1
|
Zhu P, Li H, Lu T, Liang R, Wan B. Combined analysis of mRNA and miRNA transcriptomes reveals the regulatory mechanism of Xanthomonas arboricola pv pruni resistance in Prunus persica. BMC Genomics 2024; 25:214. [PMID: 38413907 PMCID: PMC10898114 DOI: 10.1186/s12864-024-10113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/11/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Peach bacterial shot hole, caused by Xanthomonas arboricola pv pruni (Xap), is a global bacterial disease that poses a threat to the yield and quality of cultivated peach trees (Prunus persica). RESULTS This study compared the mRNA and miRNA profiles of two peach varieties, 'Yanbao' (resistant) and 'Yingzui' (susceptible), after inoculation with Xap to identify miRNAs and target genes associated with peach tree resistance. mRNA sequencing results revealed that in the S0-vs-S3 comparison group, 1574 genes were upregulated and 3975 genes were downregulated. In the R0-vs-R3 comparison group, 1575 genes were upregulated and 3726 genes were downregulated. Through miRNA sequencing, a total of 112 known miRNAs belonging to 70 miRNA families and 111 new miRNAs were identified. Notably, some miRNAs were exclusively expressed in either resistant or susceptible varieties. Additionally, 59 miRNAs were downregulated and 69 miRNAs were upregulated in the R0-vs-R3 comparison group, while 46 miRNAs were downregulated and 52 miRNAs were upregulated in the S0-vs-S3 comparison group. Joint analysis of mRNA and miRNA identified 79 relationship pairs in the S0-vs-S3 comparison group, consisting of 48 miRNAs and 51 target genes. In the R0-vs-R3 comparison group, there were 58 relationship pairs, comprising 28 miRNAs and 20 target genes. Several target genes related to resistance, such as SPL6, TIFY6B, and Prupe.4G041800_v2.0.a1 (PPO), were identified through literature reports and GO/KEGG enrichment analysis. CONCLUSION In conclusion, this study discovered several candidate genes involved in peach tree resistance by analyzing differential expression of mRNA and miRNA. These findings provide valuable insights into the mechanisms underlying resistance to Xap in peach trees.
Collapse
Affiliation(s)
- Pengxiang Zhu
- Guangxi Academy of Specialty Crops, Guilin, 541004, China
- Guangxi Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guilin, 541004, China
| | - Haiyan Li
- Guangxi Academy of Specialty Crops, Guilin, 541004, China
- Guangxi Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guilin, 541004, China
| | - Tailiang Lu
- Guangxi Academy of Specialty Crops, Guilin, 541004, China
- Guangxi Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guilin, 541004, China
| | - Ruizheng Liang
- Guangxi Academy of Specialty Crops, Guilin, 541004, China.
- Guangxi Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guilin, 541004, China.
| | - Baoxiong Wan
- Guangxi Academy of Specialty Crops, Guilin, 541004, China.
- Guangxi Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guilin, 541004, China.
| |
Collapse
|
2
|
Shen J, Wang X, Li Y, Guo L, Hou X. Screening of Reference miRNA of Different Early- and Late-Flowering Tree Peony Varieties. PLANTS (BASEL, SWITZERLAND) 2023; 12:2629. [PMID: 37514244 PMCID: PMC10384584 DOI: 10.3390/plants12142629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
miRNA plays an important role in plant growth and development and in response to various stresses. Quantitative real-time PCR (qRT-PCR) technology is often used to detect the expression level of miRNAs and genes by comparing with reference genes. In order to screen out the optimal reference miRNAs in different tree peony varieties, the petals of 42 different early- and late-flowering tree peony varieties were used as experimental materials, and geNorm, NormFinder, Bestkeeper, and RefFinder software were used to evaluate the stability of 16 candidate reference miRNAs. The results showed that the average Ct values of all candidate reference miRNAs were between 15.34 ± 0.29 and 32.64 ± 0.38. The optimal number of reference miRNAs was four, which were PsPC-5p-19095, PsPC-3p-51259, PsmiR159a, and PsPC-3p-6660 in geNorm. The stability of PsPC-3p-6660 was the highest in the analysis results of NormFinder software. Among the analysis results of Bestkeeper software, PsMIR319-p5 has the highest stability. Among the results of comprehensive evaluation and analysis of several software using RefFinder, the candidate reference miRNA with the highest stability was PsPC-3p-6660. When PsPC-3p-6660 was used as the reference miRNA, the expression of PomiR171 and PomiR414 in response to different flowering times of tree peony was relatively stable in 42 tree peony varieties, indicating that PsPC-3p-6660 was stable and reliable. The results of this study provide a reference miRNA for studying the expression changes of miRNA in different tree peony varieties and further exploring the regulatory mechanism of miRNA in different peony varieties.
Collapse
Affiliation(s)
- Jiajia Shen
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiaohui Wang
- Luoyang Academy of Agricultural and Forestry Sciences, Luoyang 471002, China
| | - Yuying Li
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| | - Lili Guo
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiaogai Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
3
|
Uddin S, Munir MZ, Gull S, Khan AH, Khan A, Khan D, Khan MA, Wu Y, Sun Y, Li Y. Transcriptome Profiling Reveals Role of MicroRNAs and Their Targeted Genes during Adventitious Root Formation in Dark-Pretreated Micro-Shoot Cuttings of Tetraploid Robinia pseudoacacia L. Genes (Basel) 2022; 13:441. [PMID: 35327995 PMCID: PMC8950900 DOI: 10.3390/genes13030441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Tetraploid Robinia pseudoacacia L. is a difficult-to-root species, and is vegetatively propagated through stem cuttings. Limited information is available regarding the adventitious root (AR) formation of dark-pretreated micro-shoot cuttings. Moreover, the role of specific miRNAs and their targeted genes during dark-pretreated AR formation under in vitro conditions has never been revealed. The dark pretreatment has successfully promoted and stimulated adventitious rooting signaling-related genes in tissue-cultured stem cuttings with the application of auxin (0.2 mg L-1 IBA). Histological analysis was performed for AR formation at 0, 12, 36, 48, and 72 h after excision (HAE) of the cuttings. The first histological events were observed at 36 HAE in the dark-pretreated cuttings; however, no cellular activities were observed in the control cuttings. In addition, the present study aimed to uncover the role of differentially expressed (DE) microRNAs (miRNAs) and their targeted genes during adventitious root formation using the lower portion (1-1.5 cm) of tetraploid R. pseudoacacia L. micro-shoot cuttings. The samples were analyzed using Illumina high-throughput sequencing technology for the identification of miRNAs at the mentioned time points. Seven DE miRNA libraries were constructed and sequenced. The DE number of 81, 162, 153, 154, 41, 9, and 77 miRNAs were upregulated, whereas 67, 98, 84, 116, 19, 16, and 93 miRNAs were downregulated in the following comparisons of the libraries: 0-vs-12, 0-vs-36, 0-vs-48, 0-vs-72, 12-vs-36, 36-vs-48, and 48-vs-72, respectively. Furthermore, we depicted an association between ten miRNAs (novel-m0778-3p, miR6135e.2-5p, miR477-3p, miR4416c-5p, miR946d, miR398b, miR389a-3p, novel m0068-5p, novel-m0650-3p, and novel-m0560-3p) and important target genes (auxin response factor-3, gretchen hagen-9, scarecrow-like-1, squamosa promoter-binding protein-like-12, small auxin upregulated RNA-70, binding protein-9, vacuolar invertase-1, starch synthase-3, sucrose synthase-3, probable starch synthase-3, cell wall invertase-4, and trehalose phosphatase synthase-5), all of which play a role in plant hormone signaling and starch and sucrose metabolism pathways. The quantitative polymerase chain reaction (qRT-PCR) was used to validate the relative expression of these miRNAs and their targeted genes. These results provide novel insights and a foundation for further studies to elucidate the molecular factors and processes controlling AR formation in woody plants.
Collapse
Affiliation(s)
- Saleem Uddin
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design (BAICFTBMD), Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.U.); (Y.W.); (Y.S.)
| | - Muhammad Zeeshan Munir
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen 518055, China;
| | - Sadia Gull
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China;
| | - Aamir Hamid Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
| | - Aimal Khan
- University of Chinese Academy of Sciences, Beijing 100049, China;
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dilawar Khan
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China;
| | - Muhammad Asif Khan
- Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing 100083, China;
| | - Yue Wu
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design (BAICFTBMD), Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.U.); (Y.W.); (Y.S.)
| | - Yuhan Sun
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design (BAICFTBMD), Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.U.); (Y.W.); (Y.S.)
| | - Yun Li
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design (BAICFTBMD), Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.U.); (Y.W.); (Y.S.)
| |
Collapse
|
4
|
Pan H, Lyu S, Chen Y, Xu S, Ye J, Chen G, Wu S, Li X, Chen J, Pan D. MicroRNAs and Transcripts Associated with an Early Ripening Mutant of Pomelo ( Citrus grandis Osbeck). Int J Mol Sci 2021; 22:9348. [PMID: 34502256 PMCID: PMC8431688 DOI: 10.3390/ijms22179348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
'Liuyuezaoyou' is an early-ripening cultivar selected from a bud mutation of Citrus grandis Osbeck 'Guanximiyou'. They were designated here as MT and WT, respectively. The fruit of MT matures about 45 days earlier than WT, which was accompanied by significant changes in key phytohormones, sugar compounds and organic acids. Recent studies have showed that microRNAs (miRNAs) play an important role in regulation of fruit ripening process. The aim of this study was to compare MT fruits with WT ones to uncover if miRNAs were implicated in the ripening of C. grandis. Fruits of both WT and MT at four developmental stages were analyzed using high-throughput sequencing and RT-PCR. Several independent miRNA libraries were constructed and sequenced. A total of 747 known miRNAs were identified and 99 novel miRNAs were predicted across all libraries. The novel miRNAs were found to have hairpin structures and possess star sequences. These results showed that transcriptome and miRNAs are substantially involved in a complex and comprehensive network in regulation of fruit ripening of this species. Further analysis of the network model revealed intricate interactions of miRNAs with mRNAs during the fleshy fruit ripening process. Several identified miRNAs have potential targets. These include auxin-responsive protein IAA9, sucrose synthase 3, V-type proton ATPase, NCED1 (ABA biosynthesis) and PL1/5 (pectate lyase genes), as well as NAC100 putative coordinated regulation networks, whose interactions with respective miRNAs may contribute significantly to fruit ripening of C. grandis.
Collapse
Affiliation(s)
- Heli Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.P.); (S.L.); (Y.C.); (S.X.); (G.C.); (S.W.); (X.L.)
| | - Shiheng Lyu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.P.); (S.L.); (Y.C.); (S.X.); (G.C.); (S.W.); (X.L.)
- Department of Environmental Horticulture and Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL 32703, USA
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Yanqiong Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.P.); (S.L.); (Y.C.); (S.X.); (G.C.); (S.W.); (X.L.)
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Shirong Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.P.); (S.L.); (Y.C.); (S.X.); (G.C.); (S.W.); (X.L.)
| | - Jianwen Ye
- Agricultural and Rural Bureau of Pinghe County, Zhangzhou 363700, China;
| | - Guixin Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.P.); (S.L.); (Y.C.); (S.X.); (G.C.); (S.W.); (X.L.)
| | - Shaohua Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.P.); (S.L.); (Y.C.); (S.X.); (G.C.); (S.W.); (X.L.)
| | - Xiaoting Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.P.); (S.L.); (Y.C.); (S.X.); (G.C.); (S.W.); (X.L.)
| | - Jianjun Chen
- Department of Environmental Horticulture and Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL 32703, USA
| | - Dongming Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.P.); (S.L.); (Y.C.); (S.X.); (G.C.); (S.W.); (X.L.)
| |
Collapse
|
5
|
Yin Z, Xie F, Michalak K, Zhang B, Zimnoch-Guzowska E. Reference gene selection for miRNA and mRNA normalization in potato in response to potato virus Y. Mol Cell Probes 2020; 55:101691. [PMID: 33358935 DOI: 10.1016/j.mcp.2020.101691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/03/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
This was the first report on evaluating candidate reference genes for quantifying the expression profiles of both coding (e.g., mRNA) and non-coding (e.g., miRNA) genes in potato response to potato virus Y (PVY) inoculation. The reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) method was employed to quantify the expression profiles of eight selected candidate reference genes; their expression stability was analyzed by four statistical algorithms, i.e., geNorm, BestKeeper, NormFinder and RefFinder. The most stable reference genes were sEF1a, sTUBb and seIF5 with a high stability. The least stable ones were sPP2A, sSUI1 and sGAPDH. The same reference gene allows for normalization of both miRNA and mRNA levels from a single RNA sample using cDNAs synthesized in a single RT reaction, in which a stem-loop primer was used for miRNAs and the oligo (dT) for mRNAs.
Collapse
Affiliation(s)
- Zhimin Yin
- Plant Breeding and Acclimatization Institute, National Research Institute, Młochów Research Center, Platanowa 19, Młochów, PL-05-831, Poland.
| | - Fuliang Xie
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Krystyna Michalak
- Plant Breeding and Acclimatization Institute, National Research Institute, Młochów Research Center, Platanowa 19, Młochów, PL-05-831, Poland
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Ewa Zimnoch-Guzowska
- Plant Breeding and Acclimatization Institute, National Research Institute, Młochów Research Center, Platanowa 19, Młochów, PL-05-831, Poland
| |
Collapse
|
6
|
Validation of Reference Genes for Gene Expression Studies by RT-qPCR in HepaRG Cells during Toxicity Testing and Disease Modelling. Cells 2020; 9:cells9030770. [PMID: 32245194 PMCID: PMC7140694 DOI: 10.3390/cells9030770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/16/2022] Open
Abstract
Gene expression analysis by quantitative real-time polymerase chain reaction (RT-qPCR) is routinely used in biomedical studies. The reproducibility and reliability of the data fundamentally depends on experimental design and data interpretation. Despite the wide application of this assay, there is significant variation in the validation process of gene expression data from research laboratories. Since the validity of results depends on appropriate normalisation, it is crucial to select appropriate reference gene(s), where transcription of the selected gene is unaffected by experimental setting. In this study we have applied geNorm technology to investigate the transcription of 12 ‘housekeeping’ genes for use in the normalisation of RT-qPCR data acquired using a widely accepted HepaRG hepatic cell line in studies examining models of pre-clinical drug testing. geNorm data identified a number of genes unaffected by specific drug treatments and showed that different genes remained invariant in response to different drug treatments, whereas the transcription of ‘classical’ reference genes such as GAPDH (glyceralde- hyde-3-phosphate dehydrogenase) was altered by drug treatment. Comparing data normalised using the reference genes identified by geNorm with normalisation using classical housekeeping genes demonstrated substantial differences in the final results. In light of cell therapy application, RT-qPCR analyses has to be carefully evaluated to accurately interpret data obtained from dynamic cellular models undergoing sequential stages of phenotypic change.
Collapse
|