or mountain steppes and meadows. The evolutionary basal lineages are of Asian, Minor Asian and east Mediterranean distribution and are present also in North America. The western and central parts of the Mediterranean and northern Europe harbor the modern lineages.
Collapse
Affiliation(s)
- G Winterfeld
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | | | | |
Collapse
|
33
|
Chamala S, Chanderbali AS, Der JP, Lan T, Walts B, Albert VA, dePamphilis CW, Leebens-Mack J, Rounsley S, Schuster SC, Wing RA, Xiao N, Moore R, Soltis PS, Soltis DE, Barbazuk WB. Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm Amborella. Science 2013; 342:1516-7. [DOI: 10.1126/science.1241130] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Carmona A, Friero E, de Bustos A, Jouve N, Cuadrado A. The evolutionary history of sea barley (Hordeum marinum) revealed by comparative physical mapping of repetitive DNA. ANNALS OF BOTANY 2013; 112:1845-55. [PMID: 24197750 PMCID: PMC3838566 DOI: 10.1093/aob/mct245] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 08/30/2013] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS Hordeum marinum is a species complex that includes the diploid subspecies marinum and both diploid and tetraploid forms of gussoneanum. Their relationships, the rank of the taxa and the origin of the polyploid forms remain points of debate. The present work reports a comparative karyotype analysis of six H. marinum accessions representing all taxa and cytotypes. METHODS Karyotypes were determined by analysing the chromosomal distribution of several tandemly repeated sequences, including the Triticeae cloned probes pTa71, pTa794, pAs1 and pSc119·2 and the simple sequence repeats (SSRs) (AG)10, (AAC)5, (AAG)5, (ACT)5 and (ATC)5. KEY RESULTS The identification of each chromosome pair in all subspecies and cytotypes is reported for the first time. Homologous relationships are also established. Wide karyotypic differences were detected within marinum accessions. Specific chromosomal markers characterized and differentiated the genomes of marinum and diploid gussoneanum. Two subgenomes were detected in the tetraploids. One of these had the same chromosome complement as diploid gussoneanum; the second subgenome, although similar to the chromosome complement of diploid H. marinum sensu lato, appeared to have no counterpart in the marinum accessions analysed here. CONCLUSIONS The tetraploid forms of gussoneanum appear to have come about through a cross between a diploid gussoneanum progenitor and a second, related-but unidentified-diploid ancestor. The results reveal the genome structure of the different H. marinum taxa and demonstrate the allopolyploid origin of the tetraploid forms of gussoneanum.
Collapse
Affiliation(s)
| | | | | | | | - Angeles Cuadrado
- Department of Cell Biology and Genetics, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
35
|
Moraes AP, Chinaglia M, Palma-Silva C, Pinheiro F. Interploidy hybridization in sympatric zones: the formation of Epidendrum fulgens × E. puniceoluteum hybrids (Epidendroideae, Orchidaceae). Ecol Evol 2013; 3:3824-37. [PMID: 24198942 PMCID: PMC3810877 DOI: 10.1002/ece3.752] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 07/25/2013] [Accepted: 08/12/2013] [Indexed: 11/11/2022] Open
Abstract
Interspecific hybridization is a primary cause of extensive morphological and chromosomal variation and plays an important role in plant species diversification. However, the role of interploidal hybridization in the formation of hybrid swarms is less clear. Epidendrum encompasses wide variation in chromosome number and lacks strong premating barriers, making the genus a good model for clarifying the role of chromosomes in postzygotic barriers in interploidal hybrids. In this sense, hybrids from the interploidal sympatric zone between E. fulgens (2n = 2x = 24) and E. puniceoluteum (2n = 4x = 56) were analyzed using cytogenetic techniques to elucidate the formation and establishment of interploidal hybrids. Hybrids were not a uniform group: two chromosome numbers were observed, with the variation being a consequence of severe hybrid meiotic abnormalities and backcrossing with E. puniceoluteum. The hybrids were triploids (2n = 3x = 38 and 40) and despite the occurrence of enormous meiotic problems associated with triploidy, the hybrids were able to backcross, producing successful hybrid individuals with broad ecological distributions. In spite of the nonpolyploidization of the hybrid, its formation is a long-term evolutionary process rather than a product of a recent disturbance, and considering other sympatric zones in Epidendrum, these events could be recurrent.
Collapse
Affiliation(s)
- Ana P Moraes
- Laboratório de Biossistemática e Evolução de Plantas, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas/UNICAMP Campinas, São Paulo, Brasil ; Programa de Pós Graduação em Evolução e Diversidade, Universidade Federal do ABC/UFABC Santo André, São Paulo, Brasil
| | | | | | | |
Collapse
|
36
|
Weiss-Schneeweiss H, Emadzade K, Jang TS, Schneeweiss G. Evolutionary consequences, constraints and potential of polyploidy in plants. Cytogenet Genome Res 2013; 140:137-50. [PMID: 23796571 PMCID: PMC3859924 DOI: 10.1159/000351727] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Polyploidy, the possession of more than 2 complete genomes, is a major force in plant evolution known to affect the genetic and genomic constitution and the phenotype of an organism, which will have consequences for its ecology and geography as well as for lineage diversification and speciation. In this review, we discuss phylogenetic patterns in the incidence of polyploidy including possible underlying causes, the role of polyploidy for diversification, the effects of polyploidy on geographical and ecological patterns, and putative underlying mechanisms as well as chromosome evolution and evolution of repetitive DNA following polyploidization. Spurred by technological advances, a lot has been learned about these aspects both in model and increasingly also in nonmodel species. Despite this enormous progress, long-standing questions about polyploidy still cannot be unambiguously answered, due to frequently idiosyncratic outcomes and insufficient integration of different organizational levels (from genes to ecology), but likely this will change in the near future. See also the sister article focusing on animals by Choleva and Janko in this themed issue.
Collapse
Affiliation(s)
- H. Weiss-Schneeweiss
- Department of Systematic and Evolutionary Botany University of Vienna, Rennweg 14 AT–1030 Vienna (Austria)
| | - K. Emadzade
- Department of Systematic and Evolutionary Botany University of Vienna, Rennweg 14 AT–1030 Vienna (Austria)
| | - T.-S. Jang
- Department of Systematic and Evolutionary Botany University of Vienna, Rennweg 14 AT–1030 Vienna (Austria)
| | - G.M. Schneeweiss
- Department of Systematic and Evolutionary Botany University of Vienna, Rennweg 14 AT–1030 Vienna (Austria)
| |
Collapse
|
37
|
Albertin W, Marullo P. Polyploidy in fungi: evolution after whole-genome duplication. Proc Biol Sci 2012; 279:2497-509. [PMID: 22492065 PMCID: PMC3350714 DOI: 10.1098/rspb.2012.0434] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 03/13/2012] [Indexed: 01/21/2023] Open
Abstract
Polyploidy is a major evolutionary process in eukaryotes-particularly in plants and, to a less extent, in animals, wherein several past and recent whole-genome duplication events have been described. Surprisingly, the incidence of polyploidy in other eukaryote kingdoms, particularly within fungi, remained largely disregarded by the scientific community working on the evolutionary consequences of polyploidy. Recent studies have significantly increased our knowledge of the occurrence and evolutionary significance of fungal polyploidy. The ecological, structural and functional consequences of polyploidy in fungi are reviewed here and compared with the knowledge acquired with conventional plant and animal models. In particular, the genus Saccharomyces emerges as a relevant model for polyploid studies, in addition to plant and animal models.
Collapse
Affiliation(s)
- Warren Albertin
- CNRS, UMR 0320/UMR 8120 Génétique Végétale, 91190 Gif-sur-Yvette, France.
| | | |
Collapse
|