1
|
Stump B, Waxman AB. Pulmonary Arterial Hypertension and TGF-β Superfamily Signaling: Focus on Sotatercept. BioDrugs 2024; 38:743-753. [PMID: 39292393 DOI: 10.1007/s40259-024-00680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a rare and progressive disease that continues to remain highly morbid despite multiple advances in medical therapies. There remains a persistent and desperate need to identify novel methods of treating and, ideally, reversing the pathologic vasculopathy that results in PAH development and progression. Sotatercept is a first-in-class fusion protein that is believed to primarily inhibit activin signaling resulting in decreased cell proliferation and differentiation, though the exact mechanism remains uncertain. Here, we review the currently available PAH therapies, data highlighting the importance of transforming growth factor-β (TGF-β) superfamily signaling in the development of PAH, and the published and on-going clinical trials evaluating sotatercept in the treatment of PAH. We will also discuss preclinical data supporting the potential use of the fusion protein KER-012 in the inhibition of aberrant TGF-β superfamily signaling to ameliorate the obstructive vasculopathy of PAH.
Collapse
|
2
|
van Karnebeek CDM, O'Donnell-Luria A, Baynam G, Baudot A, Groza T, Jans JJM, Lassmann T, Letinturier MCV, Montgomery SB, Robinson PN, Sansen S, Mehrian-Shai R, Steward C, Kosaki K, Durao P, Sadikovic B. Leaving no patient behind! Expert recommendation in the use of innovative technologies for diagnosing rare diseases. Orphanet J Rare Dis 2024; 19:357. [PMID: 39334316 PMCID: PMC11438178 DOI: 10.1186/s13023-024-03361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Genetic diagnosis plays a crucial role in rare diseases, particularly with the increasing availability of emerging and accessible treatments. The International Rare Diseases Research Consortium (IRDiRC) has set its primary goal as: "Ensuring that all patients who present with a suspected rare disease receive a diagnosis within one year if their disorder is documented in the medical literature". Despite significant advances in genomic sequencing technologies, more than half of the patients with suspected Mendelian disorders remain undiagnosed. In response, IRDiRC proposes the establishment of "a globally coordinated diagnostic and research pipeline". To help facilitate this, IRDiRC formed the Task Force on Integrating New Technologies for Rare Disease Diagnosis. This multi-stakeholder Task Force aims to provide an overview of the current state of innovative diagnostic technologies for clinicians and researchers, focusing on the patient's diagnostic journey. Herein, we provide an overview of a broad spectrum of emerging diagnostic technologies involving genomics, epigenomics and multi-omics, functional testing and model systems, data sharing, bioinformatics, and Artificial Intelligence (AI), highlighting their advantages, limitations, and the current state of clinical adaption. We provide expert recommendations outlining the stepwise application of these innovative technologies in the diagnostic pathways while considering global differences in accessibility. The importance of FAIR (Findability, Accessibility, Interoperability, and Reusability) and CARE (Collective benefit, Authority to control, Responsibility, and Ethics) data management is emphasized, along with the need for enhanced and continuing education in medical genomics. We provide a perspective on future technological developments in genome diagnostics and their integration into clinical practice. Lastly, we summarize the challenges related to genomic diversity and accessibility, highlighting the significance of innovative diagnostic technologies, global collaboration, and equitable access to diagnosis and treatment for people living with rare disease.
Collapse
Affiliation(s)
- Clara D M van Karnebeek
- Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Amsterdam Gastro-Enterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, USA
| | - Gareth Baynam
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, MMG, Marseille, France
| | - Anaïs Baudot
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, MMG, Marseille, France
| | - Tudor Groza
- Rare Care Centre, Perth Children's Hospital and Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Perth, Australia
- European Molecular Biology Laboratory (EMBL-EBI), European Bioinformatics Institute, Hinxton, UK
| | - Judith J M Jans
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | - Ruty Mehrian-Shai
- Pediatric Brain Cancer Molecular Lab, Sheba Medical Center, Ramat Gan, Israel
| | | | | | - Patricia Durao
- The Cure and Action for Tay-Sachs (CATS) Foundation, Altringham, UK
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences, London, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
| |
Collapse
|
3
|
Ilic N, Maric N, Maver A, Armengol L, Kravljanac R, Cirkovic J, Krstic J, Radivojevic D, Cirkovic S, Ostojic S, Krasic S, Paripovic A, Vukomanovic V, Peterlin B, Maric G, Sarajlija A. Reverse Phenotyping after Whole-Exome Sequencing in Children with Developmental Delay/Intellectual Disability-An Exception or a Necessity? Genes (Basel) 2024; 15:789. [PMID: 38927725 PMCID: PMC11203244 DOI: 10.3390/genes15060789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
This study delves into the diagnostic yield of whole-exome sequencing (WES) in pediatric patients presenting with developmental delay/intellectual disability (DD/ID), while also exploring the utility of Reverse Phenotyping (RP) in refining diagnoses. A cohort of 100 pediatric patients underwent WES, yielding a diagnosis in 66% of cases. Notably, RP played a significant role in cases with negative prior genetic testing, underscoring its significance in complex diagnostic scenarios. The study revealed a spectrum of genetic conditions contributing to DD/ID, illustrating the heterogeneity of etiological factors. Despite challenges, WES demonstrated effectiveness, particularly in cases with metabolic abnormalities. Reverse phenotyping was indicated in half of the patients with positive WES findings. Neural network models exhibited moderate-to-exceptional predictive abilities for aiding in patient selection for WES and RP. These findings emphasize the importance of employing comprehensive genetic approaches and RP in unraveling the genetic underpinnings of DD/ID, thereby facilitating personalized management and genetic counseling for affected individuals and families. This research contributes insights into the genetic landscape of DD/ID, enhancing our understanding and guiding clinical practice in this particular field of clinical genetics.
Collapse
Affiliation(s)
- Nikola Ilic
- Clinical Genetics Outpatient Clinic, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia; (N.I.); (J.C.); (J.K.)
| | - Nina Maric
- Clinic for Children Diseases, University Clinical Center of the Republic of Srpska, Banja Luka 78000, Bosnia and Herzegovina;
| | - Ales Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.M.); (B.P.)
| | - Lluis Armengol
- CIBER en Epidemiología y Salud Pública (CIBERESP), Genes and Disease Program, Center for Genomic Regulation (CRG-UPF), 08003 Barcelona, Spain;
| | - Ruzica Kravljanac
- Department of Neurology, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia; (R.K.); (S.O.)
- Department of Pediatrics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.P.); (V.V.)
| | - Jana Cirkovic
- Clinical Genetics Outpatient Clinic, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia; (N.I.); (J.C.); (J.K.)
| | - Jovana Krstic
- Clinical Genetics Outpatient Clinic, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia; (N.I.); (J.C.); (J.K.)
| | - Danijela Radivojevic
- Laboratory of Medical Genetics, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia; (D.R.); (S.C.)
| | - Sanja Cirkovic
- Laboratory of Medical Genetics, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia; (D.R.); (S.C.)
| | - Slavica Ostojic
- Department of Neurology, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia; (R.K.); (S.O.)
- Department of Pediatrics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.P.); (V.V.)
| | - Stasa Krasic
- Department of Cardiology, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia;
| | - Aleksandra Paripovic
- Department of Pediatrics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.P.); (V.V.)
- Department of Nephrology, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia
| | - Vladislav Vukomanovic
- Department of Pediatrics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.P.); (V.V.)
- Department of Cardiology, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia;
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.M.); (B.P.)
| | - Gorica Maric
- Institute of Epidemiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Adrijan Sarajlija
- Clinical Genetics Outpatient Clinic, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia; (N.I.); (J.C.); (J.K.)
- Department of Pediatrics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.P.); (V.V.)
| |
Collapse
|
4
|
Szafranski P, Patrizi S, Gambin T, Afzal B, Schlotterbeck E, Karolak JA, Deutsch G, Roberts D, Stankiewicz P. Diminished TMEM100 Expression in a Newborn With Acinar Dysplasia and a Novel TBX4 Variant: A Case Report. Pediatr Dev Pathol 2024; 27:255-259. [PMID: 38044468 PMCID: PMC11087193 DOI: 10.1177/10935266231213464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Acinar dysplasia (AcDys) of the lung is a rare lethal developmental disorder in neonates characterized by severe respiratory failure and pulmonary arterial hypertension refractory to treatment. Recently, abnormalities of TBX4-FGF10-FGFR2-TMEM100 signaling regulating lung development have been reported in patients with AcDys due to heterozygous single-nucleotide variants or copy-number variant deletions involving TBX4, FGF10, or FGFR2. Here, we describe a female neonate who died at 4 hours of life due to severe respiratory distress related to AcDys diagnosed by postmortem histopathologic evaluation. Genomic analyses revealed a novel deleterious heterozygous missense variant c.728A>C (p.Asn243Thr) in TBX4 that arose de novo on paternal chromosome 17. We also identified 6 candidate hypomorphic rare variants in the TBX4 enhancer in trans to TBX4 coding variant. Gene expression analyses of proband's lung tissue showed a significant reduction of TMEM100 expression with near absence of TMEM100 within the endothelium of arteries and capillaries by immunohistochemistry. These results support the pathogenicity of the detected TBX4 variant and provide further evidence that disrupted signaling between TBX4 and TMEM100 may contribute to severe lung phenotypes in humans, including AcDys.
Collapse
Affiliation(s)
| | - Silvia Patrizi
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital and Newton-Wellesley Hospital, Harvard Medical School, Boston, MA
| | - Tomasz Gambin
- Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - Bushra Afzal
- Division of Neonatology, Department of Pediatrics, Harvard University School of Medicine, Boston, MA
| | - Emily Schlotterbeck
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St. WRN 219, Boston, MA
| | - Justyna A. Karolak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Gail Deutsch
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Drucilla Roberts
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St. WRN 219, Boston, MA
| | - Paweł Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
5
|
Faundes V, Repetto GM, Valdivia LE. Discovery of novel genetic syndromes in Latin America: Opportunities and challenges. Genet Mol Biol 2024; 47Suppl 1:e20230318. [PMID: 38466870 DOI: 10.1590/1678-4685-gmb-2023-0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024] Open
Abstract
Latin America (LatAm) has a rich and historically significant role in delineating both novel and well-documented genetic disorders. However, the ongoing advancements in the field of human genetics pose challenges to the relatively slow adaption of LatAm in the field. Here, we describe past and present contributions of LatAm to the discovery of novel genetic disorders, often referred as novel gene-disease associations (NGDA). We also describe the current methodologies for discovery of NGDA, taking into account the latest developments in genomics. We provide an overview of opportunities and challenges for NGDA research in LatAm considering the steps currently performed to identify and validate such associations. Given the multiple and diverse needs of populations and countries in LatAm, it is imperative to foster collaborations amongst patients, indigenous people, clinicians and scientists. Such collaborative effort is essential for sustaining and enhancing the LatAm´s contributions to the field of NGDA.
Collapse
Affiliation(s)
- Víctor Faundes
- Universidad de Chile, Instituto de Nutrición y Tecnología de los Alimentos, Laboratorio de Genética y Enfermedades Metabólicas, Santiago, Chile
| | - Gabriela M Repetto
- Universidad del Desarrollo, Facultad de Medicina, Instituto de Ciencias e Innovación en Medicina, Centro de Genética y Genómica, Programa de Enfermedades Raras, Santiago, Chile
| | - Leonardo E Valdivia
- Universidad Mayor, Facultad de Ciencias, Centro de Biología Integrativa, Santiago, Chile
- Universidad Mayor, Facultad de Ciencias, Escuela de Biotecnología, Santiago, Chile
| |
Collapse
|
6
|
Rothman A, Mann D, Nunez JA, Tarmidi R, Restrepo H, Sarukhanov V, Williams R, Evans WN. A Bioinformatic Algorithm based on Pulmonary Endoarterial Biopsy for Targeted Pulmonary Arterial Hypertension Therapy. Open Respir Med J 2023; 17:e187430642308160. [PMID: 38655076 PMCID: PMC11037516 DOI: 10.2174/18743064-v17-230927-2023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 04/26/2024] Open
Abstract
Background Optimal pharmacological therapy for pulmonary arterial hypertension (PAH) remains unclear, as pathophysiological heterogeneity may affect therapeutic outcomes. A ranking methodology based on pulmonary vascular genetic expression analysis could assist in medication selection and potentially lead to improved prognosis. Objective To describe a bioinformatics approach for ranking currently approved pulmonary arterial antihypertensive agents based on gene expression data derived from percutaneous endoarterial biopsies in an animal model of pulmonary hypertension. Methods We created a chronic PAH model in Micro Yucatan female swine by surgical anastomosis of the left pulmonary artery to the descending aorta. A baseline catheterization, angiography and pulmonary endoarterial biopsy were performed. We obtained pulmonary vascular biopsy samples by passing a biopsy catheter through a long 8 French sheath, introduced via the carotid artery, into 2- to 3-mm peripheral pulmonary arteries. Serial procedures were performed on days 7, 21, 60, and 180 after surgical anastomosis. RNA microarray studies were performed on the biopsy samples. Results Utilizing the medical literature, we developed a list of PAH therapeutic agents, along with a tabulation of genes affected by these agents. The effect on gene expression from pharmacogenomic interactions was used to rank PAH medications at each time point. The ranking process allowed the identification of a theoretical optimum three-medication regimen. Conclusion We describe a new potential paradigm in the therapy for PAH, which would include endoarterial biopsy, molecular analysis and tailored pharmacological therapy for patients with PAH.
Collapse
Affiliation(s)
- Abraham Rothman
- Children’s Heart Center Nevada, 3131 La Canada, Suite 230, Las Vegas, NV 89169, USA
- Department of Pediatrics, Division of Pediatric Cardiology, Kirk Kerkorian School of Medicine at UNLV, 2040 W. Charleston Blvd Ste. 402, Las Vegas, NV 89109, USA
| | - David Mann
- Vascular Biosciences, 72 Santa Felicia Drive, Goleta, CA, 93117, USA
| | - Jose A. Nunez
- Vascular Biosciences, 72 Santa Felicia Drive, Goleta, CA, 93117, USA
- College of Engineering, University of California, Santa Barbara, Lagoon Rd, Santa Barbara, CA 93106, USA
| | - Reinhardt Tarmidi
- Vascular Biosciences, 72 Santa Felicia Drive, Goleta, CA, 93117, USA
- College of Engineering, University of California, Santa Barbara, Lagoon Rd, Santa Barbara, CA 93106, USA
| | - Humberto Restrepo
- Children’s Heart Center Nevada, 3131 La Canada, Suite 230, Las Vegas, NV 89169, USA
- Department of Pediatrics, Division of Pediatric Cardiology, Kirk Kerkorian School of Medicine at UNLV, 2040 W. Charleston Blvd Ste. 402, Las Vegas, NV 89109, USA
| | - Valeri Sarukhanov
- Children’s Heart Center Nevada, 3131 La Canada, Suite 230, Las Vegas, NV 89169, USA
| | - Roy Williams
- Vascular Biosciences, 72 Santa Felicia Drive, Goleta, CA, 93117, USA
- Institute of Genomic Medicine, University of California, San Diego, 9500 Gilman Drive #0761, La Jolla, CA 92093, USA
| | - William N. Evans
- Children’s Heart Center Nevada, 3131 La Canada, Suite 230, Las Vegas, NV 89169, USA
- Department of Pediatrics, Division of Pediatric Cardiology, Kirk Kerkorian School of Medicine at UNLV, 2040 W. Charleston Blvd Ste. 402, Las Vegas, NV 89109, USA
| |
Collapse
|
7
|
Flanagan FO, Holtz AM, Vargas SO, Genetti CA, Schmitz-Abe K, Casey A, Kennedy JC, Raby BA, Mullen MP, Fishman MP, Agrawal PB. An intronic variant in TBX4 in a single family with variable and severe pulmonary manifestations. NPJ Genom Med 2023; 8:7. [PMID: 36878902 PMCID: PMC9988848 DOI: 10.1038/s41525-023-00350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
A male infant presented at term with neonatal respiratory failure and pulmonary hypertension. His respiratory symptoms improved initially, but he exhibited a biphasic clinical course, re-presenting at 15 months of age with tachypnea, interstitial lung disease, and progressive pulmonary hypertension. We identified an intronic TBX4 gene variant in close proximity to the canonical donor splice site of exon 3 (hg 19; chr17:59543302; c.401 + 3 A > T), also carried by his father who had a typical TBX4-associated skeletal phenotype and mild pulmonary hypertension, and by his deceased sister who died shortly after birth of acinar dysplasia. Analysis of patient-derived cells demonstrated a significant reduction in TBX4 expression resulting from this intronic variant. Our study illustrates the variable expressivity in cardiopulmonary phenotype conferred by TBX4 mutation and the utility of genetic diagnostics in enabling accurate identification and classification of more subtly affected family members.
Collapse
Affiliation(s)
- Frances O Flanagan
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Alexander M Holtz
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Casie A Genetti
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, USA
| | - Klaus Schmitz-Abe
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, USA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Alicia Casey
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - John C Kennedy
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Benjamin A Raby
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Mary P Mullen
- Department of Cardiology, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA.
| | - Martha P Fishman
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Pankaj B Agrawal
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA.
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, USA.
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
8
|
Prapa M, Lago-Docampo M, Swietlik EM, Montani D, Eyries M, Humbert M, Welch CL, Chung WK, Berger RMF, Bogaard HJ, Danhaive O, Escribano-Subías P, Gall H, Girerd B, Hernandez-Gonzalez I, Holden S, Hunt D, Jansen SMA, Kerstjens-Frederikse W, Kiely DG, Lapunzina P, McDermott J, Moledina S, Pepke-Zaba J, Polwarth GJ, Schotte G, Tenorio-Castaño J, Thompson AAR, Wharton J, Wort SJ, Megy K, Mapeta R, Treacy CM, Martin JM, Li W, Swift AJ, Upton PD, Morrell NW, Gräf S, Valverde D. First Genotype-Phenotype Study in TBX4 Syndrome: Gain-of-Function Mutations Causative for Lung Disease. Am J Respir Crit Care Med 2022; 206:1522-1533. [PMID: 35852389 PMCID: PMC9757087 DOI: 10.1164/rccm.202203-0485oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/18/2022] [Indexed: 02/02/2023] Open
Abstract
Rationale: Despite the increased recognition of TBX4 (T-BOX transcription factor 4)-associated pulmonary arterial hypertension (PAH), genotype-phenotype associations are lacking and may provide important insights. Objectives: To compile and functionally characterize all TBX4 variants reported to date and undertake a comprehensive genotype-phenotype analysis. Methods: We assembled a multicenter cohort of 137 patients harboring monoallelic TBX4 variants and assessed the pathogenicity of missense variation (n = 42) using a novel luciferase reporter assay containing T-BOX binding motifs. We sought genotype-phenotype correlations and undertook a comparative analysis with patients with PAH with BMPR2 (Bone Morphogenetic Protein Receptor type 2) causal variants (n = 162) or no identified variants in PAH-associated genes (n = 741) genotyped via the National Institute for Health Research BioResource-Rare Diseases. Measurements and Main Results: Functional assessment of TBX4 missense variants led to the novel finding of gain-of-function effects associated with older age at diagnosis of lung disease compared with loss-of-function effects (P = 0.038). Variants located in the T-BOX and nuclear localization domains were associated with earlier presentation (P = 0.005) and increased incidence of interstitial lung disease (P = 0.003). Event-free survival (death or transplantation) was shorter in the T-BOX group (P = 0.022), although age had a significant effect in the hazard model (P = 0.0461). Carriers of TBX4 variants were diagnosed at a younger age (P < 0.001) and had worse baseline lung function (FEV1, FVC) (P = 0.009) than the BMPR2 and no identified causal variant groups. Conclusions: We demonstrated that TBX4 syndrome is not strictly the result of haploinsufficiency but can also be caused by gain of function. The pleiotropic effects of TBX4 in lung disease may be in part explained by the differential effect of pathogenic mutations located in critical protein domains.
Collapse
Affiliation(s)
- Matina Prapa
- Department of Medicine and
- St. George’s University Hospitals National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Mauro Lago-Docampo
- CINBIO, Universidade de Vigo, Vigo, Spain
- Rare Diseases and Pediatric Medicine, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Emilia M. Swietlik
- Department of Medicine and
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - David Montani
- Université Paris-Saclay, AP-HP, Service de Pneumologie, Centre de référence de l’hypertension pulmonaire, INSERM UMR_S 999, Hôpital Bicêtre, Le Kremlin-Bicêtre, Paris, France
| | - Mélanie Eyries
- Département de génétique, hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, and UMR_S 1166-ICAN, INSERM, UPMC Sorbonne Universités, Paris, France
| | - Marc Humbert
- Université Paris-Saclay, AP-HP, Service de Pneumologie, Centre de référence de l’hypertension pulmonaire, INSERM UMR_S 999, Hôpital Bicêtre, Le Kremlin-Bicêtre, Paris, France
| | | | - Wendy K. Chung
- Department of Pediatrics and
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Rolf M. F. Berger
- Centre for Congenital Heart Diseases, Pediatric Cardiology, Beatrix Children’s Hospital, and
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Olivier Danhaive
- Division of Neonatology, St.-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Pilar Escribano-Subías
- Unidad Multidisciplinar de Hipertensión Pulmonar, Servicio de Cardiología, Hospital Universitario 12 de Octubre, Madrid, Spain
- CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| | - Henning Gall
- Centre for Congenital Heart Diseases, Pediatric Cardiology, Beatrix Children’s Hospital, and
| | - Barbara Girerd
- Université Paris-Saclay, AP-HP, Service de Pneumologie, Centre de référence de l’hypertension pulmonaire, INSERM UMR_S 999, Hôpital Bicêtre, Le Kremlin-Bicêtre, Paris, France
| | | | - Simon Holden
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - David Hunt
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, United Kingdom
| | - Samara M. A. Jansen
- Department of Pulmonary Medicine, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | | | - David G. Kiely
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- ITHACA, European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - John McDermott
- Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Joanna Pepke-Zaba
- Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Gary J. Polwarth
- Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Gwen Schotte
- Department of Pulmonary Medicine, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Jair Tenorio-Castaño
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- ITHACA, European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - A. A. Roger Thompson
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - John Wharton
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stephen J. Wort
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Karyn Megy
- Department of Medicine and
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Rutendo Mapeta
- Department of Medicine and
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | | | | - Wei Li
- Department of Medicine and
| | - Andrew J. Swift
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | | | - Nicholas W. Morrell
- Department of Medicine and
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Institute of Health Research (NIHR) BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Stefan Gräf
- Department of Medicine and
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Institute of Health Research (NIHR) BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Diana Valverde
- CINBIO, Universidade de Vigo, Vigo, Spain
- Rare Diseases and Pediatric Medicine, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | | | | | | |
Collapse
|
9
|
Best S, Yu J, Lord J, Roche M, Watson CM, Bevers RPJ, Stuckey A, Madhusudhan S, Jewell R, Sisodiya SM, Lin S, Turner S, Robinson H, Leslie JS, Baple E, Toomes C, Inglehearn C, Wheway G, Johnson CA. Uncovering the burden of hidden ciliopathies in the 100 000 Genomes Project: a reverse phenotyping approach. J Med Genet 2022; 59:1151-1164. [PMID: 35764379 PMCID: PMC9691823 DOI: 10.1136/jmedgenet-2022-108476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND The 100 000 Genomes Project (100K) recruited National Health Service patients with eligible rare diseases and cancer between 2016 and 2018. PanelApp virtual gene panels were applied to whole genome sequencing data according to Human Phenotyping Ontology (HPO) terms entered by recruiting clinicians to guide focused analysis. METHODS We developed a reverse phenotyping strategy to identify 100K participants with pathogenic variants in nine prioritised disease genes (BBS1, BBS10, ALMS1, OFD1, DYNC2H1, WDR34, NPHP1, TMEM67, CEP290), representative of the full phenotypic spectrum of multisystemic primary ciliopathies. We mapped genotype data 'backwards' onto available clinical data to assess potential matches against phenotypes. Participants with novel molecular diagnoses and key clinical features compatible with the identified disease gene were reported to recruiting clinicians. RESULTS We identified 62 reportable molecular diagnoses with variants in these nine ciliopathy genes. Forty-four have been reported by 100K, 5 were previously unreported and 13 are new diagnoses. We identified 11 participants with unreportable, novel molecular diagnoses, who lacked key clinical features to justify reporting to recruiting clinicians. Two participants had likely pathogenic structural variants and one a deep intronic predicted splice variant. These variants would not be prioritised for review by standard 100K diagnostic pipelines. CONCLUSION Reverse phenotyping improves the rate of successful molecular diagnosis for unsolved 100K participants with primary ciliopathies. Previous analyses likely missed these diagnoses because incomplete HPO term entry led to incorrect gene panel choice, meaning that pathogenic variants were not prioritised. Better phenotyping data are therefore essential for accurate variant interpretation and improved patient benefit.
Collapse
Affiliation(s)
- Sunayna Best
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Jing Yu
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jenny Lord
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK
| | - Matthew Roche
- Windsor House Group Practice, Mid Yorkshire Hospitals NHS Trust, Leeds, UK
| | - Christopher Mark Watson
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- North East and Yorkshire Genomic Laboratory Hub, Central Lab, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Roel P J Bevers
- Genomics England, Queen Mary University of London, London, UK
| | - Alex Stuckey
- Genomics England, Queen Mary University of London, London, UK
| | | | - Rosalyn Jewell
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Sanjay M Sisodiya
- University College London (UCL) Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Chalfont, UK
| | - Siying Lin
- Department of Ophthalmology, Torbay and South Devon NHS Foundation Trust, Torquay, UK
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Stephen Turner
- Department of Ophthalmology, Torbay and South Devon NHS Foundation Trust, Torquay, UK
| | - Hannah Robinson
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Joseph S Leslie
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
| | - Emma Baple
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
- Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Carmel Toomes
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Chris Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Gabrielle Wheway
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK
| | - Colin A Johnson
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| |
Collapse
|
10
|
Abstract
Pulmonary hypertension (PH) because of chronic lung disease is categorized as Group 3 PH in the most recent classification system. Prevalence of these diseases is increasing over time, creating a growing need for effective therapeutic options. Recent approval of the first pulmonary arterial hypertension therapy for the treatment of Group 3 PH related to interstitial lung disease represents an encouraging advancement. This review focuses on molecular mechanisms contributing to pulmonary vasculopathy in chronic hypoxia, the pathology and epidemiology of Group 3 PH, the right ventricular dysfunction observed in this population and clinical trial data that inform the use of pulmonary vasodilators in Group 3 PH.
Collapse
Affiliation(s)
- Navneet Singh
- Division of Pulmonary, Critical Care and Sleep Medicine (N.S., C.E.V.), Brown University, Providence, RI
| | - Peter Dorfmüller
- Department of Pathology, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University, Germany (P.D.).,German Center for Lung Research (DZL), Giessen, Germany (P.D.)
| | - Oksana A Shlobin
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA (O.A.S.)
| | - Corey E Ventetuolo
- Division of Pulmonary, Critical Care and Sleep Medicine (N.S., C.E.V.), Brown University, Providence, RI.,Department of Health Services, Policy and Practice (C.E.V.), Brown University, Providence, RI
| |
Collapse
|
11
|
Lago-Docampo M, Solarat C, Méndez-Martínez L, Baloira A, Valverde D. Common Variation in EDN1 Regulatory Regions Highlights the Role of PPARγ as a Key Regulator of Endothelin in vitro. Front Cardiovasc Med 2022; 9:823133. [PMID: 35282351 PMCID: PMC8913939 DOI: 10.3389/fcvm.2022.823133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/14/2022] [Indexed: 01/08/2023] Open
Abstract
Pulmonary Arterial Hypertension (PAH) is a rare disease caused by the obliteration of the pulmonary arterioles, increasing pulmonary vascular resistance and eventually causing right heart failure. Endothelin-1 (EDN1) is a vasoconstrictor peptide whose levels are indicators of disease progression and its pathway is one of the most common targeted by current treatments. We sequenced the EDN1 untranslated regions of a small subset of patients with PAH, predicted the effect in silico, and used a luciferase assay with the different genotypes to analyze its influence on gene expression. Finally, we used siRNAs against the major transcription factors (TFs) predicted for these regions [peroxisome proliferator-activated receptor γ (PPARγ), Krüppel-Like Factor 4 (KLF4), and vitamin D receptor (VDR)] to assess EDN1 expression in cell culture and validate the binding sites. First, we detected a single nucleotide polymorphism (SNP) in the 5' untranslated region (UTR; rs397751713) and another in the 3'regulatory region (rs2859338) that altered luciferase activity in vitro depending on their genotype. We determined in silico that KLF4/PPARγ could bind to the rs397751713 and VDR to rs2859338. By using siRNAs and luciferase assays, we determined that PPARγ binds differentially to rs397751713. PPARγ and VDR Knock-Down (KD) increased the EDN1 mRNA levels and EDN1 production in porcine aortic endothelial cells (PAECs), while PPARγ and KLF4 KD increased the EDN1 production in HeLa. In conclusion, common variants in EDN1 regulatory regions could alter EDN1 levels. We were able to validate that PPARγ binds in rs397751713 and is a key regulator of EDN1. In addition, KLF4 and VDR regulate EDN1 production in a cell-dependent manner, but VDR does not bind directly to the regions we studied.
Collapse
Affiliation(s)
- Mauro Lago-Docampo
- CINBIO, Universidade de Vigo, Vigo, Spain
- Rare Diseases and Pediatric Medicine, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Carlos Solarat
- CINBIO, Universidade de Vigo, Vigo, Spain
- Rare Diseases and Pediatric Medicine, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Luis Méndez-Martínez
- Department of Biotechnology and Aquaculture, Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | - Adolfo Baloira
- Pneumology Department, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | - Diana Valverde
- CINBIO, Universidade de Vigo, Vigo, Spain
- Rare Diseases and Pediatric Medicine, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| |
Collapse
|
12
|
Machado RD, Southgate L. Pulmonary Arterial Hypertension: A Deeper Evaluation of Genetic Risk in the -Omics Era. Genes (Basel) 2021; 12:genes12111798. [PMID: 34828405 PMCID: PMC8619860 DOI: 10.3390/genes12111798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Rajiv D. Machado
- Institute of Medical and Biomedical Education, St George’s University of London, London SW17 0RE, UK;
- Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK
| | - Laura Southgate
- Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK
- Correspondence:
| |
Collapse
|