1
|
Aspromonte MC, Del Conte A, Polli R, Baldo D, Benedicenti F, Bettella E, Bigoni S, Boni S, Ciaccio C, D'Arrigo S, Donati I, Granocchio E, Mammi I, Milani D, Negrin S, Nosadini M, Soli F, Stanzial F, Turolla L, Piovesan D, Tosatto SCE, Murgia A, Leonardi E. Genetic variants and phenotypic data curated for the CAGI6 intellectual disability panel challenge. Hum Genet 2025:10.1007/s00439-025-02733-1. [PMID: 40019509 DOI: 10.1007/s00439-025-02733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/16/2025] [Indexed: 03/01/2025]
Abstract
Neurodevelopmental disorders (NDDs) are common conditions including clinically diverse and genetically heterogeneous diseases, such as intellectual disability, autism spectrum disorders, and epilepsy. The intricate genetic underpinnings of NDDs pose a formidable challenge, given their multifaceted genetic architecture and heterogeneous clinical presentations. This work delves into the intricate interplay between genetic variants and phenotypic manifestations in neurodevelopmental disorders, presenting a dataset curated for the Critical Assessment of Genome Interpretation (CAGI6) ID Panel Challenge. The CAGI6 competition serves as a platform for evaluating the efficacy of computational methods in predicting phenotypic outcomes from genetic data. In this study, a targeted gene panel sequencing has been used to investigate the genetic causes of NDDs in a cohort of 415 paediatric patients. We identified 60 pathogenic and 49 likely pathogenic variants in 102 individuals that accounted for 25% of NDD cases in the cohort. The most mutated genes were ANKRD11, MECP2, ARID1B, ASH1L, CHD8, KDM5C, MED12 and PTCHD1 The majority of pathogenic variants were de novo, with some inherited from mildly affected parents. Loss-of-function variants were the most common type of pathogenic variant. In silico analysis tools were used to assess the potential impact of variants on splicing and structural/functional effects of missense variants. The study highlights the challenges in variant interpretation especially in cases with atypical phenotypic manifestations. Overall, this study provides valuable insights into the genetic causes of NDDs and emphasises the importance of understanding the underlying genetic factors for accurate diagnosis, and intervention development in neurodevelopmental conditions.
Collapse
Affiliation(s)
- Maria Cristina Aspromonte
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padua, Italy
| | - Alessio Del Conte
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Roberta Polli
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padua, Italy
- Fondazione Istituto Di Ricerca Pediatrica (IRP), Città Della Speranza, Padua, Italy
| | | | | | - Elisa Bettella
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padua, Italy
- Fondazione Istituto Di Ricerca Pediatrica (IRP), Città Della Speranza, Padua, Italy
| | - Stefania Bigoni
- Medical Genetics Unit, Ferrara University Hospital, Ferrara, Italy
| | - Stefania Boni
- Medical Genetics Unit, S. Martino Hospital, Belluno, Italy
| | - Claudia Ciaccio
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Stefano D'Arrigo
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Ilaria Donati
- Unit of Medical Genetics, AUSL Romagna, Cesena, Italy
| | - Elisa Granocchio
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | | | - Donatella Milani
- Fondazione IRCCS, Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Susanna Negrin
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS E. Medea, Treviso, Italy
| | - Margherita Nosadini
- Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | - Fiorenza Soli
- Genetic Unit, UOM Patologia Clinica, S. Chiara Hospital of Trento, Trento, Italy
| | - Franco Stanzial
- Genetic Counseling Service, Regional Hospital of Bolzano, Bolzano, Italy
| | - Licia Turolla
- Medical Genetics Unit, Treviso Hospital, Treviso, Italy
| | - Damiano Piovesan
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- CNR IBIOM, Bari, Italy
| | - Alessandra Murgia
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padua, Italy
- Fondazione Istituto Di Ricerca Pediatrica (IRP), Città Della Speranza, Padua, Italy
| | - Emanuela Leonardi
- Department of Biomedical Sciences, University of Padova, Padua, Italy.
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padua, Italy.
| |
Collapse
|
2
|
Lee KH, Stafford AM, Pacheco-Vergara M, Cichewicz K, Canales CP, Seban N, Corea M, Rahbarian D, Bonekamp KE, Gillie GR, Pacheco-Cruz D, Gill AM, Hwang HE, Uhl KL, Jager TE, Shinawi M, Li X, Obenaus A, Crandall S, Jeong J, Nord A, Kim CH, Vogt D. Complimentary vertebrate Wac models exhibit phenotypes relevant to DeSanto-Shinawi Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595966. [PMID: 38826421 PMCID: PMC11142245 DOI: 10.1101/2024.05.26.595966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Monogenic syndromes are associated with neurodevelopmental changes that result in cognitive impairments, neurobehavioral phenotypes including autism and attention deficit hyperactivity disorder (ADHD), and seizures. Limited studies and resources are available to make meaningful headway into the underlying molecular mechanisms that result in these symptoms. One such example is DeSanto-Shinawi Syndrome (DESSH), a rare disorder caused by pathogenic variants in the WAC gene. Individuals with DESSH syndrome exhibit a recognizable craniofacial gestalt, developmental delay/intellectual disability, neurobehavioral symptoms that include autism, ADHD, behavioral difficulties and seizures. However, no thorough studies from a vertebrate model exist to understand how these changes occur. To overcome this, we developed both murine and zebrafish Wac/wac deletion mutants and studied whether their phenotypes recapitulate those described in individuals with DESSH syndrome. We show that the two Wac models exhibit craniofacial and behavioral changes, reminiscent of abnormalities found in DESSH syndrome. In addition, each model revealed impacts to GABAergic neurons and further studies showed that the mouse mutants are susceptible to seizures, changes in brain volumes that are different between sexes and relevant behaviors. Finally, we uncovered transcriptional impacts of Wac loss of function that will pave the way for future molecular studies into DESSH. These studies begin to uncover some biological underpinnings of DESSH syndrome and elucidate the biology of Wac, with advantages in each model.
Collapse
Affiliation(s)
- Kang-Han Lee
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - April M Stafford
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Maria Pacheco-Vergara
- Department of Molecular Pathology, New York University College of Dentistry, New York, NY 10010, USA
| | - Karol Cichewicz
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Cesar P Canales
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Nicolas Seban
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Melissa Corea
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Darlene Rahbarian
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Kelly E. Bonekamp
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Grant R. Gillie
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Dariangelly Pacheco-Cruz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Alyssa M Gill
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Hye-Eun Hwang
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Katie L Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | | | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Andre Obenaus
- Director, Preclinical and Translational Imaging Center, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Shane Crandall
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Juhee Jeong
- Department of Molecular Pathology, New York University College of Dentistry, New York, NY 10010, USA
| | - Alex Nord
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Daniel Vogt
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Reynolds M, Weisenberg J, Shinawi M, Jensen R. The DESSH Clinic: A New Multidisciplinary Clinic to Address the Complex Needs of Individuals with a Rare Genetic Disorder. MISSOURI MEDICINE 2024; 121:304-309. [PMID: 39575070 PMCID: PMC11578572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
DeSanto-Shinawi (DESSH) syndrome is a rare autosomal dominant condition caused by pathogenic variants in the WAC gene. DESSH syndrome was first identified in 2015 in six patients, but has since been diagnosed in more than 200 individuals worldwide. Patients exhibit a variable degree of developmental delay (DD), intellectual disability (ID), hypotonia, gastrointestinal and eye abnormalities, epilepsy, behavioral difficulties, and recognizable facial features. In order to educate families and address the complex medical needs of the increasing number of patients with DESSH syndrome, we established a new multidisciplinary clinic at Washington University in St. Louis. The first clinic was held in September 2022 and attended by 15 patients and their families. Herein, we report the structure of the clinic and present the main clinical findings of these patients. This pilot experience highlights the utility of a multidisciplinary approach to evaluating individuals with rare genetic diseases and the value of collaborating with family support groups to establish multidisciplinary clinics for these disorders, and provides guidance for future clinic planning.
Collapse
Affiliation(s)
- Margaret Reynolds
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Judith Weisenberg
- Department of Neurology, Division of Pediatric Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Rachel Jensen
- Department of Pediatrics, Division of Neurology, Children's Mercy/ University of Missouri Kansas City, Kansas City, Missouri
| |
Collapse
|
4
|
Mail C, Yalcintepe S, Eker D, Gurkan H. The Phenotypic Spectrum of Desanto-Shinawi Syndrome: A Comparative Report of the First Reported Case in Turkey. Genet Test Mol Biomarkers 2024; 28:213-217. [PMID: 38613467 DOI: 10.1089/gtmb.2023.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024] Open
Abstract
DeSanto-Shinawi syndrome (DESSH, OMIM #616708) is a rare genetic disorder caused by pathogenic variants in the WAC gene. This syndrome is characterized by a wide range of physical and neurological symptoms including dysmorphic features, developmental delay, intellectual disability, and behavioral abnormalities. DESSH was described by DeSanto in 2015, and since then, only a few dozen cases have been reported worldwide. Recent research has focused on identifying the underlying genetic cause of the syndrome as well as exploring potential treatments. In this report, we describe a female case who had dysmorphic features including long palpebral fissures, depressed nasal root, mild bulbous nasal tip, thin upper lip, hypertrichosis, short fingers, and intellectual disability, speech delay, and motor retardation. In addition, she had behavioral abnormalities such as agitation, anxiety, and attention deficit hyperactivity disorder (ADHD). Clinical exome sequencing showed a pathogenic heterozygous nonsense variant in exon 13 of the WAC gene c.1837C>T, p.(Arg613Ter) with de novo inheritance. To the best of our knowledge, this is the first case of DESSH reported from Turkey. We aimed to report this rare syndrome and compare the clinical findings of our case with previously reported cases in the literature.
Collapse
Affiliation(s)
- Cisem Mail
- Department of Medical Genetics, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Sinem Yalcintepe
- Department of Medical Genetics, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Damla Eker
- Department of Medical Genetics, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Hakan Gurkan
- Department of Medical Genetics, Trakya University Faculty of Medicine, Edirne, Turkey
| |
Collapse
|
5
|
Posar A, Visconti P. Continuous Spike-Waves during Slow Sleep Today: An Update. CHILDREN (BASEL, SWITZERLAND) 2024; 11:169. [PMID: 38397281 PMCID: PMC10887038 DOI: 10.3390/children11020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
In the context of childhood epilepsy, the concept of continuous spike-waves during slow sleep (CSWS) includes several childhood-onset heterogeneous conditions that share electroencephalograms (EEGs) characterized by a high frequency of paroxysmal abnormalities during sleep, which have negative effects on the cognitive development and behavior of the child. These negative effects may have the characteristics of a clear regression or of a slowdown in development. Seizures are very often present, but not constantly. The above makes it clear why CSWS have been included in epileptic encephalopathies, in which, by definition, frequent EEG paroxysmal abnormalities have an unfavorable impact on cognitive functions, including socio-communicative skills, causing autistic features, even regardless of the presence of clinically overt seizures. Although several decades have passed since the original descriptions of the electroclinical condition of CSWS, there are still many areas that are little-known and deserve to be further studied, including the EEG diagnostic criteria, the most effective electrophysiological parameter for monitoring the role of the thalamus in CSWS pathogenesis, its long-term evolution, the nosographic location of Landau-Kleffner syndrome, standardized neuropsychological and behavioral assessments, and pharmacological and non-pharmacological therapies.
Collapse
Affiliation(s)
- Annio Posar
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, 40139 Bologna, Italy;
- Department of Biomedical and Neuromotor Sciences, Bologna University, 40139 Bologna, Italy
| | - Paola Visconti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, 40139 Bologna, Italy;
| |
Collapse
|
6
|
Freibauer AE, RamachandranNair R, Jain P, Jones KC, Whitney R. The genetic landscape of developmental and epileptic encephalopathy with spike-and-wave activation in sleep. Seizure 2023; 110:119-125. [PMID: 37352690 DOI: 10.1016/j.seizure.2023.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023] Open
Abstract
OBJECTIVE Epileptic Encephalopathy / Developmental Epileptic Encephalopathy with spike-and-wave activation in sleep (EE/DEE-SWAS) is defined as an epilepsy syndrome characterized by neurodevelopmental regression temporally related to the emergence of significant activation of spike-wave discharges in EEG during sleep. The availability of genetic testing has made it evident that monogenic and chromosomal abnormalities play an aetiological role in the development of EE/DEE-SWAS. We sought to review the literature to better understand the genetic landscape of EE/DEE-SWAS. METHODS In this systematic review, we reviewed cases of EE/DEE-SWAS associated with a genetic aetiology, collecting information related to the underlying aetiology, onset, management, and EEG patterns. RESULTS One hundred and seventy-two cases of EE/DEE-SWAS were identified. Genetic causes of note included pathogenic variants in GRIN2A, ZEB2, CNKSR2 and chromosome 17q21.31 deletions, each of which demonstrated unique clinical characteristics, EEG patterns, and age of onset. Factors identified to raise suspicion of a potential genetic aetiology included the presentation of DEE-SWAS and onset of SWAS under the age of five years. Treatment of EE/DEE-SWAS due to genetic causes was diverse, including a combination of anti-seizure medications, steroids, and other clinical strategies, with no clear consensus on a preferred or superior treatment. Data collected was significantly heterogeneous, with a lack of consistent use of neuropsychology testing, EEG patterns, or use of established clinical definitions. CONCLUSIONS Uniformity concerning the new definition of EE/DEE-SWAS, guidelines for management and more frequent genetic screening will be needed to guide best practices for the treatment of patients with EE/DEE-SWAS.
Collapse
Affiliation(s)
- Alexander E Freibauer
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON, Canada
| | | | - Puneet Jain
- Epilepsy Program, Division of Neurology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Kevin C Jones
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON, Canada
| | - Robyn Whitney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
7
|
Rudolph HC, Stafford AM, Hwang HE, Kim CH, Prokop JW, Vogt D. Structure-Function of the Human WAC Protein in GABAergic Neurons: Towards an Understanding of Autosomal Dominant DeSanto-Shinawi Syndrome. BIOLOGY 2023; 12:589. [PMID: 37106788 PMCID: PMC10136313 DOI: 10.3390/biology12040589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
Dysfunction of the WW domain-containing adaptor with coiled-coil, WAC, gene underlies a rare autosomal dominant disorder, DeSanto-Shinawi syndrome (DESSH). DESSH is associated with facial dysmorphia, hypotonia, and cognitive alterations, including attention deficit hyperactivity disorder and autism. How the WAC protein localizes and functions in neural cells is critical to understanding its role during development. To understand the genotype-phenotype role of WAC, we developed a knowledgebase of WAC expression, evolution, human genomics, and structural/motif analysis combined with human protein domain deletions to assess how conserved domains guide cellular distribution. Then, we assessed localization in a cell type implicated in DESSH, cortical GABAergic neurons. WAC contains conserved charged amino acids, phosphorylation signals, and enriched nuclear motifs, suggesting a role in cellular signaling and gene transcription. Human DESSH variants are found within these regions. We also discovered and tested a nuclear localization domain that impacts the cellular distribution of the protein. These data provide new insights into the potential roles of this critical developmental gene, establishing a platform to assess further translational studies, including the screening of missense genetic variants in WAC. Moreover, these studies are essential for understanding the role of human WAC variants in more diverse neurological phenotypes, including autism spectrum disorder.
Collapse
Affiliation(s)
- Hannah C. Rudolph
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA
| | - April M. Stafford
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA
| | - Hye-Eun Hwang
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeremy W. Prokop
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA
| | - Daniel Vogt
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Pasquali D, Torella A, Grandone A, Luongo C, Morleo M, Peduto C, di Fraia R, Selvaggio LD, Allosso F, Accardo G, Zanobio MT, Maitz S, Mariani M, Selicorni A, Banfi S, Nigro V. Patients with DeSanto-Shinawi syndrome: Further extension of phenotype from Italy. Am J Med Genet A 2023; 191:823-830. [PMID: 36420948 DOI: 10.1002/ajmg.a.63061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 11/26/2022]
Abstract
Here we describe three patients with neurodevelopmental disorders characterized by mild-to-moderate intellectual disability, mildly dysmorphic features, and hirsutism, all of which carry de novo sequence variants in the WW domain-containing adaptor of the coiled-coil (WAC) gene; two of these-c.167delA, p.(Asn56I1efs*136) and c.1746G>C, p.(Gln582His)-are novel pathogenic variants, and the third-c.1837C>T, p(Arg613*)-has been previously described. Diseases associated with WAC include DeSanto-Shinawi syndrome; to date, de novo heterozygous constitutional pathogenic WAC variants have caused a syndromic form of intellectual disability and mild dysmorphic features in 33 patients, yet potential associations with other clinical manifestations, such as oligomenorrhea and hyperandrogenism, remain unknown, because the phenotypic spectrum of the condition has not yet been delineated. The patient bearing the novel c.167delA WAC gene variant presented a normal psychomotor development, oligomenorrhea, hyperandrogenism, and hirsutism, and hirsutism was also observed in the patient with the c.1746G>C WAC gene variant. Hypertrichosis and hirsutism have been described in nine DeSanto-Shinawi patients, only in 17 of the 33 aforementioned patients thus far reported this aspect, and no hormonal-pattern data are available. In conclusion, we note that the pathogenic c.167delA WAC variant may be associated with a mild phenotype; and in addition to the neurodevelopmental problems nearly all DeSanto-Shinawi patients experience (i.e., intellectual disability and/or developmental delay), we recommend the addition of mild dysmorphic features, hirsutism, and hypertrichosis to this clinical presentation.
Collapse
Affiliation(s)
- Daniela Pasquali
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annalaura Torella
- Genetica Medica, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Anna Grandone
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Caterina Luongo
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Manuela Morleo
- Genetica Medica, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Cristina Peduto
- Genetica Medica, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosa di Fraia
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Digitale Selvaggio
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesca Allosso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giacomo Accardo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Teresa Zanobio
- Genetica Medica, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Silvia Maitz
- Pediatric Genetics Unit, MBBM Foundation, S. Gerardo Hospital, Monza, Italy.,Service of Medical Genetics, Oncologic Institute of Southern Switzerland, Lugano, Switzerland
| | - Milena Mariani
- Department of Pediatrics, S. Fermo Hospital, ASST Lariana, Como, Italy
| | - Angelo Selicorni
- Department of Pediatrics, S. Fermo Hospital, ASST Lariana, Como, Italy
| | - Sandro Banfi
- Genetica Medica, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Vincenzo Nigro
- Genetica Medica, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | |
Collapse
|
9
|
Bolat H, Derin H, Ünsel-Bolat G. Phenotypic and Brain Imaging Findings Associated With a 10p Proximal Deletion Including the WAC Gene: Case Report and Literature Review. Cogn Behav Neurol 2022; 35:221-226. [PMID: 35766809 DOI: 10.1097/wnn.0000000000000309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/05/2022] [Indexed: 11/26/2022]
Abstract
Microarray-based techniques are an important testing method in etiological studies of intellectual disability and autism spectrum disorder. Interstitial deletion in the p11-p12 region of chromosome 10 is rare, having been reported in just 12 cases to date. Intellectual disability associated with the WAC gene in this region is referred to as DeSanto-Shinawi syndrome . Although all individuals with p11-p12 region of chromosome 10 deletion share a common phenotype involving intellectual disability and dysmorphic features, individuals with DeSanto-Shinawi syndrome usually do not experience the cardiac and neurologic abnormalities or cryptorchidism associated with a 10p11-p12 deletion. With this case report, we aim to expand the phenotypic spectrum of 10p11-p12 deletion. Our patient was a 9-year-old boy with intellectual disability, autism symptoms, dysmorphic features, and behavioral abnormalities. He had no cardiac problems or neurologic symptoms such as hypotonia, feeding difficulties, or seizures. However, he presented cryptorchidism in addition to symptoms that are consistent with DeSanto-Shinawi syndrome. Array comparative genomic hybridization of genomic DNA isolated from a peripheral blood sample revealed a heterozygous deletion in 10p11.23-p12.1, which contains the WAC gene. We discuss our case in the context of a literature review of candidate genes. It is still difficult to establish genotype-phenotype correlations for neurologic, cardiac, and visual symptoms, and cryptorchidism, in individuals with a 10p11-p12 deletion. As more individuals are diagnosed with deletion in this chromosomal region, the associated phenotypes will become clearer.
Collapse
Affiliation(s)
| | - Hatice Derin
- Department of Pediatrics, Division of Child Neurology, Elaziğ Fethi Sekin City Hospital, Balikesir, Turkey
| | - Gül Ünsel-Bolat
- Child and Adolescent Psychiatry, Balikesir University Faculty of Medicine, Balikesir, Turkey
| |
Collapse
|
10
|
Toledo-Gotor C, García-Muro C, García-Oguiza A, Poch-Olivé ML, Ruiz-Del Prado MY, Domínguez-Garrido E. Phenotypic comparison of patients affected with DeSanto-Shinawi syndrome: Point mutations in WAC gene versus a 10p12.1 microdeletion including WAC. Mol Genet Genomic Med 2022; 10:e1910. [PMID: 35266333 PMCID: PMC9034681 DOI: 10.1002/mgg3.1910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/14/2022] [Accepted: 01/31/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction DeSanto‐Shinawi syndrome is a rare neurodevelopmental disorder caused by loss‐of‐function variants of WAC, located on chromosome 10p12.1. This syndrome is characterized by dysmorphic facial features, intellectual disability, and behavioral problems. Case report In this case report, we present a new deletion case and summarize the clinical data of previously reported individuals, comparing the similarities and differences between cases caused by point mutations versus those which are caused by deletions in the 10p region. Conclusion Some differential features could facilitate the diagnostic suspicion guiding the optimal diagnostic tests that should be requested in each case scenario.
Collapse
Affiliation(s)
- Cristina Toledo-Gotor
- Pediatric Neurology Unit, Department of Pediatrics, San Pedro Hospital, Logroño, Spain
| | | | - Alberto García-Oguiza
- Pediatric Neurology Unit, Department of Pediatrics, Txagorritxu Hospital, Vitoria, Spain
| | - Mª Luisa Poch-Olivé
- Pediatric Neurology Unit, Department of Pediatrics, San Pedro Hospital, Logroño, Spain
| | | | | |
Collapse
|
11
|
Morales JA, Valenzuela I, Cuscó I, Cogné B, Isidor B, Matalon DR, Gomez-Ospina N. Clinical and molecular characterization of five new individuals with WAC-related intellectual disability: Evidence of pathogenicity for a novel splicing variant. Am J Med Genet A 2022; 188:1396-1406. [PMID: 35018708 DOI: 10.1002/ajmg.a.62648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/27/2021] [Accepted: 12/26/2021] [Indexed: 11/09/2022]
Abstract
WAC-related intellectual disability (ID) is a rare genetic condition characterized by a spectrum of neurodevelopmental disorders of varying severity, including global developmental delay (GDD), ID, and autism spectrum disorder. Here, we describe five affected individuals, age range 9-20 years, and provide proof of pathogenicity of a novel splicing variant. All individuals presented with GDD, some degree of ID, and variable dysmorphism. Except for feeding difficulties, all patients were healthy without major congenital malformations or medical comorbidities. All individuals were heterozygous for de novo, previously unreported, loss of function variants in WAC. Three unrelated patients from different ethnic backgrounds shared the intronic variant c.381+4_381+7delAGTA, which was predicted to alter splicing and was initially classified as a variant of uncertain significance. Reverse transcription-polymerase chain reaction analysis from one patient's cells confirmed aberrant splicing of the WAC transcript resulting in premature termination and a truncated protein p.(Gly92Alafs*2). These functional studies and the identification of several nonrelated individuals provide sufficient evidence to classify this variant as pathogenic. The clinical description of these five individuals and the three novel variants expand the genotypic and phenotypic spectrum of this ultrarare disease.
Collapse
Affiliation(s)
- Jose Andres Morales
- Department of Pediatrics, Medical Genetics Division, Stanford University, Stanford, California, USA
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, University Hospital Vall d'Hebron, Barcelona, Spain.,Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain
| | - Ivon Cuscó
- Department of Clinical and Molecular Genetics, University Hospital Vall d'Hebron, Barcelona, Spain.,Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain
| | - Benjamin Cogné
- Service de Génétique Médicale, CHU Nantes, Nantes, France.,Université de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU Nantes, Nantes, France.,Université de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Dena R Matalon
- Department of Pediatrics, Medical Genetics Division, Stanford University, Stanford, California, USA
| | - Natalia Gomez-Ospina
- Department of Pediatrics, Medical Genetics Division, Stanford University, Stanford, California, USA
| |
Collapse
|
12
|
Quental R, Gonçalves D, Rodrigues E, Serrano Gonçalves E, Oliveira J, Parente Freixo J, Leão M. Congenital heart defects associated with pathogenic variants in WAC gene: Expanding the phenotypic and genotypic spectrum of DeSanto-Shinawi syndrome. Am J Med Genet A 2022; 188:1311-1316. [PMID: 34997803 DOI: 10.1002/ajmg.a.62636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022]
Abstract
WAC-related intellectual disability, also known as DeSanto-Shinawi syndrome, is a rare autosomal dominant genetic disorder caused by pathogenic variants in WAC gene. This syndrome is characterized by developmental delay, intellectual disability, behavioral abnormalities, and dysmorphic facial features, including deep-set eyes, flat nasal bridge, bulbous nasal tip, and synophrys. Chromosomal deletions at 10p12p11 encompassing WAC gene have been described in patients with a similar phenotype, presenting with developmental delay, intellectual disability, visual impairments, abnormal behavior, and dysmorphic features. An important clinical difference between the two groups of patients, is that those with large deletions frequently present with congenital cardiac defects, which were rarely reported in patients with pathogenic variants in WAC. The genes underlying heart defects in patients with the deletion have not yet been fully clarified. Here, we describe two unrelated Portuguese patients with de novo pathogenic variants in WAC gene, previously unreported in the literature. Both patients present with microcephaly, developmental delay, intellectual disability, behavioral problems, and facial dysmorphisms. Interestingly, the youngest patient has a severe congenital cardiac malformation, showing that intragenic pathogenic WAC variants can also be associated with heart defects. Therefore, this report expands the phenotypic and genotypic spectrum of this rare syndrome and provides deeper insights by comparing the clinical features of our patients with previously reported cases.
Collapse
Affiliation(s)
- Rita Quental
- Department of Medical Genetics, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
| | - Daniel Gonçalves
- Neurodevelopment Unit, Department of Pediatrics, CHUSJ, Porto, Portugal
| | | | | | - Jorge Oliveira
- CGPP - Centro de Genética Preditiva e Preventiva, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - João Parente Freixo
- CGPP - Centro de Genética Preditiva e Preventiva, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Miguel Leão
- Department of Medical Genetics, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
| |
Collapse
|
13
|
Ho S, Luk HM, Lo IFM. Extending the phenotype of DeSanto-Shinawi syndrome: A case report and literature review. Am J Med Genet A 2021; 188:984-990. [PMID: 34797027 DOI: 10.1002/ajmg.a.62571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/27/2021] [Accepted: 11/06/2021] [Indexed: 01/11/2023]
Abstract
DeSanto-Shinawi syndrome (DESSH, OMIM #616708) is a rare autosomal dominant neurodevelopmental disorder caused by loss-of-function variants in the WAC gene. Affected individuals are characterized by neonatal hypotonia, developmental delay, intellectual disability, behavioral problems, and dysmorphism. Epilepsy is present in some of the patients with DESSH. By far, less than 30 affected individuals have been reported worldwide. Herein, we report a 9-year-old Chinese girl with molecularly substantiated DESSH with a de novo nonsense c. 1648C>T p.(Arg550*) variant identified in the WAC gene. Aside from developmental delay and the characteristic facial gestalt, our proband also exhibited tethered cord syndrome due to filar lipoma and left duplex kidney complicated with hydronephrosis, features not observed in any of the previously reported individuals with DESSH.
Collapse
Affiliation(s)
- Stephanie Ho
- Clinical Genetic Service, Department of Health, Hong Kong, China
| | - Ho-Ming Luk
- Clinical Genetic Service, Department of Health, Hong Kong, China
| | - Ivan F M Lo
- Clinical Genetic Service, Department of Health, Hong Kong, China
| |
Collapse
|
14
|
Miao P, Tang S, Ye J, Tang J, Wang J, Zheng C, Li Y, Feng J. Differential Functional Changes of Nav1.2 Channel Causing SCN2A-Related Epilepsy and Status Epilepticus During Slow Sleep. Front Neurol 2021; 12:653517. [PMID: 34093402 PMCID: PMC8170409 DOI: 10.3389/fneur.2021.653517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Nav1.2 encoded by the SCN2A gene is a brain-expressed voltage-gated sodium channel known to be associated with neurodevelopment disorders ranging from benign familial neonatal infantile seizures (BFIS) to developmental and epileptic encephalopathy (DEE) and autism spectrum disorder. Interestingly, status epilepticus during slow sleep (ESES), which aggravates cognitive impairment, has been found in SCN2A-related epilepsy. However, the functional features and the relationship between SCN2A and ESES have not been researched. Method: We herein investigated the functional consequences of an unpublished de novo V911A and the other two published variants in patients with SCN2A-related disorder and ESES by whole-cell patch-clamp studies in transfected HEK293T cells. Results: The unpublished V911A and published K1933M variants detected in patients with DEE exhibited a profound gain-of-functional (GOF) change. Another published BFIS variant S863F significantly reduced current density as a loss-of-functional (LOF) change. The refractory epilepsy in the patient with V911A was controlled by using the precise treatment of oxcarbazepine (OXC) since the age of 3 months. ESES was found at 18 months during the seizure-free period. We finally chose an aggressive treatment for eliminating ESES by using methylprednisolone combined with levetiracetam and nitrazepam instead of the precise treatment of OXC. Conclusion: Both GOF and LOF variants in the SCN2A gene can lead to ESES among the phenotypes of DEE and BFIS. We should monitor the electroencephalogram regularly in the patients with SCN2A-related epilepsy even during their seizure-free period.
Collapse
Affiliation(s)
- Pu Miao
- Pediatric Department, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyang Tang
- National Health Center and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Ye
- National Health Center and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jihong Tang
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, China
| | - Jianda Wang
- Pediatric Department, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaoguang Zheng
- Pediatric Department, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuezhou Li
- National Health Center and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Feng
- Pediatric Department, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Alawadhi A, Morgan AT, Mucha BE, Scheffer IE, Myers KA. Self-limited focal epilepsy and childhood apraxia of speech with WAC pathogenic variants. Eur J Paediatr Neurol 2021; 30:25-28. [PMID: 33387902 DOI: 10.1016/j.ejpn.2020.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/02/2020] [Accepted: 12/20/2020] [Indexed: 11/25/2022]
Abstract
Heterozygous pathogenic WAC variants cause Desanto-Shinawi syndrome; affected patients have dysmorphic features, developmental impairment and behavioral abnormalities. Seizures are reported in one quarter, including tonic-clonic, absence, and febrile seizures. This study aimed to better understand the phenotypic spectrum of epilepsy and development in Desanto-Shinawi syndrome. We identified four children with seizures and pathogenic WAC variants, including two siblings. All had global developmental impairment with language affected most severely; two had diagnoses of childhood apraxia of speech and two had autism spectrum disorder. Seizure onset age ranged from six months to 14 years. Seizures always occurred from sleep and were focal impaired awareness with motor features in three patients, with one having bilateral tonic-clonic seizures of suspected focal onset. Two patients had spontaneous seizure resolution without treatment, and the remaining two were well-controlled on monotherapy. EEG was normal in two patients; one had focal right frontal spikes in drowsiness and sleep while the last had independent centrotemporal spikes from both hemispheres, activated in sleep. All patients had heterozygous truncating pathogenic WAC variants, with negative parental testing. The findings in this cohort of patients suggest that epilepsy in Desanto-Shinawi syndrome is usually focal and self-limited, and may fall within the epilepsy-aphasia spectrum.
Collapse
Affiliation(s)
- Abdulla Alawadhi
- Division of Child Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada
| | - Angela T Morgan
- Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Flemington, Victoria, Australia; Speech and Language, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington, Victoria, Australia
| | - Bettina E Mucha
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Ingrid E Scheffer
- Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Flemington, Victoria, Australia; Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health and Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Kenneth A Myers
- Division of Child Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada; Department of Neurology & Neurosurgery, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
16
|
A Case of DeSanto-Shinawi Syndrome in Bahrain with a Novel Mutation. Case Rep Pediatr 2020; 2020:8820966. [PMID: 33123400 PMCID: PMC7585648 DOI: 10.1155/2020/8820966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/25/2022] Open
Abstract
DeSanto-Shinawi syndrome is a rare genetic condition caused by loss-of-function mutation in WAC. It is characterized by dysmorphic features, intellectual disability, and behavioral abnormalities. In this case report, we describe the clinical features and genotype of a patient with a novel mutation 1346C > A in WAC. This patient's dysmorphic features include a prominent forehead, bulbous nasal tip, macroglossia, deep-set eyes, and malar hypoplasia. This patient also showed signs of intellectual disability and behavioral abnormalities such as night terrors. These findings are consistent with those described in earlier reports. Here, we report new findings of epilepsy and recurrent skin infections which had not been reported in prior studies.
Collapse
|