1
|
Tietz VC, Ortale MLF, das Neves AR, Pelizaro BI, Carvalho DB, Shiguemoto CYK, Portapilla GB, Silva TS, Silva F, Piranda EM, Leite CR, Dantas FGS, Oliveira KMP, Guerrero PG, Marques FA, LaGatta DC, Arruda CCP, de Albuquerque S, Baroni ACM. Design and Synthesis of 2-Nitroimidazole-1,2,3-triazole Sulfonamide Hybrids as Potent and Selective Anti-Trypanosomatid Agents. ChemMedChem 2024:e202400516. [PMID: 39565682 DOI: 10.1002/cmdc.202400516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024]
Abstract
A series of 2-nitroimidazole-1,2,3-triazole sulfonamide hybrid analogs were designed using medicinal chemistry approaches, such as bioisosterism, molecular hybridization, Topliss tree decision, and Craig plot. A total of 24 compounds were synthesized via click chemistry in satisfactory yields. Overall, analogs 15 a-x exhibited relevant in vitro anti-trypanosomatid activity against amastigote forms of T. cruzi and without cytotoxic effect on LLC-MK2 cells. Analogs 15 b (R1=4-Cl-Ph; IC50=1.63 μM, SI=>30.65), 15 m (R1=3,4-di-Cl-Ph; IC50=0.63 μM, SI=>78.96), and 15 s (R1=Ph-4-O-Ph; IC50=0.63 μM, SI=>79.90) demonstrated pronounced antitrypanosomal activity, more active than the reference drug, benznidazole and with good selectivity indexes. Furthermore, analog 15 b (R1=4-Cl-Ph; IC50=0.5 μM, SI=>100) exhibited an outstanding antileishmanial activity against amastigote forms of Leishmania (L.) amazonensis and impressive selectivity index, comparable to the reference compound amphotericin B. The mutagenicity of compounds 15 b and 15 m were evaluated against Salmonella typhimurium strains (TA98, TA100 and TA102). Compound 15 b exhibited mutageniticy only at a concentration of 500 μg/plate for the TA100 strain, whereas compound 15 m was considered non-mutagenic. These findings suggest that 2-nitroimidazoles-1,2,3-triazole sulfonamide hybrid analogs are promising anti-trypanosomatid candidates for future in vivo studies.
Collapse
Affiliation(s)
- Victória C Tietz
- Laboratório de Síntese e Química Medicinal (LASQUIM)., Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul (UFMS), Avenida Costa e Silva, s/n, Bairro Universitário, Campo Grande, Mato Grosso do Sul, CEP 79070-900, Brazil
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grossso do Sul (UFMS), Avenida Costa e Silva, s/n, Bairro Universitário, Campo Grande, Mato Grosso do Sul, CEP 79070-900, Brazil
| | - Maria L F Ortale
- Laboratório de Síntese e Química Medicinal (LASQUIM)., Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul (UFMS), Avenida Costa e Silva, s/n, Bairro Universitário, Campo Grande, Mato Grosso do Sul, CEP 79070-900, Brazil
| | - Amarith R das Neves
- Laboratório de Síntese e Química Medicinal (LASQUIM)., Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul (UFMS), Avenida Costa e Silva, s/n, Bairro Universitário, Campo Grande, Mato Grosso do Sul, CEP 79070-900, Brazil
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grossso do Sul (UFMS), Avenida Costa e Silva, s/n, Bairro Universitário, Campo Grande, Mato Grosso do Sul, CEP 79070-900, Brazil
| | - Bruno I Pelizaro
- Laboratório de Síntese e Química Medicinal (LASQUIM)., Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul (UFMS), Avenida Costa e Silva, s/n, Bairro Universitário, Campo Grande, Mato Grosso do Sul, CEP 79070-900, Brazil
| | - Diego B Carvalho
- Laboratório de Síntese e Química Medicinal (LASQUIM)., Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul (UFMS), Avenida Costa e Silva, s/n, Bairro Universitário, Campo Grande, Mato Grosso do Sul, CEP 79070-900, Brazil
| | - Cristiane Y K Shiguemoto
- Laboratório de Síntese e Química Medicinal (LASQUIM)., Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul (UFMS), Avenida Costa e Silva, s/n, Bairro Universitário, Campo Grande, Mato Grosso do Sul, CEP 79070-900, Brazil
| | - Gisele B Portapilla
- Laboratório de Parasitologia, Departamento de Análises Clínicas Toxicológicas e Bromatológicas, Universidade de São Paulo (USP), Avenida do Café, s/n, Monte Alegre, Ribeirão Preto, São Paulo, CEP 14040-903, Brazil
| | - Talicia S Silva
- Laboratório de Parasitologia, Departamento de Análises Clínicas Toxicológicas e Bromatológicas, Universidade de São Paulo (USP), Avenida do Café, s/n, Monte Alegre, Ribeirão Preto, São Paulo, CEP 14040-903, Brazil
| | - Fernanda Silva
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grossso do Sul (UFMS), Avenida Costa e Silva, s/n, Bairro Universitário, Campo Grande, Mato Grosso do Sul, CEP 79070-900, Brazil
| | - Eliane M Piranda
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grossso do Sul (UFMS), Avenida Costa e Silva, s/n, Bairro Universitário, Campo Grande, Mato Grosso do Sul, CEP 79070-900, Brazil
| | - Cleison R Leite
- Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados (UFGD), Rodovia Dourados-Itahum, Km 12, Cidade Universitária, Dourados, Mato Grosso do Sul, CEP 79804-970, Brazil
| | - Fabiana G S Dantas
- Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados (UFGD), Rodovia Dourados-Itahum, Km 12, Cidade Universitária, Dourados, Mato Grosso do Sul, CEP 79804-970, Brazil
| | - Kelly M P Oliveira
- Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados (UFGD), Rodovia Dourados-Itahum, Km 12, Cidade Universitária, Dourados, Mato Grosso do Sul, CEP 79804-970, Brazil
| | - Palimecio G Guerrero
- Departamento de Química e Biologia (DABQI), Universidade Tecnológica Federal de Paraná (UTFPR), Rua Deputado Heitor Alencar Furtado, 4900, Cidade Industrial, Curitiba, Paraná, CEP 81280-340, Brazil
| | - Francisco A Marques
- Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19081, Curitiba, Paraná, CEP 81531-990, Brazil
| | - Davi C LaGatta
- Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul (UFMS), Avenida Costa e Silva, s/n. Bairro Universitário, Campo Grande, Mato Grosso do Sul, CEP 79070-900, Brazil
| | - Carla C P Arruda
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grossso do Sul (UFMS), Avenida Costa e Silva, s/n, Bairro Universitário, Campo Grande, Mato Grosso do Sul, CEP 79070-900, Brazil
| | - Sergio de Albuquerque
- Laboratório de Parasitologia, Departamento de Análises Clínicas Toxicológicas e Bromatológicas, Universidade de São Paulo (USP), Avenida do Café, s/n, Monte Alegre, Ribeirão Preto, São Paulo, CEP 14040-903, Brazil
| | - Adriano C M Baroni
- Laboratório de Síntese e Química Medicinal (LASQUIM)., Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul (UFMS), Avenida Costa e Silva, s/n, Bairro Universitário, Campo Grande, Mato Grosso do Sul, CEP 79070-900, Brazil
| |
Collapse
|
2
|
Sharma S, Singh M, Chiranjivi AK, Dadwal A, Ahmed S, Asthana S, Das S. Structural insights into trypanosomatid Mnk kinase orthologues (kMnks) suggest altered mechanism in the kinase domain. Int J Biol Macromol 2024; 277:134428. [PMID: 39097052 DOI: 10.1016/j.ijbiomac.2024.134428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Mitogen-activated protein kinase (MAPK) interacting protein kinases (Mnk1 and Mnk2) mediated phosphorylation of the eukaryotic initiation factor eIF4E is an important translation initiation control, in Mnk-mediated oncogenic activity and other disease conditions. Thus, Mnk kinases are an important target for therapy. Trypanosomatids are a class of kinetoplastids, some of which are protozoan parasites and cause diseases in humans. While protein translation initiation is well understood in eukaryotes and prokaryotes, there is a lack of sufficient structural information of this process in trypanosomatids. Here, we report that trypanosomatids have one orthologue of Mnk kinase with low overall sequence homology but high homology in the kinase domain and an additional C-terminal domain containing putative calmodulin binding site(s). We show that while many of the domains and motifs are conserved, homology modeling/structure prediction, docking analysis and molecular dynamics simulation studies suggest that trypanosomatid kMnk kinases, kinase domains are present in DFG-in conformation as opposed to the auto-inhibited DFD-out conformation of un-phosphorylated human Mnk1. Furthermore, we observed that several regulatory features are different in trypanosomatid kMnk kinases. Our study indicates that mechanism and regulation in the kinase domain of trypanosomatid kMnks are likely to be altered, and that they can be important drug targets.
Collapse
Affiliation(s)
- Shilpa Sharma
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India
| | - Mrityunjay Singh
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India
| | | | - Anica Dadwal
- Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India
| | - Shubbir Ahmed
- Centralized Core Research Facility (CCRF), All India Institute of Medical Science (AIIMS), New Delhi 110029, India
| | - Shailendra Asthana
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India.
| | - Supratik Das
- Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India.
| |
Collapse
|
3
|
Watkins RR, Vradi A, Shulgina I, Musier-Forsyth K. Trypanosoma brucei multi-aminoacyl-tRNA synthetase complex formation limits promiscuous tRNA proofreading. Front Microbiol 2024; 15:1445687. [PMID: 39081885 PMCID: PMC11286415 DOI: 10.3389/fmicb.2024.1445687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Faithful mRNA decoding depends on the accuracy of aminoacyl-tRNA synthetases (ARSs). Aminoacyl-tRNA proofreading mechanisms have been well-described in bacteria, humans, and plants. However, our knowledge of translational fidelity in protozoans is limited. Trypanosoma brucei (Tb) is a eukaryotic, protozoan pathogen that causes Human African Trypanosomiasis, a fatal disease if untreated. Tb undergoes many physiological changes that are dictated by nutrient availability throughout its insect-mammal lifecycle. In the glucose-deprived insect vector, the tsetse fly, Tb use proline to make ATP via mitochondrial respiration. Alanine is one of the major by-products of proline consumption. We hypothesize that the elevated alanine pool challenges Tb prolyl-tRNA synthetase (ProRS), an ARS known to misactivate alanine in all three domains of life, resulting in high levels of misaminoacylated Ala-tRNAPro. Tb encodes two domains that are members of the INS superfamily of aminoacyl-tRNA deacylases. One homolog is appended to the N-terminus of Tb ProRS, and a second is the major domain of multi-aminoacyl-tRNA synthetase complex (MSC)-associated protein 3 (MCP3). Both ProRS and MCP3 are housed in the Tb MSC. Here, we purified Tb ProRS and MCP3 and observed robust Ala-tRNAPro deacylation activity from both enzymes in vitro. Size-exclusion chromatography multi-angle light scattering used to probe the oligomerization state of MCP3 revealed that although its unique N-terminal extension confers homodimerization in the absence of tRNA, the protein binds to tRNA as a monomer. Kinetic assays showed MCP3 alone has relaxed tRNA specificity and promiscuously hydrolyzes cognate Ala-tRNAAla; this activity is significantly reduced in the presence of Tb alanyl-tRNA synthetase, also housed in the MSC. Taken together, our results provide insight into translational fidelity mechanisms in Tb and lay the foundation for exploring MSC-associated proteins as novel drug targets.
Collapse
Affiliation(s)
| | | | | | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus, OH, United States
| |
Collapse
|
4
|
Machado I, Gambino D. Metallomics: An Essential Tool for the Study of Potential Antiparasitic Metallodrugs. ACS OMEGA 2024; 9:15744-15752. [PMID: 38617611 PMCID: PMC11007724 DOI: 10.1021/acsomega.3c10200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/16/2024]
Abstract
Metallomics is an emerging area of omics approaches that has grown enormously in the past few years. It integrates research related to metals in biological systems, in symbiosis with genomics and proteomics. These omics approaches can provide in-depth insights into the mechanisms of action of potential metallodrugs, including their physiological metabolism and their molecular targets. Herein, we review the most significant advances concerning cellular uptake and subcellular distribution assays of different potential metallodrugs with activity against Trypanosma cruzi, the protozoan parasite that causes Chagas disease, a pressing health problem in high-poverty areas of Latin America. Furthermore, the first multiomics approaches including metallomics, proteomics, and transcriptomics for the comprehensive study of potential metallodrugs with anti-Trypanosoma cruzi activity are described.
Collapse
Affiliation(s)
- Ignacio Machado
- Área
Química Analítica, Facultad de Química, Área Química
Inorgánica, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay
| | - Dinorah Gambino
- Área
Química Analítica, Facultad de Química, Área Química
Inorgánica, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
5
|
Carvalho DB, Costa PAN, Portapilla GB, das Neves AR, Shiguemoto CYK, Pelizaro BI, Silva F, Piranda EM, Arruda CCP, Gaspari PDM, Cardoso IA, Luccas PH, Nonato MC, Lopes NP, de Albuquerque S, Baroni ACM. Design, synthesis and antitrypanosomatid activity of 2-nitroimidazole-3,5-disubstituted isoxazole compounds based on benznidazole. Eur J Med Chem 2023; 260:115451. [PMID: 37573209 DOI: 10.1016/j.ejmech.2023.115451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 08/14/2023]
Abstract
Chagas disease and leishmaniasis are neglected diseases of high priority as a public health problem. Pharmacotherapy is based on the administration of a few drugs, which exhibit hazardous adverse effects and toxicity to the patients. Thus, the search for new antitrypanosomatid drugs is imperative to overcome the limitations of the treatments. In this work, 46 2-nitroimidazole 3,5-disubstituted isoxazole compounds were synthesized in good yields by [3 + 2] cycloaddition reaction between terminal acetylene (propargyl-2-nitroimidazole) and chloro-oximes. The compounds were non-toxic to LLC-MK2 cells. Compounds 30, 35, and 44 showed in vitro antichagasic activity, 15-fold, 12-fold, and 10-fold, respectively, more active than benznidazole (BZN). Compounds 30, 35, 44, 45, 53, and 61 acted as substrates for the TcNTR enzyme, indicating that this might be one of the mechanisms of action involved in their antiparasitic activity. Piperazine series and 4-monosubstituted compounds were potent against T. cruzi parasites. Besides the in vitro activity observed in compound 45, the in vivo assay showed that the compound only reduced the parasitemia levels by the seventh-day post-infection (77%, p > 0.001) compared to the control group. However, 45 significantly reduced the parasite load in cardiac tissue (p < 0.01) 11 days post-infection. Compounds 49, 52, and 54 showed antileishmanial activity against intracellular amastigotes of Leishmania (L.) amazonensis at the same range as amphotericin B. These findings highlight the antitrypanosomatid properties of 2-nitroimidazole 3,5-disubstituted isoxazole compounds and the possibility in using them as antitrypanosomatid agents in further studies.
Collapse
Affiliation(s)
- Diego B Carvalho
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul, CEP 79051-470, Brazil
| | - Pedro A N Costa
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul, CEP 79051-470, Brazil; Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul, CEP 79070-900, Brazil
| | - Gisele B Portapilla
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, Ribeirão Preto, São Paulo, CEP 14040-900, Brazil
| | - Amarith R das Neves
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul, CEP 79051-470, Brazil; Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul, CEP 79070-900, Brazil
| | - Cristiane Y K Shiguemoto
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul, CEP 79051-470, Brazil
| | - Bruno I Pelizaro
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul, CEP 79051-470, Brazil
| | - Fernanda Silva
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul, CEP 79070-900, Brazil
| | - Eliane M Piranda
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul, CEP 79070-900, Brazil
| | - Carla C P Arruda
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul, CEP 79070-900, Brazil
| | - Priscyla D M Gaspari
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n Monte Alegre, CEP 14040-903, Ribeirão Preto, SP, Brazil
| | - Iara A Cardoso
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n Monte Alegre, CEP 14040-903, Ribeirão Preto, SP, Brazil
| | - Pedro H Luccas
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n Monte Alegre, CEP 14040-903, Ribeirão Preto, SP, Brazil
| | - M Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n Monte Alegre, CEP 14040-903, Ribeirão Preto, SP, Brazil
| | - Norberto P Lopes
- Núcleo de Pesquisas em Produtos Naturais e Sintéticos, Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n Monte Alegre, Ribeirão Preto, SP, CEP 14040-903, Brazil
| | - Sergio de Albuquerque
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, Ribeirão Preto, São Paulo, CEP 14040-900, Brazil
| | - Adriano C M Baroni
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul, CEP 79051-470, Brazil.
| |
Collapse
|
6
|
Nguyen AMT, Shalev-Benami M, Rosa-Teijeiro C, Ibarra-Meneses AV, Yonath A, Bashan A, Jaffe CL, Olivier M, Fernandez-Prada C, Lubell WD. Systematic Exploration of Functional Group Relevance for Anti-Leishmanial Activity of Anisomycin. Biomedicines 2023; 11:2541. [PMID: 37760981 PMCID: PMC10526209 DOI: 10.3390/biomedicines11092541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Assessment of structure-activity relationships for anti-protozoan activity revealed a strategy for preparing potent anisomycin derivatives with reduced host toxicity. Thirteen anisomycin analogs were synthesized by modifying the alcohol, amine, and aromatic functional groups. Examination of anti-protozoal activity against various strains of Leishmania and cytotoxicity against leucocytes with comparison against the parent natural product demonstrated typical losses of activity with modifications of the alcohol, amine, and aromatic meta-positions. On the other hand, the para-phenol moiety of anisomycin proved an effective location for introducing substituents without significant loss of anti-protozoan potency. An entry point for differentiating activity against Leishmania versus host has been uncovered by this systematic study.
Collapse
Affiliation(s)
| | - Moran Shalev-Benami
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (M.S.-B.); (A.Y.); (A.B.)
| | - Chloé Rosa-Teijeiro
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.R.-T.); (A.V.I.-M.); (C.F.-P.)
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, Université de Montréal, Montreal, QC J2S 2M2, Canada
| | - Ana Victoria Ibarra-Meneses
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.R.-T.); (A.V.I.-M.); (C.F.-P.)
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, Université de Montréal, Montreal, QC J2S 2M2, Canada
| | - Ada Yonath
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (M.S.-B.); (A.Y.); (A.B.)
| | - Anat Bashan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (M.S.-B.); (A.Y.); (A.B.)
| | - Charles L. Jaffe
- Department of Microbiology & Molecular Genetics, Kuvin Center for the Study of Tropical & Infectious Diseases, Institute for Medical Research (IMRIC), Hadassah Hebrew University Medical Center, Jerusalem 9112102, Israel;
| | - Martin Olivier
- Departments of Medicine, and of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, QC H3A 2B4, Canada;
- The Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC H4A 3J1, Canada
| | - Christopher Fernandez-Prada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.R.-T.); (A.V.I.-M.); (C.F.-P.)
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, Université de Montréal, Montreal, QC J2S 2M2, Canada
| | - William D. Lubell
- Department of Chemistry, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
7
|
Porta EOJ, Kalesh K, Steel PG. Navigating drug repurposing for Chagas disease: advances, challenges, and opportunities. Front Pharmacol 2023; 14:1233253. [PMID: 37576826 PMCID: PMC10416112 DOI: 10.3389/fphar.2023.1233253] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Chagas disease is a vector-borne illness caused by the protozoan parasite Trypanosoma cruzi (T. cruzi). It poses a significant public health burden, particularly in the poorest regions of Latin America. Currently, there is no available vaccine, and chemotherapy has been the traditional treatment for Chagas disease. However, the treatment options are limited to just two outdated medicines, nifurtimox and benznidazole, which have serious side effects and low efficacy, especially during the chronic phase of the disease. Collectively, this has led the World Health Organization to classify it as a neglected disease. To address this problem, new drug regimens are urgently needed. Drug repurposing, which involves the use of existing drugs already approved for the treatment of other diseases, represents an increasingly important option. This approach offers potential cost reduction in new drug discovery processes and can address pharmaceutical bottlenecks in the development of drugs for Chagas disease. In this review, we discuss the state-of-the-art of drug repurposing approaches, including combination therapy with existing drugs, to overcome the formidable challenges associated with treating Chagas disease. Organized by original therapeutic area, we describe significant recent advances, as well as the challenges in this field. In particular, we identify candidates that exhibit potential for heightened efficacy and reduced toxicity profiles with the ultimate objective of accelerating the development of new, safe, and effective treatments for Chagas disease.
Collapse
Affiliation(s)
| | - Karunakaran Kalesh
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
- National Horizons Centre, Darlington, United Kingdom
| | - Patrick G. Steel
- Department of Chemistry, Durham University, Durham, United Kingdom
| |
Collapse
|
8
|
Nunes Lemes LF, Magoulas GE, Souza de Oliveira A, Barrias E, de Camargo Nascente L, Granado R, Teixeira de Macedo Silva S, Assimomytis N, de Souza W, Bolognesi ML, Romeiro LAS, Calogeropoulou T. Valorizing Constituents of Cashew Nut Shell Liquid toward the Sustainable Development of New Drugs against Chagas Disease. ACS Infect Dis 2023; 9:1334-1345. [PMID: 37307287 DOI: 10.1021/acsinfecdis.3c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Six new ether phospholipid analogues encompassing constituents from cashew nut shell liquid as the lipid portion were synthesized in an effort to valorize byproducts of the cashew industry toward the generation of potent compounds against Chagas disease. Anacardic acids, cardanols, and cardols were used as the lipid portions and choline as the polar headgroup. The compounds were evaluated for their in vitro antiparasitic activity against different developmental stages of Trypanosoma cruzi. Compounds 16 and 17 were found to be the most potent against T. cruzi epimastigotes, trypomastigotes, and intracellular amastigotes exhibiting selectivity indices against the latter 32-fold and 7-fold higher than current drug benznidazole, respectively. Hence, four out of six analogues can be considered as hit-compounds toward the sustainable development of new treatments for Chagas disease, based on inexpensive agro-waste material.
Collapse
Affiliation(s)
- Laís Flávia Nunes Lemes
- Tropical Medicine Center, Faculty of Medicine, University of Brasília, Campus Universitário Darcy Ribeiro, 70910-900 Brasília, Distrito Federal, Brazil
- Catholic University of Brasilia, QS 07, Lote 01, EPCT, Águas Claras, 71966-700 Brasília, Distrito Federal, Brazil
| | - George E Magoulas
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Andressa Souza de Oliveira
- Department of Pharmacy, Faculty of Health Sciences, University of Brasília, Campus Universitário Darcy Ribeiro, 70910-900 Brasília, Distrito Federal, Brazil
| | - Emile Barrias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho s/n, Ilha do Fundão, 21941-900 Rio de Janeiro, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho s/n, Ilha do Fundão, 21941-902 Rio de Janeiro, Brazil
| | - Luciana de Camargo Nascente
- Department of Pharmacy, Faculty of Health Sciences, University of Brasília, Campus Universitário Darcy Ribeiro, 70910-900 Brasília, Distrito Federal, Brazil
| | - Renato Granado
- Laboratory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology - Inmetro, Rua Santa Alexandrina, 416, Rio Comprido, 20261-232 Rio de Janeiro, Brazil
| | - Sara Teixeira de Macedo Silva
- Centro Nacional de Biologia Estrutural e Bioimagem, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho s/n, Ilha do Fundão, 21941-902 Rio de Janeiro, Brazil
| | - Nikos Assimomytis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho s/n, Ilha do Fundão, 21941-900 Rio de Janeiro, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho s/n, Ilha do Fundão, 21941-902 Rio de Janeiro, Brazil
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Luiz Antonio Soares Romeiro
- Tropical Medicine Center, Faculty of Medicine, University of Brasília, Campus Universitário Darcy Ribeiro, 70910-900 Brasília, Distrito Federal, Brazil
- Department of Pharmacy, Faculty of Health Sciences, University of Brasília, Campus Universitário Darcy Ribeiro, 70910-900 Brasília, Distrito Federal, Brazil
| | - Theodora Calogeropoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
9
|
García-Estrada C, Pérez-Pertejo Y, Domínguez-Asenjo B, Holanda VN, Murugesan S, Martínez-Valladares M, Balaña-Fouce R, Reguera RM. Further Investigations of Nitroheterocyclic Compounds as Potential Antikinetoplastid Drug Candidates. Biomolecules 2023; 13:biom13040637. [PMID: 37189384 DOI: 10.3390/biom13040637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Due to the lack of specific vaccines, management of the trypanosomatid-caused neglected tropical diseases (sleeping sickness, Chagas disease and leishmaniasis) relies exclusively on pharmacological treatments. Current drugs against them are scarce, old and exhibit disadvantages, such as adverse effects, parenteral administration, chemical instability and high costs which are often unaffordable for endemic low-income countries. Discoveries of new pharmacological entities for the treatment of these diseases are scarce, since most of the big pharmaceutical companies find this market unattractive. In order to fill the pipeline of compounds and replace existing ones, highly translatable drug screening platforms have been developed in the last two decades. Thousands of molecules have been tested, including nitroheterocyclic compounds, such as benznidazole and nifurtimox, which had already provided potent and effective effects against Chagas disease. More recently, fexinidazole has been added as a new drug against African trypanosomiasis. Despite the success of nitroheterocycles, they had been discarded from drug discovery campaigns due to their mutagenic potential, but now they represent a promising source of inspiration for oral drugs that can replace those currently on the market. The examples provided by the trypanocidal activity of fexinidazole and the promising efficacy of the derivative DNDi-0690 against leishmaniasis seem to open a new window of opportunity for these compounds that were discovered in the 1960s. In this review, we show the current uses of nitroheterocycles and the novel derived molecules that are being synthesized against these neglected diseases.
Collapse
Affiliation(s)
- Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Bárbara Domínguez-Asenjo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Vanderlan Nogueira Holanda
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, India
| | - María Martínez-Valladares
- Instituto de Ganadería de Montaña (IGM), Consejo Superior de Investigaciones Científicas-Universidad de León, Carretera León-Vega de Infanzones, Vega de Infanzones, 24346 León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
10
|
Beatriz Vermelho A, Rodrigues GC, Nocentini A, Mansoldo FRP, Supuran CT. Discovery of novel drugs for Chagas disease: is carbonic anhydrase a target for antiprotozoal drugs? Expert Opin Drug Discov 2022; 17:1147-1158. [PMID: 36039500 DOI: 10.1080/17460441.2022.2117295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Carbonic anhydrase (CA) arose significant interest as a potential new target for Chagas disease since its discovery in Trypanosoma cruzi in 2013. Benznidazole and Nifurtimox have been used for Chagas disease treatment for 60 years despite all efforts done for obtaining more efficient treatments, acting in the acute and chronic phases of illness, with fewer side effects and resistance induction. AREAS COVERED We discuss the positive and negative aspects of T. cruzi CA (TcCA) studies as a target for developing new drugs. The current research discoveries and the classes of TcCA inhibitors are reviewed. The sulfonamides and their derivatives are the main inhibitor classes, but hydroxamates and the thiols, were investigated too. These compounds inhibited the growth of the evolutive forms of the parasite. A comparative analysis was done with CAs from other Trypanosomatids and protozoans. EXPERT OPINION The search for new targets and drugs is a significant challenge worldwide, and TcCA is a potential candidate for developing new drugs. Several studied inhibitors were active against Trypanosoma cruzi, but their penetration and toxicity problems emerged. New approaches are in progress to obtain inhibitors with desired properties, allowing further steps such as tests using an adequate animal model and subsequent developments for the preclinical testing.
Collapse
Affiliation(s)
- Alane Beatriz Vermelho
- BIOINOVAR - Biotechnology Laboratories: Biocatalysis, Bioproducts, and Bioenergy, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giseli Capaci Rodrigues
- UNIGRANRIO - Universidade do Grande Rio Programa de Pós-Graduação em Ensino das Ciências, Rio de Janeiro, Brazil
| | - Alessio Nocentini
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences University of Florence, Florence, Italy
| | - Felipe R P Mansoldo
- BIOINOVAR - Biotechnology Laboratories: Biocatalysis, Bioproducts, and Bioenergy, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences University of Florence, Florence, Italy
| |
Collapse
|
11
|
Nitro compounds against trypanosomatidae parasites: Heroes or villains? Bioorg Med Chem Lett 2022; 75:128930. [PMID: 36030001 DOI: 10.1016/j.bmcl.2022.128930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022]
Abstract
Chagas disease and Human African trypanosomiasis (HAT) are caused by Trypanosoma cruzi, T. brucei rhodesiense or T. b. gambiense parasites, respectively; while Leishmania is caused by parasites from the Leishmania genus. In recent years, many efforts have been addressed to develop inhibitors against these parasites, especially nitro-containing derivatives, which can interfere with essential enzymes from the protozoa. In this review, all anti-trypanosomatidae nitrocompounds reported so far are shown herein, highlighting their activities and SAR analyses, providing all the benefits and problems associated with this ambiguous chemical group. Finally, this review paper will be useful for many research teams around the world, which are searching for novel trypanocidal and leishmanicidal agents.
Collapse
|
12
|
Ibarra-Meneses AV, Corbeil A, Wagner V, Beaudry F, do Monte-Neto RL, Fernandez-Prada C. Exploring direct and indirect targets of current antileishmanial drugs using a novel thermal proteomics profiling approach. Front Cell Infect Microbiol 2022; 12:954144. [PMID: 35992178 PMCID: PMC9381709 DOI: 10.3389/fcimb.2022.954144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Visceral leishmaniasis (VL), caused by Leishmania infantum, is an oft-fatal neglected tropical disease. In the absence of an effective vaccine, the control of leishmaniasis relies exclusively on chemotherapy. Due to the lack of established molecular/genetic markers denoting parasite resistance, clinical treatment failure is often used as an indicator. Antimony-based drugs have been the standard antileishmanial treatment for more than seven decades, leading to major drug resistance in certain regions. Likewise, drug resistance to miltefosine and amphotericin B continues to spread at alarming rates. In consequence, innovative approaches are needed to accelerate the identification of antimicrobial drug targets and resistance mechanisms. To this end, we have implemented a novel approach based on thermal proteome profiling (TPP) to further characterize the mode of action of antileishmanials antimony, miltefosine and amphotericin B, as well as to better understand the mechanisms of drug resistance deployed by Leishmania. Proteins become more resistant to heat-induced denaturation when complexed with a ligand. In this way, we used multiplexed quantitative mass spectrometry-based proteomics to monitor the melting profile of thousands of expressed soluble proteins in WT, antimony-resistant, miltefosine-resistant, and amphotericin B-resistant L. infantum parasites, in the presence (or absence) of the above-mentioned drugs. Bioinformatics analyses were performed, including data normalization, melting profile fitting, and identification of proteins that underwent changes (fold change > 4) caused by complexation with a drug. With this unique approach, we were able to narrow down the regions of the L. infantum proteome that interact with antimony, miltefosine, and amphotericin B; validating previously-identified and unveiling novel drug targets. Moreover, analyses revealed candidate proteins potentially involved in drug resistance. Interestingly, we detected thermal proximity coaggregation for several proteins belonging to the same metabolic pathway (i.e., tryparedoxin peroxidase and aspartate aminotransferase in proteins exposed to antimony), highlighting the importance of these pathways. Collectively, our results could serve as a jumping-off point for the future development of innovative diagnostic tools for the detection and evaluation of antimicrobial-resistant Leishmania populations, as well as open the door for new on-target therapies.
Collapse
Affiliation(s)
- Ana Victoria Ibarra-Meneses
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Audrey Corbeil
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Victoria Wagner
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Francis Beaudry
- Département de Biomédecine, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre de recherche sur le cerveau et l’apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada
| | - Rubens L. do Monte-Neto
- Biotechnology Applied to Pathogens (BAP) - Instituto René Rachou – Fundação Oswaldo Cruz/Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Christopher Fernandez-Prada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- *Correspondence: Christopher Fernandez-Prada,
| |
Collapse
|
13
|
Bhattacharya A, Fernandez-Prada C, Alonso GD, Biswas A. Editorial: Signaling in stress sensing and resistance in parasitic protozoa. Front Cell Infect Microbiol 2022; 12:962047. [PMID: 35967874 PMCID: PMC9372558 DOI: 10.3389/fcimb.2022.962047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Arijit Bhattacharya
- Deptartment of Biological Sciences, Adamas University, Kolkata, India
- *Correspondence: Arijit Bhattacharya, ; Christopher Fernandez-Prada, christopher.fernandez.prada @ umontreal.ca; Guillermo Daniel Alonso, ; Arunima Biswas,
| | - Christopher Fernandez-Prada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- *Correspondence: Arijit Bhattacharya, ; Christopher Fernandez-Prada, christopher.fernandez.prada @ umontreal.ca; Guillermo Daniel Alonso, ; Arunima Biswas,
| | - Guillermo Daniel Alonso
- CONICET Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Héctor N. Torres (INGEBI), Buenos Aires, Argentina
- *Correspondence: Arijit Bhattacharya, ; Christopher Fernandez-Prada, christopher.fernandez.prada @ umontreal.ca; Guillermo Daniel Alonso, ; Arunima Biswas,
| | - Arunima Biswas
- Molecular Cell Biology Laboratory, Deptartment of Zoology, University of Kalyani, Kalyani, India
- *Correspondence: Arijit Bhattacharya, ; Christopher Fernandez-Prada, christopher.fernandez.prada @ umontreal.ca; Guillermo Daniel Alonso, ; Arunima Biswas,
| |
Collapse
|
14
|
Das S. Analysis of domain organization and functional signatures of trypanosomatid keIF4Gs. Mol Cell Biochem 2022; 477:2415-2431. [PMID: 35585276 DOI: 10.1007/s11010-022-04464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
Translation initiation is the first step in three essential processes leading to protein synthesis. It is carried out by proteins called translation initiation factors and ribosomes on the mRNA. One of the critical translation initiation factors in eukaryotes is eIF4G which is a scaffold protein that helps assemble translation initiation complexes that carry out translation initiation which ultimately leads to polypeptide synthesis. Trypanosomatids are a large family of kinetoplastids, some of which are protozoan parasites that cause diseases in humans through transmission by vectors. While the protein translation mechanisms in eukaryotes and prokaryotes are well understood, the protein translation factors and mechanisms in trypanosomatids are poorly understood necessitating further studies. Unlike other eukaryotes, trypanosomatids contain five eIF4G orthologues with diversity in length and sequences. Here, I have used bioinformatics tools to look at trypanosomatid keIF4G orthologue sequences and report that there are similarities and considerable differences in their domains/motifs organization and signature amino acid sequences that are required for different functions as compared to human eIF4G. My analysis suggests that there is likely to be considerable diversity and complexity in trypanosomatid keIF4G functions as compared to other eukaryotes.
Collapse
Affiliation(s)
- Supratik Das
- Infection and Immunology, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India.
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO Box #04, Faridabad, Haryana, 121001, India.
| |
Collapse
|
15
|
Scattolini A, Lavatelli A, Vacchina P, Lambruschi DA, Mansilla MC, Uttaro AD. Functional characterization of the first lipoyl-relay pathway from a parasitic protozoan. Mol Microbiol 2022; 117:1352-1365. [PMID: 35484915 DOI: 10.1111/mmi.14913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
Lipoic acid (LA) is a sulfur-containing cofactor covalently attached to key enzymes of central metabolism in prokaryotes and eukaryotes. LA can be acquired by scavenging, mediated by a lipoate ligase, or de novo synthesized by a pathway requiring an octanoyltransferase and a lipoate synthase. A more complex pathway, referred to as "lipoyl-relay", requires two additional proteins, GcvH, the glycine cleavage system H subunit, and an amidotransferase. This route was described so far in Bacillus subtilis and related Gram positive bacteria, Saccharomyces cerevisiae, Homo sapiens and Caenorhabditis elegans. Using collections of S. cerevisiae and B. subtilis mutants, defective in LA metabolism, we gathered evidence that allow us to propose for the first time that lipoyl-relay pathways are also present in parasitic protozoa. By a reverse genetic approach, we assigned octanoyltransferase and amidotransferase activity to the products of Tb927.11.9390 (TblipT) and Tb927.8.630 (TblipL) genes of Trypanosoma brucei, respectively. The B. subtilis model allowed us to identify the parasite amidotransferase as the target of lipoate analogues like 8-bromo octanoic acid, explaining the complete loss of protein lipoylation and growth impairment caused by this compound in T. cruzi. This model could be instrumental for the screening of selective and more efficient chemotherapies against trypanosomiases.
Collapse
Affiliation(s)
- Albertina Scattolini
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Ocampo y Esmeralda, Predio CONICET (S2000FHQ) Rosario, Argentina
| | - Antonela Lavatelli
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas.,Consejo Superior de Investigaciones Científicas, Centre for Research in Agricultural Genomics
| | - Paola Vacchina
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas
| | - Daniel A Lambruschi
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas
| | - María C Mansilla
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Ocampo y Esmeralda, Predio CONICET (S2000FHQ) Rosario, Argentina
| | - Antonio D Uttaro
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Ocampo y Esmeralda, Predio CONICET (S2000FHQ) Rosario, Argentina
| |
Collapse
|
16
|
Potential of Triterpenic Natural Compound Betulinic Acid for Neglected Tropical Diseases New Treatments. Biomedicines 2022; 10:biomedicines10040831. [PMID: 35453582 PMCID: PMC9027248 DOI: 10.3390/biomedicines10040831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
Neglected tropical diseases are one of the most important public health problems in many countries around the world. Among them are leishmaniasis, Chagas disease, and malaria, which contribute to more than 250 million infections worldwide. There is no validated vaccine to prevent these infections and the treatments available are obsolete, highly toxic, and non-effective due to parasitic drug resistance. Additionally, there is a high incidence of these diseases, and they may require hospitalization, which is expensive to the public health systems. Therefore, there is an urgent need to develop new treatments to improve the management of infected people, control the spread of resistant strains, and reduce health costs. Betulinic acid (BA) is a triterpene natural product which has shown antiparasitic activity against Leishmania, Trypanosoma cruzi, and Plasmodium. Here, we review the main results regarding the in vitro and in vivo pharmacological activity of BA and its derivatives against these parasites. Some chemical modifications of BA have been shown to improve its activities against the parasites. Further improvement on studies of drug-derived, as well as structure–activity relationship, are necessary for the development of new betulinic acid-based treatments.
Collapse
|
17
|
Durão R, Ramalhete C, Madureira AM, Mendes E, Duarte N. Plant Terpenoids as Hit Compounds against Trypanosomiasis. Pharmaceuticals (Basel) 2022; 15:ph15030340. [PMID: 35337138 PMCID: PMC8951850 DOI: 10.3390/ph15030340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
Human African trypanosomiasis (sleeping sickness) and American trypanosomiasis (Chagas disease) are vector-borne neglected tropical diseases, caused by the protozoan parasites Trypanosoma brucei and Trypanosoma cruzi, respectively. These diseases were circumscribed to South American and African countries in the past. However, human migration, military interventions, and climate changes have had an important effect on their worldwide propagation, particularly Chagas disease. Currently, the treatment of trypanosomiasis is not ideal, becoming a challenge in poor populations with limited resources. Exploring natural products from higher plants remains a valuable approach to find new hits and enlarge the pipeline of new drugs against protozoal human infections. This review covers the recent studies (2016–2021) on plant terpenoids, and their semi-synthetic derivatives, which have shown promising in vitro and in vivo activities against Trypanosoma parasites.
Collapse
Affiliation(s)
- Raquel Durão
- Research Institute for Medicines (iMED.Ulisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.D.); (C.R.); (A.M.M.); (E.M.)
| | - Cátia Ramalhete
- Research Institute for Medicines (iMED.Ulisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.D.); (C.R.); (A.M.M.); (E.M.)
- ATLANTICA—Instituto Universitário, Fábrica da Pólvora de Barcarena, 2730-036 Barcarena, Portugal
| | - Ana Margarida Madureira
- Research Institute for Medicines (iMED.Ulisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.D.); (C.R.); (A.M.M.); (E.M.)
| | - Eduarda Mendes
- Research Institute for Medicines (iMED.Ulisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.D.); (C.R.); (A.M.M.); (E.M.)
| | - Noélia Duarte
- Research Institute for Medicines (iMED.Ulisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.D.); (C.R.); (A.M.M.); (E.M.)
- Correspondence:
| |
Collapse
|
18
|
Cohen A, Azas N. Challenges and Tools for In Vitro Leishmania Exploratory Screening in the Drug Development Process: An Updated Review. Pathogens 2021; 10:1608. [PMID: 34959563 PMCID: PMC8703296 DOI: 10.3390/pathogens10121608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Leishmaniases are a group of vector-borne diseases caused by infection with the protozoan parasites Leishmania spp. Some of them, such as Mediterranean visceral leishmaniasis, are zoonotic diseases transmitted from vertebrate to vertebrate by a hematophagous insect, the sand fly. As there is an endemic in more than 90 countries worldwide, this complex and major health problem has different clinical forms depending on the parasite species involved, with the visceral form being the most worrying since it is fatal when left untreated. Nevertheless, currently available antileishmanial therapies are significantly limited (low efficacy, toxicity, adverse side effects, drug-resistance, length of treatment, and cost), so there is an urgent need to discover new compounds with antileishmanial activity, which are ideally inexpensive and orally administrable with few side effects and a novel mechanism of action. Therefore, various powerful approaches were recently applied in many interesting antileishmanial drug development programs. The objective of this review is to focus on the very first step in developing a potential drug and to identify the exploratory methods currently used to screen in vitro hit compounds and the challenges involved, particularly in terms of harmonizing the results of work carried out by different research teams. This review also aims to identify innovative screening tools and methods for more extensive use in the drug development process.
Collapse
Affiliation(s)
- Anita Cohen
- IHU Méditerranée Infection, Aix Marseille University, IRD (Institut de Recherche pour le Développement), AP-HM (Assistance Publique—Hôpitaux de Marseille), SSA (Service de Santé des Armées), VITROME (Vecteurs—Infections Tropicales et Méditerranéennes), 13005 Marseille, France;
| | | |
Collapse
|
19
|
Olías-Molero AI, de la Fuente C, Cuquerella M, Torrado JJ, Alunda JM. Antileishmanial Drug Discovery and Development: Time to Reset the Model? Microorganisms 2021; 9:2500. [PMID: 34946102 PMCID: PMC8703564 DOI: 10.3390/microorganisms9122500] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 01/27/2023] Open
Abstract
Leishmaniasis is a vector-borne parasitic disease caused by Leishmania species. The disease affects humans and animals, particularly dogs, provoking cutaneous, mucocutaneous, or visceral processes depending on the Leishmania sp. and the host immune response. No vaccine for humans is available, and the control relies mainly on chemotherapy. However, currently used drugs are old, some are toxic, and the safer presentations are largely unaffordable by the most severely affected human populations. Moreover, its efficacy has shortcomings, and it has been challenged by the growing reports of resistance and therapeutic failure. This manuscript presents an overview of the currently used drugs, the prevailing model to develop new antileishmanial drugs and its low efficiency, and the impact of deconstruction of the drug pipeline on the high failure rate of potential drugs. To improve the predictive value of preclinical research in the chemotherapy of leishmaniasis, several proposals are presented to circumvent critical hurdles-namely, lack of common goals of collaborative research, particularly in public-private partnership; fragmented efforts; use of inadequate surrogate models, especially for in vivo trials; shortcomings of target product profile (TPP) guides.
Collapse
Affiliation(s)
- Ana Isabel Olías-Molero
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.I.O.-M.); (C.d.l.F.); (M.C.)
| | - Concepción de la Fuente
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.I.O.-M.); (C.d.l.F.); (M.C.)
| | - Montserrat Cuquerella
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.I.O.-M.); (C.d.l.F.); (M.C.)
| | - Juan J. Torrado
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - José M. Alunda
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.I.O.-M.); (C.d.l.F.); (M.C.)
| |
Collapse
|
20
|
Zulfiqar B, Avery VM. Assay development in leishmaniasis drug discovery: a comprehensive review. Expert Opin Drug Discov 2021; 17:151-166. [PMID: 34818139 DOI: 10.1080/17460441.2022.2002843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Cutaneous, muco-cutaneous and visceral leishmaniasis occur due to an infection with the protozoan parasite Leishmania. The current therapeutic options are limited mainly due to extensive toxicity, emerging resistance and variation in efficacy based on species and strain of the Leishmania parasite. There exists a high unmet medical need to identify new chemical starting points for drug discovery to tackle the disease. AREAS COVERED The authors have highlighted the recent progress, limitations and successes achieved in assay development for leishmaniasis drug discovery. EXPERT OPINION It is true that sophisticated and robust phenotypic in vitro assays have been developed during the last decade, however limitations and challenges remain with respect to variation in activity reported between different research groups and success in translating in vitro outcomes in vivo. The variability is not only due to strain and species differences but also a lack of well-defined criteria and assay conditions, e.g. culture media, host cell type, assay formats, parasite form used, multiplicity of infection and incubation periods. Thus, there is an urgent need for more physiologically relevant assays that encompass multi-species phenotypic approaches to identify new chemical starting points for leishmaniasis drug discovery.
Collapse
Affiliation(s)
- Bilal Zulfiqar
- Discovery Biology, Griffith University, Brisbane, Australia
| | - Vicky M Avery
- Discovery Biology, Griffith University, Brisbane, Australia.,Discovery Biology, Griffith University Drug Discovery Programme for Cancer Therapeutics, Brisbane, Australia.,School of Environment and Sciences, Griffith University, Brisbane, Australia
| |
Collapse
|
21
|
Racané L, Rep V, Kraljević Pavelić S, Grbčić P, Zonjić I, Radić Stojković M, Taylor MC, Kelly JM, Raić-Malić S. Synthesis, antiproliferative and antitrypanosomal activities, and DNA binding of novel 6-amidino-2-arylbenzothiazoles. J Enzyme Inhib Med Chem 2021; 36:1952-1967. [PMID: 34455887 PMCID: PMC8409973 DOI: 10.1080/14756366.2021.1959572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
A series of 6-amidinobenzothiazoles, linked via phenoxymethylene or directly to the 1,2,3-triazole ring with a p-substituted phenyl or benzyl moiety, were synthesised and evaluated in vitro against four human tumour cell lines and the protozoan parasite Trypanosoma brucei. The influence of the type of amidino substituent and phenoxymethylene linker on antiproliferative and antitrypanosomal activities was observed, showing that the imidazoline moiety had a major impact on both activities. Benzothiazole imidazoline 14a, which was directly connected to N-1-phenyl-1,2,3-triazole, had the most potent growth-inhibitory effect (IC50 = 0.25 µM) on colorectal adenocarcinoma (SW620), while benzothiazole imidazoline 11b, containing a phenoxymethylene linker, exhibited the best antitrypanosomal potency (IC90 = 0.12 µM). DNA binding assays showed a non-covalent interaction of 6-amidinobenzothiazole ligands, indicating both minor groove binding and intercalation modes of DNA interaction. Our findings encourage further development of novel structurally related 6-amidino-2-arylbenzothiazoles to obtain more selective anticancer and anti-HAT agents.
Collapse
Affiliation(s)
- Livio Racané
- Faculty of Textile Technology, Department of Applied Chemistry, University of Zagreb, Zagreb, Croatia
| | - Valentina Rep
- Faculty of Chemical Engineering and Technology, Department of Organic Chemistry, University of Zagreb, Zagreb, Croatia
| | | | - Petra Grbčić
- Faculty of Health Studies, University of Rijeka, Rijeka, Croatia
| | - Iva Zonjić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Martin C Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - John M Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Silvana Raić-Malić
- Faculty of Chemical Engineering and Technology, Department of Organic Chemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
22
|
Rosa-Teijeiro C, Wagner V, Corbeil A, d'Annessa I, Leprohon P, do Monte-Neto RL, Fernandez-Prada C. Three different mutations in the DNA topoisomerase 1B in Leishmania infantum contribute to resistance to antitumor drug topotecan. Parasit Vectors 2021; 14:438. [PMID: 34454601 PMCID: PMC8399852 DOI: 10.1186/s13071-021-04947-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/11/2021] [Indexed: 11/30/2022] Open
Abstract
Background The evolution of drug resistance is one of the biggest challenges in leishmaniasis and has prompted the need for new antileishmanial drugs. Repurposing of approved drugs is a faster and very attractive strategy that is gaining supporters worldwide. Different anticancer topoisomerase 1B (TOP1B) inhibitors have shown strong antileishmanial activity and promising selective indices, supporting the potential repurposing of these drugs. However, cancer cells and Leishmania share the ability to become rapidly resistant. The aim of this study was to complete a whole-genome exploration of the effects caused by exposure to topotecan in order to highlight the potential mechanisms deployed by Leishmania to favor its survival in the presence of a TOP1B inhibitor. Methods We used a combination of stepwise drug resistance selection, whole-genome sequencing, functional validation, and theoretical approaches to explore the propensity of and potential mechanisms deployed by three independent clones of L. infantum to resist the action of TOP1B inhibitor topotecan. Results We demonstrated that L. infantum is capable of becoming resistant to high concentrations of topotecan without impaired growth ability. No gene deletions or amplifications were identified from the next-generation sequencing data in any of the three resistant lines, ruling out the overexpression of efflux pumps as the preferred mechanism of topotecan resistance. We identified three different mutations in the large subunit of the leishmanial TOP1B (Top1BF187Y, Top1BG191A, and Top1BW232R). Overexpression of these mutated alleles in the wild-type background led to high levels of resistance to topotecan. Computational molecular dynamics simulations, in both covalent and non-covalent complexes, showed that these mutations have an effect on the arrangement of the catalytic pentad and on the interaction of these residues with surrounding amino acids and DNA. This altered architecture of the binding pocket results in decreased persistence of topotecan in the ternary complex. Conclusions This work helps elucidate the previously unclear potential mechanisms of topotecan resistance in Leishmania by mutations in the large subunit of TOP1B and provides a valuable clue for the design of improved inhibitors to combat resistance in both leishmaniasis and cancer. Our data highlights the importance of including drug resistance evaluation in drug discovery cascades. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04947-4.
Collapse
Affiliation(s)
- Chloé Rosa-Teijeiro
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.,The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Victoria Wagner
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.,The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Audrey Corbeil
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.,The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Ilda d'Annessa
- Medtronic EMEA, Study and Scientific Solutions, Milan, Italy
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Quebec City, Canada
| | | | - Christopher Fernandez-Prada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada. .,The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada. .,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|
23
|
Silva GLA, Tosi LRO, McCulloch R, Black JA. Unpicking the Roles of DNA Damage Protein Kinases in Trypanosomatids. Front Cell Dev Biol 2021; 9:636615. [PMID: 34422791 PMCID: PMC8377203 DOI: 10.3389/fcell.2021.636615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 07/13/2021] [Indexed: 12/31/2022] Open
Abstract
To preserve genome integrity when faced with DNA lesions, cells activate and coordinate a multitude of DNA repair pathways to ensure timely error correction or tolerance, collectively called the DNA damage response (DDR). These interconnecting damage response pathways are molecular signal relays, with protein kinases (PKs) at the pinnacle. Focused efforts in model eukaryotes have revealed intricate aspects of DNA repair PK function, including how they direct DDR pathways and how repair reactions connect to wider cellular processes, including DNA replication and transcription. The Kinetoplastidae, including many parasites like Trypanosoma spp. and Leishmania spp. (causative agents of debilitating, neglected tropical infections), exhibit peculiarities in several core biological processes, including the predominance of multigenic transcription and the streamlining or repurposing of DNA repair pathways, such as the loss of non-homologous end joining and novel operation of nucleotide excision repair (NER). Very recent studies have implicated ATR and ATM kinases in the DDR of kinetoplastid parasites, whereas DNA-dependent protein kinase (DNA-PKcs) displays uncertain conservation, questioning what functions it fulfills. The wide range of genetic manipulation approaches in these organisms presents an opportunity to investigate DNA repair kinase roles in kinetoplastids and to ask if further kinases are involved. Furthermore, the availability of kinase inhibitory compounds, targeting numerous eukaryotic PKs, could allow us to test the suitability of DNA repair PKs as novel chemotherapeutic targets. Here, we will review recent advances in the study of trypanosomatid DNA repair kinases.
Collapse
Affiliation(s)
- Gabriel L A Silva
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz R O Tosi
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Jennifer Ann Black
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
24
|
Morelle C, Mukherjee A, Zhang J, Fani F, Khandelwal A, Gingras H, Trottier J, Barbier O, Leprohon P, Burke MD, Ouellette M. Well-Tolerated Amphotericin B Derivatives That Effectively Treat Visceral Leishmaniasis. ACS Infect Dis 2021; 7:2472-2482. [PMID: 34282886 DOI: 10.1021/acsinfecdis.1c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemotherapy against the neglected tropical disease visceral leishmaniasis (VL) is suboptimal with only four licensed drugs. Amphotericin B (AmB), despite its toxicity, remained a second line drug for a long time. However, the demonstration that liposomal AmB is highly effective against VL propelled it, despite its cost, to a first line drug in many countries. While several ongoing efforts are aiming at finding cheaper and stable AmB-formulations, an alternative strategy is the development of less-toxic AmB derivatives. We show here that two less-toxic AmB derivatives with the carboxylate at position 16 of AmB derivatized to a methyl urea (AmB-MU) or amino urea (AmB-AU) are active in vitro against Leishmania donovani, both as free-living parasites as well as their intracellular form. Both less-toxic derivatives, similarly to AmB, target the ergosterol pathway of L. donovani. While the AmB-AU derivative showed female-specific liver toxicity in vivo, the AmB-MU derivative was well-tolerated and more effective than AmB against experimental VL. These studies are an important step for improving AmB-based therapy against a prevalent parasitic disease.
Collapse
Affiliation(s)
- Christelle Morelle
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec, Centre de Recherche en Infectiologie, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Angana Mukherjee
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec, Centre de Recherche en Infectiologie, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Jiabao Zhang
- Department of Chemistry, Department of Biochemistry, Arnold and Mabel Beckman Institute, Carle Illinois College of Medicine, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Fereshteh Fani
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec, Centre de Recherche en Infectiologie, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Anuj Khandelwal
- Department of Chemistry, Department of Biochemistry, Arnold and Mabel Beckman Institute, Carle Illinois College of Medicine, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Hélène Gingras
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec, Centre de Recherche en Infectiologie, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Jocelyn Trottier
- Laboratory of Molecular Pharmacology, Endocrinology-Nephrology Axis, Centre de Recherche du CHU de Québec, Faculty of Pharmacy, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, Endocrinology-Nephrology Axis, Centre de Recherche du CHU de Québec, Faculty of Pharmacy, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Philippe Leprohon
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec, Centre de Recherche en Infectiologie, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Martin D. Burke
- Department of Chemistry, Department of Biochemistry, Arnold and Mabel Beckman Institute, Carle Illinois College of Medicine, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Marc Ouellette
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec, Centre de Recherche en Infectiologie, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 4G2,Canada
| |
Collapse
|
25
|
Domínguez-Asenjo B, Gutiérrez-Corbo C, Pérez-Pertejo Y, Iborra S, Balaña-Fouce R, Reguera RM. Bioluminescent Imaging Identifies Thymus, As Overlooked Colonized Organ, in a Chronic Model of Leishmania donovani Mouse Visceral Leishmaniasis. ACS Infect Dis 2021; 7:871-883. [PMID: 33739807 DOI: 10.1021/acsinfecdis.0c00864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The search for new drugs against neglected parasitic diseases has experienced a major boost in recent years with the incorporation of bioimaging techniques. Visceral leishmaniasis, the second more neglected disease in the world, has effective treatments but with several disadvantages that make the search for new therapeutic solutions an urgent task. Animal models of visceral leishmaniasis that resemble the human disease have the disadvantage of using hamsters, which are an outbred breeding animal too large to obtain acceptable images with current bioimaging methodologies. Mouse models of visceral leishmaniasis seem, however, to be more suitable for early (acute) stages of the disease, but not for chronic ones. In our work, we describe a chronic Balb/c mouse model in which the infection primarily colonizes the spleen and well recreates the late stages of human disease. Thanks to the bioluminescent image, we have been able to identify experimentally, for the first time, a new primary lymphoid organ of colonization, the thymus, which appears infected from the beginning until the late phases of the infection.
Collapse
Affiliation(s)
- Bárbara Domínguez-Asenjo
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Camino Gutiérrez-Corbo
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Yolanda Pérez-Pertejo
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain
| | - Rafael Balaña-Fouce
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Rosa M. Reguera
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| |
Collapse
|
26
|
Chan-Bacab MJ, Reyes-Estebanez MM, Camacho-Chab JC, Ortega-Morales BO. Microorganisms as a Potential Source of Molecules to Control Trypanosomatid Diseases. Molecules 2021; 26:molecules26051388. [PMID: 33806654 PMCID: PMC7962016 DOI: 10.3390/molecules26051388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022] Open
Abstract
Trypanosomatids are the causative agents of leishmaniasis and trypanosomiasis, which affect about 20 million people in the world’s poorest countries, leading to 95,000 deaths per year. They are often associated with malnutrition, weak immune systems, low quality housing, and population migration. They are generally recognized as neglected tropical diseases. New drugs against these parasitic protozoa are urgently needed to counteract drug resistance, toxicity, and the high cost of commercially available drugs. Microbial bioprospecting for new molecules may play a crucial role in developing a new generation of antiparasitic drugs. This article reviews the current state of the available literature on chemically defined metabolites of microbial origin that have demonstrated antitrypanosomatid activity. In this review, bacterial and fungal metabolites are presented; they originate from a range of microorganisms, including cyanobacteria, heterotrophic bacteria, and filamentous fungi. We hope to provide a useful overview for future research to identify hits that may become the lead compounds needed to accelerate the discovery of new drugs against trypanosomatids.
Collapse
|
27
|
Antiprotozoal Compounds from Urolepis hecatantha (Asteraceae). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6622894. [PMID: 33628303 PMCID: PMC7895558 DOI: 10.1155/2021/6622894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/19/2022]
Abstract
The dewaxed dichloromethane extract of Urolepis hecatantha and the compounds isolated from it were tested for their in vitro activity on Trypanosoma cruzi epimastigotes and Leishmania infantum promastigotes. The extract of U. hecatantha showed activity against both parasites with IC50 values of 7 µg/mL and 31 µg/mL, respectively. Fractionation of the dichloromethane extract led to the isolation of euparin, jaceidin, santhemoidin C, and eucannabinolide. The sesquiterpene lactones eucannabinolide and santhemoidin C were active on T. cruzi with IC50 values of 10 ± 2 µM (4.2 µg/mL) and 18 ± 3 µM (7.6 µg/mL), respectively. Euparin and santhemoidin C were the most active on L. infantum with IC50 values of 18 ± 4 µM (3.9 µg/mL) and 19 ± 4 µM (8.0 µg/mL), respectively. Eucannabinolide has also shown drug-like pharmacokinetic and toxicity properties.
Collapse
|
28
|
Silva DKC, Teixeira JS, Moreira DRM, da Silva TF, Barreiro EJDL, de Freitas HF, Pita SSDR, Teles ALB, Guimarães ET, Soares MBP. In Vitro, In Vivo and In Silico Effectiveness of LASSBio-1386, an N-Acyl Hydrazone Derivative Phosphodiesterase-4 Inhibitor, Against Leishmania amazonensis. Front Pharmacol 2021; 11:590544. [PMID: 33390966 PMCID: PMC7772393 DOI: 10.3389/fphar.2020.590544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022] Open
Abstract
Leishmaniasis are group of neglected diseases with worldwide distribution that affect about 12 million people. The current treatment is limited and may cause severe adverse effects, and thus, the search for new drugs more effective and less toxic is relevant. We have previously investigated the immunomodulatory effects of LASSBio-1386, an N-acylhydrazone derivative. Here we investigated the in vitro and in vivo activity of LASSBio-1386 against L. amazonensis. LASSBio-1386 inhibited the proliferation of promastigotes of L. amazonensis (EC50 = 2.4 ± 0.48 µM), while presenting low cytotoxicity to macrophages (CC50 = 74.1 ± 2.9 µM). In vitro incubation with LASSBio-1386 reduced the percentage of Leishmania-infected macrophages and the number of intracellular parasites (EC50 = 9.42 ± 0.64 µM). Also, in vivo treatment of BALB/c mice infected with L. amazonensis resulted in a decrease of lesion size, parasitic load and caused histopathological alterations, when compared to vehicle-treated control. Moreover, LASSBio-1386 caused ultrastructural changes, arrested cell cycle in G0/G1 phase and did not alter the membrane mitochondrial potential of L. amazonensis. Aiming to its possible molecular interactions, we performed docking and molecular dynamics studies on Leishmania phosphodiesterase B1 (PDB code: 2R8Q) and LASSBio-1386. The computational analyses suggest that LASSBio-1386 acts against Leishmania through the modulation of leishmanial PDE activity. In conclusion, our results indicate that LASSBio-1386 is a promising candidate for the development of new leishmaniasis treatment.
Collapse
Affiliation(s)
- Dahara Keyse Carvalho Silva
- Departamento de Ciências da Vida, Núcleo de Estudo e Pesquisa em Histopatologia, Universidade Estadual da Bahia (UNEB), Salvador, Brazil.,Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Jessicada Silva Teixeira
- Departamento de Ciências da Vida, Núcleo de Estudo e Pesquisa em Histopatologia, Universidade Estadual da Bahia (UNEB), Salvador, Brazil.,Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Diogo Rodrigo Magalhães Moreira
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Tiago Fernandes da Silva
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Eliezer Jesus de Lacerda Barreiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Humberto Fonseca de Freitas
- Laboratório de Bioinformática e Modelagem Molecular (LaBiMM), Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Brazil
| | - Samuel Silva da Rocha Pita
- Laboratório de Bioinformática e Modelagem Molecular (LaBiMM), Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Brazil
| | - André Lacerda Braga Teles
- Departamento de Ciências da Vida, Laboratório de Modelagem Molecular Medicinal e Toxicológica, Universidade Estadual da Bahia (UNEB), Salvador, Brazil
| | - Elisalva Teixeira Guimarães
- Departamento de Ciências da Vida, Núcleo de Estudo e Pesquisa em Histopatologia, Universidade Estadual da Bahia (UNEB), Salvador, Brazil.,Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Milena Botelho Pereira Soares
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Instituto Senai de Inovação em Sistemas Avançados em Saúde, Senai/Cimatec, Salvador, Brazil
| |
Collapse
|
29
|
Piñeyro MD, Arias D, Parodi-Talice A, Guerrero S, Robello C. Trypanothione Metabolism as Drug Target for Trypanosomatids. Curr Pharm Des 2021; 27:1834-1846. [PMID: 33308115 DOI: 10.2174/1381612826666201211115329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
Chagas Disease, African sleeping sickness, and leishmaniasis are neglected diseases caused by pathogenic trypanosomatid parasites, which have a considerable impact on morbidity and mortality in poor countries. The available drugs used as treatment have high toxicity, limited access, and can cause parasite drug resistance. Long-term treatments, added to their high toxicity, result in patients that give up therapy. Trypanosomatids presents a unique trypanothione based redox system, which is responsible for maintaining the redox balance. Therefore, inhibition of these essential and exclusive parasite's metabolic pathways, absent from the mammalian host, could lead to the development of more efficient and safe drugs. The system contains different redox cascades, where trypanothione and tryparedoxins play together a central role in transferring reduced power to different enzymes, such as 2-Cys peroxiredoxins, non-selenium glutathione peroxidases, ascorbate peroxidases, glutaredoxins and methionine sulfoxide reductases, through NADPH as a source of electrons. There is sufficient evidence that this complex system is essential for parasite survival and infection. In this review, we explore what is known in terms of essentiality, kinetic and structural data, and the development of inhibitors of enzymes from this trypanothione-based redox system. The recent advances and limitations in the development of lead inhibitory compounds targeting these enzymes have been discussed. The combination of molecular biology, bioinformatics, genomics, and structural biology is fundamental since the knowledge of unique features of the trypanothione-dependent system will provide tools for rational drug design in order to develop better treatments for these diseases.
Collapse
Affiliation(s)
| | - Diego Arias
- Instituto de Agrobiotecnologia del Litoral y Facultad de Bioquimica y Ciencias Biologicas, CONICET-UNL, Santa F, Argentina
| | | | - Sergio Guerrero
- Instituto de Agrobiotecnologia del Litoral y Facultad de Bioquimica y Ciencias Biologicas, CONICET-UNL, Santa F, Argentina
| | - Carlos Robello
- Unidad de Biologia Molecular, Instituto Pasteur Montevideo, Montevideo, Uruguay
| |
Collapse
|
30
|
Sear CE, Pieper P, Amaral M, Romanelli MM, Costa-Silva TA, Haugland MM, Tate JA, Lago JHG, Tempone AG, Anderson EA. Synthesis and Structure-Activity Relationship of Dehydrodieugenol B Neolignans against Trypanosoma cruzi. ACS Infect Dis 2020; 6:2872-2878. [PMID: 33047947 PMCID: PMC7670487 DOI: 10.1021/acsinfecdis.0c00523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas disease, which affects over seven million people, especially in developing countries. Undesirable side effects are frequently associated with current therapies, which are typically ineffective in the treatment of all stages of the disease. Here, we report the first synthesis of the neolignan dehydrodieugenol B, a natural product recently shown to exhibit activity against T. cruzi. Using this strategy, a series of synthetic analogues were prepared to explore structure-activity relationships. The in vitro antiparasitic activities of these analogues revealed a wide tolerance of modifications and substituent deletions, with maintained or improved bioactivities against the amastigote forms of the parasite (50% inhibitory concentration (IC50) of 4-63 μM) and no mammalian toxicity (50% cytotoxic concentration (CC50) of >200 μM). Five of these analogues meet the Drugs for Neglected Disease Initiative (DNDi) "hit criteria" for Chagas disease. This work has enabled the identification of key structural features of the natural product and sites where scaffold modification is tolerated.
Collapse
Affiliation(s)
- Claire E. Sear
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Pauline Pieper
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Maiara Amaral
- Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo 01246-000, Brazil
| | - Maiara M. Romanelli
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo 01246-000, Brazil
| | - Thais A. Costa-Silva
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo 01246-000, Brazil
| | - Marius M. Haugland
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Joseph A. Tate
- Syngenta Ltd., Jealott’s Hill International Research Centre, Bracknell RG42 6EY, United Kingdom
| | - João H. G. Lago
- Centre of Natural Sciences and Humanities, Federal University of ABC (UFBC), Avenida dos Estados 5001, Santo Andre, São Paulo 09210-580, Brazil
| | - Andre G. Tempone
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo 01246-000, Brazil
| | - Edward A. Anderson
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|