1
|
Melchionda F, Pesaresi M, Alessandrini F, Onofri V, Turchi C. Developmental validation of a multiplex qPCR assay for simultaneous quantification of nuclear and mitochondrial DNA. Forensic Sci Int Genet 2024; 74:103164. [PMID: 39437496 DOI: 10.1016/j.fsigen.2024.103164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Quantification of human DNA is key in forensic genetics. A more accurate estimate of the amount of DNA is essential for planning and optimising genotyping assays, as is evaluating the presence of PCR inhibitory substances and DNA degradation status. Multiplex qPCR assays are helpful in forensics because they can quantify different targets simultaneously, thus saving valuable samples, time, and labour. The aim of this study was to highlight the challenges in the developmental validation of a multiplex real-time PCR assay and the drawbacks encountered in translating a previously described and validated assay (SD quants) to a different technology by modifying the dye probes and reagent mix to be used in a different instrument. We developed a TaqMan probe-based multiplex qPCR using reagents and fluorescent probes adapted for the Rotor-Gene 6000 instrument (QIAGEN, Hilden, Germany). The initial assay combined two mitochondrial DNA (mtDNA) and two nuclear DNA (nDNA) targets, with amplification products of different sizes (mtDNA = 69 and 143 bp; nDNA = 71 and 181 bp), to estimate the DNA degradation status and an internal positive control (IPC) to detect potential inhibitors. During the initial testing of the assay, we observed an interaction between the 69 bp mtDNA target and the 71 bp nDNA target probe, and experiments were conducted to resolve this issue without success. We removed the small nDNA target (71 bp) and changed from a 5-plex to a 4-plex qPCR assay (qMIND). The final tetraplex assay was tested on 105 forensic samples and/or small amounts of degraded DNA, such as bones, teeth, fingernails, formalin-fixed paraffin-embedded tissues (FFPE), and hair shaft samples. The quantification results were compared with data acquired from the same samples using another commercially available quantification system commonly used in forensic laboratories. In addition, the short tandem repeat (STR) profiles were investigated to determine their correlation with the quantitative values obtained. Overall, the qPCR assay was robust and reliable for DNA quantification in samples commonly used in forensic practice.
Collapse
Affiliation(s)
- Filomena Melchionda
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Via Tronto, Torrette, Ancona 60126, Italy.
| | - Mauro Pesaresi
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Via Tronto, Torrette, Ancona 60126, Italy.
| | - Federica Alessandrini
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Via Tronto, Torrette, Ancona 60126, Italy.
| | - Valerio Onofri
- Legal Medicine Unit, AOU Azienda Ospedaliera Universitaria delle Marche, Ancona, Via Conca, Torrette, Ancona 60126, Italy.
| | - Chiara Turchi
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Via Tronto, Torrette, Ancona 60126, Italy.
| |
Collapse
|
2
|
Bali GK, Cuenca D, Wallin J. Effects and considerations of multiplexing ForenSeq Kintelligence libraries with a negative control. Electrophoresis 2024; 45:852-866. [PMID: 38449358 DOI: 10.1002/elps.202300285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
The negative template control or negative amplification control has been an essential component of the forensic DNA analysis workflow that helps monitor contamination. As such, the inclusion of a negative control in forensic DNA analysis has been a requirement for all laboratories audited under the FBI's Quality Assurance Standards. As massively parallel sequencing (MPS) becomes more conventional in forensic laboratories, considerations for the inclusion of a negative control in every sequencing run can be evaluated. Although the inclusion of a negative control in library preparation and the first sequencing run has a practical function, there is less utility for its inclusion in all subsequent sequencing runs for that library preparation. Although this is universal to all MPS assays, it is most relevant for an assay that has a low sample multiplexing capacity, such as the ForenSeq Kintelligence Kit (Qiagen/Verogen, Inc.). The ForenSeq Kintelligence Kit is an investigative genetic genealogy (IGG) sequencing-based assay that targets 10,230 forensically relevant single-nucleotide polymorphisms. The manufacturer recommends multiplexing 3 libraries per sequencing run, which includes controls. The purpose of this study was to investigate the effect of the inclusion of a negative control in every Kintelligence sequencing run. We observed that the library generated from a negative amplification control will take 7%-14% of the run output. The loss of sequencing space taken by a negative control decreased the available output for DNA-containing samples, leading in some cases to allele or locus dropout and accompanying higher numbers of sixth to seventh order unknown associations in GEDmatch PRO.
Collapse
Affiliation(s)
- Gunmeet Kaur Bali
- California Department of Justice, Jan Bashinski DNA Laboratory, Richmond, California, USA
| | - Daniela Cuenca
- California Department of Justice, Jan Bashinski DNA Laboratory, Richmond, California, USA
| | - Jeanette Wallin
- California Department of Justice, Jan Bashinski DNA Laboratory, Richmond, California, USA
| |
Collapse
|
3
|
Obal M, Zupanc T, Zupanič Pajnič I. Comparison of the optimal and suboptimal quantity of mitotype libraries using next-generation sequencing. Int J Legal Med 2024; 138:395-400. [PMID: 37776378 PMCID: PMC10861744 DOI: 10.1007/s00414-023-03099-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
Optimizing analysis parameters and sample input is crucial in forensic genetics methods to generate reliable results, and even more so when working with muti-copy mitochondrial DNA (mtDNA) and low-quality samples. This study compared mitotypes based on next-generation sequencing (NGS) results derived from the same samples at two different sequencing library concentrations-30 pM and 0.3 pM. Thirty femur samples from the Second World War were used as a model for poorly preserved DNA. Quantitative PCR (qPCR) method targeting 113 bp long fragment was employed to assess the quantity of mitogenomes. HID Ion Chef™ Instrument with Precision ID mtDNA Control Region Panel was used for library preparation and templating. Sequencing was performed with Ion GeneStudio™ S5 System. Reference haplotypes were determined from sequencing samples at 30 pM library input. Haplotypes were compared between optimal (30 pM) and suboptimal (0.3 pM) library inputs. Often the difference in haplotypes was length heteroplasmy, which in line with other studies shows that this type of variant is not reliable for interpretation in forensics. Excluding length variants at positions 573, 309, and 16,193, 56.7% of the samples matched, and in two samples, no sequence was obtained at suboptimal library input. The rest of the samples differed between optimal and suboptimal library input. To conclude, genotyping and analyzing low-quantity libraries derived from low-quality aged skeletonized human remains therefore must be done with caution in forensic genetics casework.
Collapse
Affiliation(s)
- Marcel Obal
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Tomaž Zupanc
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Irena Zupanič Pajnič
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Liu G, Zheng Y, Wu Q, Feng T, Xia Y, Chen D, Ren L, Bai X, Li Q, Chen D, Lv M, Liao M, Liang W, Zhang L, Qu S. Assessment of ForenSeq mtDNA Whole Genome Kit for forensic application. Int J Legal Med 2023; 137:1693-1703. [PMID: 37731065 DOI: 10.1007/s00414-023-03084-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Mitochondrial DNA (mtDNA) is an indispensable genetic marker in forensic genetics. The emergence and development of massively parallel sequencing (MPS) makes it possible to obtain complete mitochondrial genome sequences more quickly and accurately. The study evaluated the advantages and limitations of the ForenSeq mtDNA Whole Genome Kit in the practical application of forensic genetics by detecting human genomic DNA standards and thirty-three case samples. We used control DNA with different amount to determine sensitivity of the assay. Even when the input DNA is as low as 2.5 pg, most of the mitochondrial genome sequences could still be covered. For the detection of buccal swabs and aged case samples (bloodstains, bones, teeth), most samples could achieve complete coverage of mitochondrial genome. However, when ancient samples and hair samples without hair follicles were sequenced by the kit, it failed to obtain sequence information. In general, the ForenSeq mtDNA Whole Genome Kit has certain applicability to forensic low template and degradation samples, and these results provide the data basis for subsequent forensic applications of the assay. The overall detection process and subsequent analysis are easy to standardize, and it has certain application potential in forensic cases.
Collapse
Affiliation(s)
- Guihong Liu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yazi Zheng
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Qiushuo Wu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Tao Feng
- Criminal Investigation Bureau, Chengdu Public Security Bureau, Criminal Science and Technology Division, Chengdu, 610000, Sichuan, China
| | - Yu Xia
- Criminal Investigation Bureau, Chengdu Public Security Bureau, Criminal Science and Technology Division, Chengdu, 610000, Sichuan, China
| | - Dan Chen
- Criminal Investigation Bureau, Chengdu Public Security Bureau, Criminal Science and Technology Division, Chengdu, 610000, Sichuan, China
| | - Li Ren
- Criminal Investigation Bureau, Chengdu Public Security Bureau, Criminal Science and Technology Division, Chengdu, 610000, Sichuan, China
| | - Xiaogang Bai
- Criminal Investigation Bureau, Chengdu Public Security Bureau, Criminal Science and Technology Division, Chengdu, 610000, Sichuan, China
| | - Qingqing Li
- Criminal Investigation Bureau, Chengdu Public Security Bureau, Criminal Science and Technology Division, Chengdu, 610000, Sichuan, China
| | - Dezhi Chen
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Meili Lv
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Miao Liao
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Lin Zhang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China.
| | - Shengqiu Qu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Obal M, Zupanc T, Zupanič Pajnič I. Measure quantity of mitochondrial DNA in aged bones or calculate it from nuclear DNA quantitative PCR results? Int J Legal Med 2023; 137:1653-1659. [PMID: 37558822 PMCID: PMC10567894 DOI: 10.1007/s00414-023-03074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
Mitochondrial DNA (mtDNA) is of great value in forensics to procure information about a person when a next of kin, personal belongings, or other sources of nuclear DNA (nDNA) are unavailable, or nDNA is lacking in quality and quantity. The quality and reliability of the results depend greatly on ensuring optimal conditions for the given method, for instance, the optimal input of the copy number (CN) in next-generation sequencing (NGS) methods. The unavailability of commercial quantitative PCR (qPCR) methods to determine mtDNA CN creates the necessity to rely on recommendations to infer mtDNA CN from nDNA yield. Because nDNA yield varies between individuals, tissues, parts of the same tissue, and because mtDNA CN varies between tissues, such assumptions must be examined for a specific context, rather than be generalized. This study compares mtDNA CN calculated from nDNA yield and qPCR measured mtDNA CN. Seventy-five femurs from the Second World War victims were used as samples; they were cut below the greater trochanter, surface contaminants were removed by mechanical and chemical cleaning, samples were fully demineralized, and DNA was isolated. PowerQuant® Kit (Promega) was used to analyze DNA yield. An in-house method was used to determine mtDNA CN. Comparison of mtDNA CN from nDNA derived calculations and measured mtDNA CN highlighted vast differences. The results emphasize the need to perform qPCR to assess mtDNA CN before NGS analyses of aged bones' mitogenomes rather than estimating mtDNA CN from nDNA yield to ensure the quality and reliability of the results of NGS analysis.
Collapse
Affiliation(s)
- Marcel Obal
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Tomaž Zupanc
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Irena Zupanič Pajnič
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Sturk-Andreaggi K, Bodner M, Ring JD, Ameur A, Gyllensten U, Parson W, Marshall C, Allen M. Complete Mitochondrial DNA Genome Variation in the Swedish Population. Genes (Basel) 2023; 14:1989. [PMID: 38002932 PMCID: PMC10671102 DOI: 10.3390/genes14111989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
The development of complete mitochondrial genome (mitogenome) reference data for inclusion in publicly available population databases is currently underway, and the generation of more high-quality mitogenomes will only enhance the statistical power of this forensically useful locus. To characterize mitogenome variation in Sweden, the mitochondrial DNA (mtDNA) reads from the SweGen whole genome sequencing (WGS) dataset were analyzed. To overcome the interference from low-frequency nuclear mtDNA segments (NUMTs), a 10% variant frequency threshold was applied for the analysis. In total, 934 forensic-quality mitogenome haplotypes were characterized. Almost 45% of the SweGen haplotypes belonged to haplogroup H. Nearly all mitogenome haplotypes (99.1%) were assigned to European haplogroups, which was expected based on previous mtDNA studies of the Swedish population. There were signature northern Swedish and Finnish haplogroups observed in the dataset (e.g., U5b1, W1a), consistent with the nuclear DNA analyses of the SweGen data. The complete mitogenome analysis resulted in high haplotype diversity (0.9996) with a random match probability of 0.15%. Overall, the SweGen mitogenomes provide a large mtDNA reference dataset for the Swedish population and also contribute to the effort to estimate global mitogenome haplotype frequencies.
Collapse
Affiliation(s)
- Kimberly Sturk-Andreaggi
- Department of Immunology Genetics and Pathology, Uppsala University, 751 08 Uppsala, Sweden; (A.A.); (U.G.)
- Armed Forces Medical Examiner System’s Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, DE 19902, USA (C.M.)
- SNA International, LLC, Alexandria, VI 22314, USA
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.B.); (W.P.)
| | - Joseph D. Ring
- Armed Forces Medical Examiner System’s Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, DE 19902, USA (C.M.)
- SNA International, LLC, Alexandria, VI 22314, USA
| | - Adam Ameur
- Department of Immunology Genetics and Pathology, Uppsala University, 751 08 Uppsala, Sweden; (A.A.); (U.G.)
| | - Ulf Gyllensten
- Department of Immunology Genetics and Pathology, Uppsala University, 751 08 Uppsala, Sweden; (A.A.); (U.G.)
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.B.); (W.P.)
- Forensic Science Program, The Pennsylvania State University, University Park, State College, PA 16801, USA
| | - Charla Marshall
- Armed Forces Medical Examiner System’s Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, DE 19902, USA (C.M.)
- Forensic Science Program, The Pennsylvania State University, University Park, State College, PA 16801, USA
| | - Marie Allen
- Department of Immunology Genetics and Pathology, Uppsala University, 751 08 Uppsala, Sweden; (A.A.); (U.G.)
| |
Collapse
|
7
|
Lee SE, Kim GE, Kim H, Chung DH, Lee SD, Kim MY. Comparison of Two Variant Analysis Programs for Next-Generation Sequencing Data of Whole Mitochondrial Genome. J Korean Med Sci 2023; 38:e297. [PMID: 37698211 PMCID: PMC10497357 DOI: 10.3346/jkms.2023.38.e297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/29/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND With advance of next-generation sequencing (NGS) techniques, the need for mitochondrial DNA analysis is increasing not only in the forensic area, but also in medical fields. METHODS Two commercial programs, Converge Software (CS) and Torrent Variant Caller for variant calling of NGS data, were compared with a considerable amount of sequence data of 50 samples with a homogeneous ethnicity. RESULTS About 2,300 variants were identified and the two programs showed about 90% of consistency. CS, a dedicated analysis program for mitochondrial DNA, showed some advantages for forensic use. By additional visual inspection, several causes of discrepancy in variant calling results were identified. Application of different notation rules for mitochondrial sequence and the minor allele frequency close to detection threshold were the two most significant reasons. CONCLUSION With prospective improvement of each program, researchers and practitioners should be aware of characteristics of the analysis program they use and prepare their own strategies to determine variants.
Collapse
Affiliation(s)
- Seung Eun Lee
- Laboratory of Forensic Medicine, Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ga Eun Kim
- Laboratory of Forensic Medicine, Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hajin Kim
- Laboratory of Forensic Medicine, Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Soong Deok Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, Korea
- Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, Korea
| | - Moon-Young Kim
- Laboratory of Forensic Medicine, Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.
| |
Collapse
|
8
|
Elwick K, Rydzak P, Robertson JM. Evaluation of Library Preparation Workflows and Applications to Different Sample Types Using the PowerSeq ® 46GY System with Massively Parallel Sequencing. Genes (Basel) 2023; 14:genes14050977. [PMID: 37239337 DOI: 10.3390/genes14050977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
This project evaluated the prototype PowerSeq® 46GY System using donor DNA and casework-type samples. The goal of this study was to determine whether modifications to the manufacturer's protocol could increase read coverage and improve sample results. Buccal and casework-type libraries were prepared using the TruSeq® DNA PCR-Free HT kit or the KAPA HyperPrep kit. Both kits were evaluated unmodified, and by substituting AMPure® XP beads for the beads of the most optimal kit. Two qPCR kits, the PowerSeq® Quant MS System and KAPA Library Quantification Kit, were also evaluated along with a KAPA size-adjustment workbook, which was compared as a third quantification method. Libraries were sequenced using the MiSeq® FGx and data were analyzed with STRait Razor. Results suggested that all three quantification methods overestimated library concentration, but the PowerSeq kit was most accurate. Samples prepared with the TruSeq library kit provided the highest coverage and the fewest instances of dropout and below-threshold alleles compared with the KAPA kit. Additionally, all bone and hair samples demonstrated full profile completeness, with bone samples yielding a higher average coverage than hair samples. Overall, our study demonstrated that the 46GY manufacturer's protocol produced the best quality results compared to alternative library preparation options.
Collapse
Affiliation(s)
- Kyleen Elwick
- Visiting Scientist Program, Research & Support Unit, Laboratory Division, Federal Bureau of Investigation, 2501 Investigation Parkway, Quantico, VA 22135, USA
| | - Patrick Rydzak
- Visiting Scientist Program, Research & Support Unit, Laboratory Division, Federal Bureau of Investigation, 2501 Investigation Parkway, Quantico, VA 22135, USA
| | - James M Robertson
- Research & Support Unit, Laboratory Division, Federal Bureau of Investigation, Quantico, VA 22135, USA
| |
Collapse
|
9
|
Butler JM. Recent advances in forensic biology and forensic DNA typing: INTERPOL review 2019-2022. Forensic Sci Int Synerg 2022; 6:100311. [PMID: 36618991 PMCID: PMC9813539 DOI: 10.1016/j.fsisyn.2022.100311] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review paper covers the forensic-relevant literature in biological sciences from 2019 to 2022 as a part of the 20th INTERPOL International Forensic Science Managers Symposium. Topics reviewed include rapid DNA testing, using law enforcement DNA databases plus investigative genetic genealogy DNA databases along with privacy/ethical issues, forensic biology and body fluid identification, DNA extraction and typing methods, mixture interpretation involving probabilistic genotyping software (PGS), DNA transfer and activity-level evaluations, next-generation sequencing (NGS), DNA phenotyping, lineage markers (Y-chromosome, mitochondrial DNA, X-chromosome), new markers and approaches (microhaplotypes, proteomics, and microbial DNA), kinship analysis and human identification with disaster victim identification (DVI), and non-human DNA testing including wildlife forensics. Available books and review articles are summarized as well as 70 guidance documents to assist in quality control that were published in the past three years by various groups within the United States and around the world.
Collapse
Affiliation(s)
- John M. Butler
- National Institute of Standards and Technology, Special Programs Office, 100 Bureau Drive, Mail Stop 4701, Gaithersburg, MD, USA
| |
Collapse
|
10
|
Frontanilla TS, Valle-Silva G, Ayala J, Mendes-Junior CT. Open-Access Worldwide Population STR Database Constructed Using High-Coverage Massively Parallel Sequencing Data Obtained from the 1000 Genomes Project. Genes (Basel) 2022; 13:genes13122205. [PMID: 36553472 PMCID: PMC9778533 DOI: 10.3390/genes13122205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Achieving accurate STR genotyping by using next-generation sequencing data has been challenging. To provide the forensic genetics community with a reliable open-access STR database, we conducted a comprehensive genotyping analysis of a set of STRs of broad forensic interest obtained from 1000 Genome populations. We analyzed 22 STR markers using files of the high-coverage dataset of Phase 3 of the 1000 Genomes Project. We used HipSTR to call genotypes from 2504 samples obtained from 26 populations. We were not able to detect the D21S11 marker. The Hardy-Weinberg equilibrium analysis coupled with a comprehensive analysis of allele frequencies revealed that HipSTR was not able to identify longer alleles, which resulted in heterozygote deficiency. Nevertheless, AMOVA, a clustering analysis that uses STRUCTURE, and a Principal Coordinates Analysis showed a clear-cut separation between the four major ancestries sampled by the 1000 Genomes Consortium. Except for larger Penta D and Penta E alleles, and two very small Penta D alleles (2.2 and 3.2) usually observed in African populations, our analyses revealed that allele frequencies and genotypes offered as an open-access database are consistent and reliable.
Collapse
Affiliation(s)
- Tamara Soledad Frontanilla
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Guilherme Valle-Silva
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Jesus Ayala
- Facultad de Ingeniería Informática, Universidad de la Integración de las Americas, Asunción 00120-6, Paraguay
| | - Celso Teixeira Mendes-Junior
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
- Correspondence:
| |
Collapse
|
11
|
Canale LC, McElhoe JA, Dimick G, DeHeer KM, Beckert J, Holland MM. Routine Mitogenome MPS Analysis from 1 and 5 mm of Rootless Human Hair. Genes (Basel) 2022; 13:2144. [PMID: 36421819 PMCID: PMC9690917 DOI: 10.3390/genes13112144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 08/16/2023] Open
Abstract
While hair shafts are a common evidence type in forensic cases, they are often excluded from DNA analysis due to their limited DNA quantity and quality. Mitochondrial (mt) DNA sequencing is the method of choice when working with rootless hair shaft fragments due to the elevated copy number of mtDNA and the highly degraded nature of nuclear (n) DNA. Using massively parallel sequencing (MPS) of the mitochondrial (mito) genome, we studied the impact of hair age (time since collection) and physical characteristics (hair diameter, medullary structure, and length of hair tested) on mtDNA recovery and MPS data quality. Hair shaft cuttings of 1 and 5 mm from hairs less than five years to 46 years of age from 60 donors were characterized microscopically. Mitogenome sequences were generated using the Promega PowerSeqTM Whole Mito System prototype kit and the Illumina MiSeq instrument. Reportable mitogenome sequences were obtained from all hairs up to 27 years of age (37 donors), with at least 98% of the mitogenome reported for more than 94% of the 74 hair samples analyzed; the minimum reported sequence was 88%. Furthermore, data from the 1 and 5 mm replicates gave concordant haplotypes. As expected, mtDNA yield decreased, mtDNA degradation increased, and mitogenome MPS data quality declined as the age of the hair increased. Hair diameter and medullary structure had minimal impact on yield and data quality. Our findings support that MPS is a robust and reliable method for routinely generating mitogenome sequences from 1 and 5 mm hair shaft samples up to 27 years of age, which is of interest to the forensic community, biological anthropologists, and medical geneticists.
Collapse
Affiliation(s)
- Lauren C. Canale
- Forensic Science Program, Department of Biochemistry & Molecular Biology, Eberly College of Science, Pennsylvania State University, University Park, PA 16802, USA
| | - Jennifer A. McElhoe
- Forensic Science Program, Department of Biochemistry & Molecular Biology, Eberly College of Science, Pennsylvania State University, University Park, PA 16802, USA
| | - Gloria Dimick
- Mitotyping Technologies, 2565 Park Center Blvd., Suite 200, State College, PA 16801, USA
| | | | - Jason Beckert
- Microtrace 790 Fletcher Drive, Suite 106, Elgin, IL 60123, USA
| | - Mitchell M. Holland
- Forensic Science Program, Department of Biochemistry & Molecular Biology, Eberly College of Science, Pennsylvania State University, University Park, PA 16802, USA
- Mitotyping Technologies, 2565 Park Center Blvd., Suite 200, State College, PA 16801, USA
| |
Collapse
|
12
|
Gutierrez R, Roman MG, Harrel M, Hughes S, LaRue B, Houston R. Assessment of the ForenSeq mtDNA control region kit and comparison of orthogonal technologies. Forensic Sci Int Genet 2022; 59:102721. [DOI: 10.1016/j.fsigen.2022.102721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/13/2022] [Accepted: 05/08/2022] [Indexed: 11/04/2022]
|
13
|
The FORCE Panel: An All-in-One SNP Marker Set for Confirming Investigative Genetic Genealogy Leads and for General Forensic Applications. Genes (Basel) 2021; 12:genes12121968. [PMID: 34946917 PMCID: PMC8702142 DOI: 10.3390/genes12121968] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/03/2022] Open
Abstract
The FORensic Capture Enrichment (FORCE) panel is an all-in-one SNP panel for forensic applications. This panel of 5422 markers encompasses common, forensically relevant SNPs (identity, ancestry, phenotype, X- and Y-chromosomal SNPs), a novel set of 3931 autosomal SNPs for extended kinship analysis, and no clinically relevant/disease markers. The FORCE panel was developed as a custom hybridization capture assay utilizing ~20,000 baits to target the selected SNPs. Five non-probative, previously identified World War II (WWII) cases were used to assess the kinship panel. Each case included one bone sample and associated family reference DNA samples. Additionally, seven reference quality samples, two 200-year-old bone samples, and four control DNAs were processed for kit performance and concordance assessments. SNP recovery after capture resulted in a mean of ~99% SNPs exceeding 10X coverage for reference and control samples, and 44.4% SNPs for bone samples. The WWII case results showed that the FORCE panel could predict first to fifth degree relationships with strong statistical support (likelihood ratios over 10,000 and posterior probabilities over 99.99%). To conclude, SNPs will be important for further advances in forensic DNA analysis. The FORCE panel shows promising results and demonstrates the utility of a 5000 SNP panel for forensic applications.
Collapse
|
14
|
|
15
|
Cortes-Figueiredo F, Carvalho FS, Fonseca AC, Paul F, Ferro JM, Schönherr S, Weissensteiner H, Morais VA. From Forensics to Clinical Research: Expanding the Variant Calling Pipeline for the Precision ID mtDNA Whole Genome Panel. Int J Mol Sci 2021; 22:12031. [PMID: 34769461 PMCID: PMC8584537 DOI: 10.3390/ijms222112031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023] Open
Abstract
Despite a multitude of methods for the sample preparation, sequencing, and data analysis of mitochondrial DNA (mtDNA), the demand for innovation remains, particularly in comparison with nuclear DNA (nDNA) research. The Applied Biosystems™ Precision ID mtDNA Whole Genome Panel (Thermo Fisher Scientific, USA) is an innovative library preparation kit suitable for degraded samples and low DNA input. However, its bioinformatic processing occurs in the enterprise Ion Torrent Suite™ Software (TSS), yielding BAM files aligned to an unorthodox version of the revised Cambridge Reference Sequence (rCRS), with a heteroplasmy threshold level of 10%. Here, we present an alternative customizable pipeline, the PrecisionCallerPipeline (PCP), for processing samples with the correct rCRS output after Ion Torrent sequencing with the Precision ID library kit. Using 18 samples (3 original samples and 15 mixtures) derived from the 1000 Genomes Project, we achieved overall improved performance metrics in comparison with the proprietary TSS, with optimal performance at a 2.5% heteroplasmy threshold. We further validated our findings with 50 samples from an ongoing independent cohort of stroke patients, with PCP finding 98.31% of TSS's variants (TSS found 57.92% of PCP's variants), with a significant correlation between the variant levels of variants found with both pipelines.
Collapse
Affiliation(s)
- Filipe Cortes-Figueiredo
- VMorais Lab—Mitochondria Biology & Neurodegeneration, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (F.C.-F.); (F.S.C.)
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Filipa S. Carvalho
- VMorais Lab—Mitochondria Biology & Neurodegeneration, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (F.C.-F.); (F.S.C.)
| | - Ana Catarina Fonseca
- José Ferro Lab—Clinical Research in Non-communicable Neurological Diseases, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (A.C.F.); (J.M.F.)
- Serviço de Neurologia, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-035 Lisbon, Portugal
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany;
- Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - José M. Ferro
- José Ferro Lab—Clinical Research in Non-communicable Neurological Diseases, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (A.C.F.); (J.M.F.)
- Serviço de Neurologia, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-035 Lisbon, Portugal
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Hansi Weissensteiner
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Vanessa A. Morais
- VMorais Lab—Mitochondria Biology & Neurodegeneration, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (F.C.-F.); (F.S.C.)
| |
Collapse
|
16
|
Mitochondrial DNA in forensic use. Emerg Top Life Sci 2021; 5:415-426. [PMID: 34374411 PMCID: PMC8457767 DOI: 10.1042/etls20210204] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/27/2021] [Accepted: 07/22/2021] [Indexed: 01/02/2023]
Abstract
Genetic analysis of mitochondrial DNA (mtDNA) has always been a useful tool for forensic geneticists, mainly because of its ubiquitous presence in biological material, even in the absence of nuclear DNA. Sequencing, however, is not a skill that is part of the routine forensic analysis because of the relative rarity of requests, and the need for retention of necessary skill sets and associated accreditation issues. While standard Sanger sequencing may be relatively simple, many requests are made in the face of compromised biological samples. Newer technologies, provided through massively parallel sequencing (MPS), will increase the opportunity for scientists to include this tool in their routine, particularly for missing person investigations. MPS has also enabled a different approach to sequencing that can increase sensitivity in a more targeted approach. In these circumstances it is likely that only a laboratory that specialises in undertaking forensic mtDNA analysis will be able to take these difficult cases forward, more so because reviews of the literature have revealed significantly high levels of typing errors in publications reporting mtDNA sequences. The forensic community has set out important guidelines, not only in the practical aspects of analysis, but also in the interpretation of that sequence to ensure that accurate comparisons can be made. Analysis of low-level, compromised and ancient DNA is not easy, however, as contamination is extremely difficult to eliminate and circumstances leading to sequencing errors are all too easily introduced. These problems, and solutions, are discussed in the article in relation to several historic cases.
Collapse
|
17
|
Marshall C, Parson W. Interpreting NUMTs in forensic genetics: Seeing the forest for the trees. Forensic Sci Int Genet 2021; 53:102497. [PMID: 33740708 DOI: 10.1016/j.fsigen.2021.102497] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/29/2023]
Abstract
Nuclear mitochondrial DNA (mtDNA) segments (NUMTs) were discovered shortly after sequencing the first human mitochondrial genome. They have earlier been considered to represent archaic elements of ancient insertion events, but modern sequencing technologies and growing databases of mtDNA and NUMT sequences confirm that they are abundant and some of them phylogenetically young. Here, we build upon mtDNA/NUMT review articles published in the mid 2010 s and focus on the distinction of NUMTs and other artefacts that can be observed in aligned sequence reads, such as mixtures (contamination), point heteroplasmy, sequencing error and cytosine deamination. We show practical examples of the effect of the mtDNA enrichment method on the representation of NUMTs in the mapped sequence data and discuss methods to bioinformatically filter NUMTs from mtDNA reads.
Collapse
Affiliation(s)
- Charla Marshall
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, DE 19902, USA; SNA International, Contractor Supporting the AFMES-AFDIL, Alexandria, VA 22314, USA; Forensic Science Program, The Pennsylvania State University, University Park, PA 16802, USA
| | - Walther Parson
- Forensic Science Program, The Pennsylvania State University, University Park, PA 16802, USA; Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|