1
|
Gao Y, Lai J, Feng C, Li L, Zu Q, Li J, Du D. Transcriptional Analysis of Tissues in Tartary Buckwheat Seedlings Under IAA Stimulation. Genes (Basel) 2024; 16:30. [PMID: 39858577 PMCID: PMC11764492 DOI: 10.3390/genes16010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/27/2025] Open
Abstract
Background:Fagopyrum tataricum, commonly referred to as tartary buckwheat, is a cultivated medicinal and edible crop renowned for its economic and nutritional significance. Following the publication of the buckwheat genome, research on its functional genomics across various growth environments has gradually begun. Auxin plays a crucial role in many life processes. Analyzing the expression changes in tartary buckwheat after IAA treatment is of great significance for understanding its growth and environmental adaptability. Methods: This study investigated the changes in auxin response during the buckwheat seedling stage through high-throughput transcriptome sequencing and the identification and annotation of differentially expressed genes (DEGs) across three treatment stages. Results: After IAA treatment, there are 3355 DEGs in leaves and 3974 DEGs in roots identified. These DEGs are significantly enriched in plant hormone signaling, MAPK signaling pathways, phenylpropanoid biosynthesis, and flavonoid biosynthesis pathways. This result suggests a notable correlation between these tissues in buckwheat and their response to IAA, albeit with significant differences in response patterns. Additionally, the identification of tissue-specific expression genes in leaves and other tissues revealed distinct tissue variations. Conclusions: Following IAA treatment, an increase in tissue-specific expression genes observed, indicating that IAA significantly regulates the growth of buckwheat tissues. This study also validated certain genes, particularly those in plant hormone signaling pathways, providing a foundational dataset for the further analysis of buckwheat growth and tissue development and laying the groundwork for understanding buckwheat growth and development.
Collapse
Affiliation(s)
- Yingying Gao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jialing Lai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chenglu Feng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Luyang Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qihang Zu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Juan Li
- College of Nursing and Health Management & College of Life Science and Chemistry, Wuhan Donghu University, Wuhan 430212, China
- Innovation Institute for Biomedical Material, Wuhan Donghu University, Wuhan 430212, China
| | - Dengxiang Du
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
2
|
Zhang X, He W, Wang X, Duan Y, Li Y, Wang Y, Jiang Q, Liao B, Zhou S, Li Y. Genome-Wide Analyses of MADS-Box Genes Reveal Their Involvement in Seed Development and Oil Accumulation of Tea-Oil Tree ( Camellia oleifera). Int J Genomics 2024; 2024:3375173. [PMID: 39105136 PMCID: PMC11300058 DOI: 10.1155/2024/3375173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
The seeds of Camellia oleifera produce high amount of oil, which can be broadly used in the fields of food, industry, and medicine. However, the molecular regulation mechanisms of seed development and oil accumulation in C. oleifera are unclear. In this study, evolutionary and expression analyses of the MADS-box gene family were performed across the C. oleifera genome for the first time. A total of 86 MADS-box genes (ColMADS) were identified, including 60 M-type and 26 MIKC members. More gene duplication events occurred in M-type subfamily (6) than that in MIKC subfamily (2), and SEP-like genes were lost from the MIKCC clade. Furthermore, 8, 15, and 17 differentially expressed ColMADS genes (DEGs) were detected between three developmental stages of seed (S1/S2, S2/S3, and S1/S3), respectively. Among these DEGs, the STK-like ColMADS12 and TT16-like ColMADS17 were highly expressed during the seed formation (S1 and S2), agreeing with their predicted functions to positively regulate the seed organogenesis and oil accumulation. While ColMADS57 and ColMADS07 showed increasing expression level with the seed maturation (S2 and S3), conforming to their potential roles in promoting the seed ripening. In all, these results revealed a critical role of MADS-box genes in the C. oleifera seed development and oil accumulation, which will contribute to the future molecular breeding of C. oleifera.
Collapse
Affiliation(s)
- Xianzhi Zhang
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Heyuan Branch CenterGuangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517500, China
| | - Wenliang He
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xinyi Wang
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yongliang Duan
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yongjuan Li
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yi Wang
- School of Mechanic and Electronic EngineeringZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qingbin Jiang
- Research Institute of Tropical ForestryChinese Academy of Forestry, Guangzhou 510520, China
| | - Boyong Liao
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Sheng Zhou
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yongquan Li
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
3
|
Guan H, Yang X, Lin Y, Xie B, Zhang X, Ma C, Xia R, Chen R, Hao Y. The hormone regulatory mechanism underlying parthenocarpic fruit formation in tomato. FRONTIERS IN PLANT SCIENCE 2024; 15:1404980. [PMID: 39119498 PMCID: PMC11306060 DOI: 10.3389/fpls.2024.1404980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Parthenocarpic fruits, known for their superior taste and reliable yields in adverse conditions, develop without the need for fertilization or pollination. Exploring the physiological and molecular mechanisms behind parthenocarpic fruit development holds both theoretical and practical significance, making it a crucial area of study. This review examines how plant hormones and MADS-box transcription factors control parthenocarpic fruit formation. It delves into various aspects of plant hormones-including auxin, gibberellic acid, cytokinins, ethylene, and abscisic acid-ranging from external application to biosynthesis, metabolism, signaling pathways, and their interplay in influencing parthenocarpic fruit development. The review also explores the involvement of MADS family gene functions in these processes. Lastly, we highlight existing knowledge gaps and propose directions for future research on parthenocarpy.
Collapse
Affiliation(s)
- Hongling Guan
- College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Xiaolong Yang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yuxiang Lin
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Baoxing Xie
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xinyue Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Chongjian Ma
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Rui Xia
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yanwei Hao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Baranov D, Dolgov S, Timerbaev V. New Advances in the Study of Regulation of Tomato Flowering-Related Genes Using Biotechnological Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:359. [PMID: 38337892 PMCID: PMC10856997 DOI: 10.3390/plants13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
The tomato is a convenient object for studying reproductive processes, which has become a classic. Such complex processes as flowering and fruit setting require an understanding of the fundamental principles of molecular interaction, the structures of genes and proteins, the construction of signaling pathways for transcription regulation, including the synchronous actions of cis-regulatory elements (promoter and enhancer), trans-regulatory elements (transcription factors and regulatory RNAs), and transposable elements and epigenetic regulators (DNA methylation and acetylation, chromatin structure). Here, we discuss the current state of research on tomatoes (2017-2023) devoted to studying the function of genes that regulate flowering and signal regulation systems using genome-editing technologies, RNA interference gene silencing, and gene overexpression, including heterologous expression. Although the central candidate genes for these regulatory components have been identified, a complete picture of their relationship has yet to be formed. Therefore, this review summarizes the latest achievements related to studying the processes of flowering and fruit set. This work attempts to display the gene interaction scheme to better understand the events under consideration.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Sergey Dolgov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
5
|
Liang M, Du Z, Yang Z, Luo T, Ji C, Cui H, Li R. Genome-wide characterization and expression analysis of MADS-box transcription factor gene family in Perilla frutescens. FRONTIERS IN PLANT SCIENCE 2024; 14:1299902. [PMID: 38259943 PMCID: PMC10801092 DOI: 10.3389/fpls.2023.1299902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024]
Abstract
MADS-box transcription factors are widely involved in the regulation of plant growth, developmental processes, and response to abiotic stresses. Perilla frutescens, a versatile plant, is not only used for food and medicine but also serves as an economical oil crop. However, the MADS-box transcription factor family in P. frutescens is still largely unexplored. In this study, a total of 93 PfMADS genes were identified in P. frutescens genome. These genes, including 37 Type I and 56 Type II members, were randomly distributed across 20 chromosomes and 2 scaffold regions. Type II PfMADS proteins were found to contain a greater number of motifs, indicating more complex structures and diverse functions. Expression analysis revealed that most PfMADS genes (more than 76 members) exhibited widely expression model in almost all tissues. The further analysis indicated that there was strong correlation between some MIKCC-type PfMADS genes and key genes involved in lipid synthesis and flavonoid metabolism, which implied that these PfMADS genes might play important regulatory role in the above two pathways. It was further verified that PfMADS47 can effectively mediate the regulation of lipid synthesis in Chlamydomonas reinhardtii transformants. Using cis-acting element analysis and qRT-PCR technology, the potential functions of six MIKCC-type PfMADS genes in response to abiotic stresses, especially cold and drought, were studied. Altogether, this study is the first genome-wide analysis of PfMADS. This result further supports functional and evolutionary studies of PfMADS gene family and serves as a benchmark for related P. frutescens breeding studies.
Collapse
Affiliation(s)
- Mengjing Liang
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Zhongyang Du
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Ze Yang
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Tao Luo
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunli Ji
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Hongli Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| | - Runzhi Li
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| |
Collapse
|
6
|
Ezura K, Nomura Y, Ariizumi T. Molecular, hormonal, and metabolic mechanisms of fruit set, the ovary-to-fruit transition, in horticultural crops. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6254-6268. [PMID: 37279328 DOI: 10.1093/jxb/erad214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
Fruit set is the process by which the ovary develops into a fruit and is an important factor in determining fruit yield. Fruit set is induced by two hormones, auxin and gibberellin, and the activation of their signaling pathways, partly by suppressing various negative regulators. Many studies have investigated the structural changes and gene networks in the ovary during fruit set, revealing the cytological and molecular mechanisms. In tomato (Solanum lycopersicum), SlIAA9 and SlDELLA/PROCERA act as auxin and gibberellin signaling repressors, respectively, and are important regulators of the activity of transcription factors and downstream gene expression involved in fruit set. Upon pollination, SlIAA9 and SlDELLA are degraded, which subsequently activates downstream cascades and mainly contributes to active cell division and cell elongation, respectively, in ovaries during fruit setting. According to current knowledge, the gibberellin pathway functions as the most downstream signal in fruit set induction, and therefore its role in fruit set has been extensively explored. Furthermore, multi-omics analysis has revealed the detailed dynamics of gene expression and metabolites downstream of gibberellins, highlighting the rapid activation of central carbon metabolism. This review will outline the relevant mechanisms at the molecular and metabolic levels during fruit set, particularly focusing on tomato.
Collapse
Affiliation(s)
- Kentaro Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Research Fellow of Japan Society for Promotion of Science (JSPS), Kojimachi, Tokyo 102-0083, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yukako Nomura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
7
|
Tian S, Zhang Z, Qin G, Xu Y. Parthenocarpy in Cucurbitaceae: Advances for Economic and Environmental Sustainability. PLANTS (BASEL, SWITZERLAND) 2023; 12:3462. [PMID: 37836203 PMCID: PMC10574560 DOI: 10.3390/plants12193462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Parthenocarpy is an important agricultural trait that not only produces seedless fruits, but also increases the rate of the fruit set under adverse environmental conditions. The study of parthenocarpy in Cucurbitaceae crops has considerable implications for cultivar improvement. This article provides a comprehensive review of relevant studies on the parthenocarpic traits of several major Cucurbitaceae crops and offers a perspective on future developments and research directions.
Collapse
Affiliation(s)
- Shouwei Tian
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Zeliang Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yong Xu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| |
Collapse
|
8
|
Tran LT, Sugimoto K, Kasozi M, Mitalo OW, Ezura H. Pollination, pollen tube growth, and fertilization independently contribute to fruit set and development in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1205816. [PMID: 37416886 PMCID: PMC10319911 DOI: 10.3389/fpls.2023.1205816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023]
Abstract
In flowering plants, pollination, pollen tube growth, and fertilization are regarded as the first hierarchical processes of producing offspring. However, their independent contributions to fruit set and development remain unclear. In this study, we examined the effect of three different types of pollen, intact pollen (IP), soft X-ray-treated pollen (XP) and dead pollen (DP), on pollen tube growth, fruit development and gene expression in "Micro-Tom" tomato. Normal germination and pollen tube growth were observed in flowers pollinated with IP; pollen tubes started to penetrate the ovary at 9 h after pollination, and full penetration was achieved after 24 h (IP24h), resulting in ~94% fruit set. At earlier time points (3 and 6 h after pollination; IP3h and IP6h, respectively), pollen tubes were still in the style, and no fruit set was observed. Flowers pollinated with XP followed by style removal after 24 h (XP24h) also demonstrated regular pollen tubes and produced parthenocarpic fruits with ~78% fruit set. As expected, DP could not germinate and failed to activate fruit formation. Histological analysis of the ovary at 2 days after anthesis (DAA) revealed that IP and XP comparably increased cell layers and cell size; however, mature fruits derived from XP were significantly smaller than those derived from IP. Furthermore, there was a high correlation between seed number and fruit size in fruit derived from IP, illustrating the crucial role of fertilization in the latter stages of fruit development. RNA-Seq analysis was carried out in ovaries derived from IP6h, IP24h, XP24h and DP24h in comparison with emasculated and unpollinated ovaries (E) at 2 DAA. The results revealed that 65 genes were differentially expressed (DE) in IP6h ovaries; these genes were closely associated with cell cycle dormancy release pathways. Conversely, 5062 and 4383 DE genes were obtained in IP24h and XP24h ovaries, respectively; top enriched terms were mostly associated with cell division and expansion in addition to the 'plant hormone signal transduction' pathway. These findings indicate that full penetration of pollen tubes can initiate fruit set and development independently of fertilization, most likely by activating the expression of genes regulating cell division and expansion.
Collapse
Affiliation(s)
- Long T. Tran
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Koichi Sugimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Centre, University of Tsukuba, Tsukuba, Japan
| | - Michael Kasozi
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Oscar W. Mitalo
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Centre, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
9
|
Hu J, Li X, Sun TP. Four class A AUXIN RESPONSE FACTORs promote tomato fruit growth despite suppressing fruit set. NATURE PLANTS 2023; 9:706-719. [PMID: 37037878 DOI: 10.1038/s41477-023-01396-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 03/14/2023] [Indexed: 05/23/2023]
Abstract
In flowering plants, auxin produced in seeds after fertilization promotes fruit initiation. The application of auxin to unpollinated ovaries can also induce parthenocarpy (seedless fruit production). Previous studies have shown that auxin signalling components SlIAA9 and SlARF7 (a class A AUXIN RESPONSE FACTOR (ARF)) are key repressors of fruit initiation in tomato (Solanum lycopersicum). A similar repressive role of class A ARFs in fruit set has also been observed in other plant species. However, evidence is lacking for a role of any class A ARF in promoting fruit development as predicted in the current auxin signalling model. Here we generated higher-order tomato mutants of four class A SlARFs (SlARF5, SlARF7, SlARF8A and SlARF8B) and uncovered their precise combinatorial roles that lead to suppressing and promoting fruit development. All four class A SlARFs together with SlIAA9 inhibited fruit initiation but promoted subsequent fruit growth. Transgenic tomato lines expressing truncated SlARF8A/8B lacking the IAA9-interacting PB1 domain displayed strong parthenocarpy, further confirming the promoting role of SlARF8A/8B in fruit growth. Altering the doses of these four SlARFs led to biphasic fruit growth responses, showing their versatile dual roles as both negative and positive regulators. RNA-seq and chromatin immunoprecipitation-quantitative PCR analyses further identified SlARF8A/8B target genes, including those encoding MADS-BOX transcription factors (AG1, MADS2 and AGL6) that are key repressors of fruit set. These results support the idea that SlIAA9/SlARFs directly regulate the transcription of these MADS-BOX genes to inhibit fruit set. Our study reveals the previously unknown dual function of four class A SlARFs in tomato fruit development and illuminates the complex combinatorial effects of multiple ARFs in controlling auxin-mediated fruit set and fruit growth.
Collapse
Affiliation(s)
- Jianhong Hu
- Department of Biology, Duke University, Durham, NC, USA
| | - Xiao Li
- Department of Biology, Duke University, Durham, NC, USA
- School of Grassland Science, Beijing Forestry University, Beijing, P. R. China
| | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
10
|
Genome-Wide Identification and Expression of the Paulownia fortunei MADS-Box Gene Family in Response to Phytoplasma Infection. Genes (Basel) 2023; 14:genes14030696. [PMID: 36980968 PMCID: PMC10048600 DOI: 10.3390/genes14030696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Paulownia witches’ broom (PaWB), caused by phytoplasmas, is the most devastating infectious disease of Paulownia. Although a few MADS-box transcription factors have been reported to be involved in the formation of PaWB, there has been little investigation into all of the MADS-box gene family in Paulownia. The objective of this study is to identify the MADS-box gene family in Paulownia fortunei on a genome-wide scale and explore their response to PaWB infection. Bioinformatics software were used for identification, characterization, subcellular localization, phylogenetic analysis, the prediction of conserved motifs, gene structures, cis-elements, and protein-protein interaction network construction. The tissue expression profiling of PfMADS-box genes was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Transcriptome data and the protein interaction network prediction were combined to screen the genes associated with PaWB formation. We identified 89 MADS-box genes in the P. fortunei genome and categorized them into 14 subfamilies. The comprehensive analysis showed that segment duplication events had significant effects on the evolution of the PfMADS-box gene family; the motif distribution of proteins in the same subfamily are similar; development-related, phytohormone-responsive, and stress-related cis-elements were enriched in the promoter regions. The tissue expression pattern of PfMADS-box genes suggested that they underwent subfunctional differentiation. Three genes, PfMADS3, PfMADS57, and PfMADS87, might be related to the occurrence of PaWB. These results will provide a valuable resource to explore the potential functions of PfMADS-box genes and lay a solid foundation for understanding the roles of PfMADS-box genes in paulownia–phytoplasma interactions.
Collapse
|
11
|
Ya R, Li J, Zhang N, Yu Q, Xu W. Phenotypically abnormal cotyledonary Vitis vinifera embryos differ in anatomy, endogenous hormone levels and transcriptome profiles. TREE PHYSIOLOGY 2023; 43:467-485. [PMID: 36331330 DOI: 10.1093/treephys/tpac129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/05/2022] [Accepted: 10/25/2022] [Indexed: 05/03/2023]
Abstract
In many perennial fruit species, including grapevine (Vitis vinifera L.), the highly complex process of somatic embryogenesis (SE) can result in the formation of a deformed embryo, although the underlying reasons are still poorly understood. Here, V. vinifera cv. 'Chardonnay' cotyledonary embryos with distinct morphologies were used to address this issue. Normal cotyledonary embryos (NCEs) and elongated cotyledonary embryos (ECEs) were observed to have better-developed vasculature and shoot meristems than the vitrified cotyledonary embryos (VCEs) and fused cotyledonary embryos (FCEs), but ECEs were less developed. We determined that the morphological differences in these phenotypically abnormal embryos were likely associated with endogenous hormone levels, since concentrations of the phytohormones indoleacetic acid (IAA) and abscisic acid (ABA) in NCEs were higher than in the other three types. Comparative transcriptome analysis revealed large differences in gene expression of the hormone signaling pathways in normal and abnormal cotyledonary embryos. Weighted gene co-expression network analysis of the different cotyledonary types allowed the identification of co-regulated gene modules associated with SE, suggesting a role for ERF family genes and other transcription factors (TFs) in regulating morphology. Moreover, an analysis of morphology-specific gene expression indicated that the activation of a specific protein kinase, small heat shock proteins (sHSPs) and certain TFs was closely associated with the formation of normal cotyledonary embryos. Our comparative analyses provide insights into the gene networks regulating somatic cotyledon development and open new avenues for research into plant regeneration and functional genomic studies of malformed embryos.
Collapse
Affiliation(s)
- Rong Ya
- School of Agronomy, Ningxia University, No. 489 Helanshan West Road, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, No. 489 Helanshan West Road, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, No. 489 Helanshan West Road,Yinchuan, Ningxia 750021, China
| | - Junduo Li
- School of Agronomy, Ningxia University, No. 489 Helanshan West Road, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, No. 489 Helanshan West Road, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, No. 489 Helanshan West Road,Yinchuan, Ningxia 750021, China
| | - Ningbo Zhang
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, No. 489 Helanshan West Road, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, No. 489 Helanshan West Road,Yinchuan, Ningxia 750021, China
- School of Food & Wine, Ningxia University, No. 489 Helanshan West Road, Yinchuan, Ningxia 750021, China
| | - Qinhan Yu
- School of Agronomy, Ningxia University, No. 489 Helanshan West Road, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, No. 489 Helanshan West Road, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, No. 489 Helanshan West Road,Yinchuan, Ningxia 750021, China
| | - Weirong Xu
- School of Agronomy, Ningxia University, No. 489 Helanshan West Road, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, No. 489 Helanshan West Road, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, No. 489 Helanshan West Road,Yinchuan, Ningxia 750021, China
- School of Food & Wine, Ningxia University, No. 489 Helanshan West Road, Yinchuan, Ningxia 750021, China
| |
Collapse
|
12
|
Fahad M, Altaf MT, Jamil A, Basit A, Aslam MM, Liaqat W, Shah MN, Ullah I, Mohamed HI. Functional characterization of transcriptional activator gene SIARRI in tomato reveals its role in fruit growth and ripening. Transgenic Res 2023; 32:77-93. [PMID: 36806962 DOI: 10.1007/s11248-023-00337-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023]
Abstract
Auxins regulate several characteristics of plant development and growth. Here, we characterized a new transcriptional activator SIARRI which binds specific DNA sequences and was revealed in Arabidopsis (ARR1). SIARRI acts as a two-component response regulator and its Arabidopsis homologous gene is AT3G16857. It belongs to the subfamily of type-B response regulators in the cytokinin signaling pathway. The study aimed to characterize the transgenic Micro-Tom plants by the overexpression of Solanum lycopersicum two-component response regulator ARR1. Overexpression of SIARRI results in a pleiotropic phenotype during fruit development and ripening. This study indicates that SIARRI is a primary regulator of leaf morphology and fruit development. Moreover, overexpressed plants showed variations in growth related to auxin as well as shorter hypocotyl elongation, enlarged leaf vascularization, and decreased apical dominance. The qRT-PCR investigation revealed that expression was downregulated at the breaker stage and high at Br+6 at various stages of fruit growth and ripening. In contrast to the fruit color, lycopene and β-carotene concentrations in red-yellow overexpression line fruits were reduced significantly, and also slightly reduced in some red fruits. The quantity of β-carotene in the transgenic fruits was lower than that of lycopene. This study showed that this gene might be a new transcriptional activator in fruit development and ripening. Furthermore, this study will provide new insights into tomato fruit ripening.
Collapse
Affiliation(s)
- Muhammad Fahad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Tanveer Altaf
- Department of Plant Protection, Faculty of Agricultural Sciences and Technology, Sivas University of Science and Technology, 58140, Sivas, Turkey
| | - Amna Jamil
- Department of Horticulture, MNS University of Agriculture, Multan, 60000, Pakistan
| | - Abdul Basit
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Muhammad Mudassir Aslam
- Department of Plant Breeding and Genetics, University College of Agriculture, Bahauddin Zakariya University, Multan, Pakistan
| | - Waqas Liaqat
- Department of Field Crops, Faculty of Agriculture, Institute of Natural and Applied Sciences, Çukurova University, 01330, Adana, Turkey
| | - Muhammad Nadeem Shah
- North Florida Research and Education Centre (NFREC), University of Florida, 155 Research Road, Quincy, FL, 32351, USA
| | - Izhar Ullah
- Department of Horticulture, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| |
Collapse
|
13
|
Kaur H, Manchanda P, Kumar P, Dhall RK, Chhuneja P, Weng Y. Genome-wide identification and characterization of parthenocarpic fruit set-related gene homologs in cucumber (Cucumis sativus L.). Sci Rep 2023; 13:2403. [PMID: 36765113 PMCID: PMC9918540 DOI: 10.1038/s41598-023-29660-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Cucumber (Cucumis sativus L.), a major horticultural crop, in the family Cucurbitaceae is grown and consumed globally. Parthenocarpy is an ideal trait for many fruit and vegetables which produces seedless fruit desired by consumers. The seedlessness occurs when fruit develops without fertilization which can be either natural or induced. So far, a limited number of genes regulating parthenocarpic fruit set have been reported in several fruit or vegetable crops, most of which are involved in hormone biosynthesis or signalling. Although parthenocarpic cucumber has been widely used in commercial production for a long time; its genetic basis is not well understood. In this study, we retrieved thirty five parthenocarpy fruit-set related genes (PRGs) from bibliomic data in various plants. Thirty-five PRG homologs were identified in the cucumber genome via homology-based search. An in silico analysis was performed on phylogenetic tree, exon-intron structure, cis-regulatory elements in the promoter region, and conserved domains of their deduced proteins, which provided insights into the genetic make-up of parthenocarpy-related genes in cucumber. Simple sequence repeat (SSR) sequences were mined in these PRGs, and 31 SSR markers were designed. SSR genotyping identified three SSRs in two polymorphic genes. Quantitative real-time PCR of selected genes was conducted in five cucumber lines with varying degrees of parthenocarpic fruit set capacities, which revealed possible association of their expression with parthenocarpy. The results revealed that homologs CsWD40 and CsPIN-4 could be considered potential genes for determination of parthenocarpy as these genes showed parental polymorphism and differential gene expression in case of parthenocarpic and non-parthenocarpic parents.
Collapse
Affiliation(s)
- Harleen Kaur
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, India
| | - Pooja Manchanda
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Pankaj Kumar
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, India
| | - Rajinder Kumar Dhall
- Department of Vegetable Science, College of Horticulture and Forestry, Punjab Agricultural University, Ludhiana, 141004, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, India
| | - Yiqun Weng
- USDA-ARS Vegetable Crops Research Unit, Department of Horticulture, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
14
|
Ma Z, Ma L, Zhou J. Applications of CRISPR/Cas genome editing in economically important fruit crops: recent advances and future directions. MOLECULAR HORTICULTURE 2023; 3:1. [PMID: 37789479 PMCID: PMC10515014 DOI: 10.1186/s43897-023-00049-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/10/2023] [Indexed: 10/05/2023]
Abstract
Fruit crops, consist of climacteric and non-climacteric fruits, are the major sources of nutrients and fiber for human diet. Since 2013, CRISPR/Cas (Clustered Regularly Interspersed Short Palindromic Repeats and CRISPR-Associated Protein) genome editing system has been widely employed in different plants, leading to unprecedented progress in the genetic improvement of many agronomically important fruit crops. Here, we summarize latest advancements in CRISPR/Cas genome editing of fruit crops, including efforts to decipher the mechanisms behind plant development and plant immunity, We also highlight the potential challenges and improvements in the application of genome editing tools to fruit crops, including optimizing the expression of CRISPR/Cas cassette, improving the delivery efficiency of CRISPR/Cas reagents, increasing the specificity of genome editing, and optimizing the transformation and regeneration system. In addition, we propose the perspectives on the application of genome editing in crop breeding especially in fruit crops and highlight the potential challenges. It is worth noting that efforts to manipulate fruit crops with genome editing systems are urgently needed for fruit crops breeding and demonstration.
Collapse
Affiliation(s)
- Zhimin Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Lijing Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Junhui Zhou
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China.
| |
Collapse
|
15
|
Jahed KR, Hirst PM. Fruit growth and development in apple: a molecular, genomics and epigenetics perspective. FRONTIERS IN PLANT SCIENCE 2023; 14:1122397. [PMID: 37123845 PMCID: PMC10130390 DOI: 10.3389/fpls.2023.1122397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Fruit growth and development are physiological processes controlled by several internal and external factors. This complex regulatory mechanism comprises a series of events occurring in a chronological order over a growing season. Understanding the underlying mechanism of fruit development events, however, requires consideration of the events occurring prior to fruit development such as flowering, pollination, fertilization, and fruit set. Such events are interrelated and occur in a sequential order. Recent advances in high-throughput sequencing technology in conjunction with improved statistical and computational methods have empowered science to identify some of the major molecular components and mechanisms involved in the regulation of fruit growth and have supplied encouraging successes in associating genotypic differentiation with phenotypic observations. As a result, multiple approaches have been developed to dissect such complex regulatory machinery and understand the genetic basis controlling these processes. These methods include transcriptomic analysis, quantitative trait loci (QTLs) mapping, whole-genome approach, and epigenetics analyses. This review offers a comprehensive overview of the molecular, genomic and epigenetics perspective of apple fruit growth and development that defines the final fruit size and provides a detailed analysis of the mechanisms by which fruit growth and development are controlled. Though the main emphasis of this article is on the molecular, genomic and epigenetics aspects of fruit growth and development, we will also deliver a brief overview on events occurring prior to fruit growth.
Collapse
|
16
|
Montoya C, Mejia-Alvarado FS, Botero-Rozo D, Ayala-Diaz IM, Romero HM. Parthenocarpy-related genes induced by naphthalene acetic acid in oil palm interspecific O × G [ Elaeis oleifera (Kunth) Cortés × Elaeis guineensis Jacq.] hybrids. Front Genet 2023; 14:1099489. [PMID: 37021004 PMCID: PMC10067579 DOI: 10.3389/fgene.2023.1099489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/08/2023] [Indexed: 04/07/2023] Open
Abstract
Parthenocarpy is the development without fertilization of seedless fruits. In the oil palm industry, the development of parthenocarpic fruits is considered an attractive option to increase palm oil production. Previous studies have shown the application of synthetic auxins in Elaeis guineensis, and interspecific O×G hybrids (Elaeis oleifera (Kunth) Cortés × E. guineensis Jacq.) induces parthenocarpy. The aim of this study was to identify the molecular mechanism through transcriptomics and biology system approach to responding to how the application of NAA induces parthenocarpic fruits in oil palm O×G hybrids. The transcriptome changes were studied in three phenological stages (PS) of the inflorescences: i) PS 603, pre-anthesis III, ii) PS 607, anthesis, and iii) PS 700, fertilized female flower. Each PS was treated with NAA, Pollen, and control (any application). The expression profile was studied at three separate times: five minutes (T0), 24 hours (T1), and 48 h post-treatment (T2). The RNA sequencing (RNA seq) approach was used with 27 oil palm O×G hybrids for a total of 81 raw samples. RNA-Seq showed around 445,920 genes. Numerous differentially expressed genes (DEGs) were involved in pollination, flowering, seed development, hormone biosynthesis, and signal transduction. The expression of the most relevant transcription factors (TF) families was variable and dependent on the stage and time post-treatment. In general, NAA treatment expressed differentially more genes than Pollen. Indeed, the gene co-expression network of Pollen was built with fewer nodes than the NAA treatment. The transcriptional profiles of Auxin-responsive protein and Gibberellin-regulated genes involved in parthenocarpy phenomena agreed with those previously reported in other species. The expression of 13 DEGs was validated by RT-qPCR analysis. This detailed knowledge about the molecular mechanisms involved in parthenocarpy could be used to facilitate the future development of genome editing techniques that enable the production of parthenocarpic O×G hybrid cultivars without growth regulator application.
Collapse
Affiliation(s)
- Carmenza Montoya
- Oil Palm Biology and Breeding Research Program, Colombian Oil Palm Research Center—Cenipalma, Bogotá, Colombia
| | | | - David Botero-Rozo
- Oil Palm Biology and Breeding Research Program, Colombian Oil Palm Research Center—Cenipalma, Bogotá, Colombia
| | - Ivan Mauricio Ayala-Diaz
- Oil Palm Biology and Breeding Research Program, Colombian Oil Palm Research Center—Cenipalma, Bogotá, Colombia
| | - Hernan Mauricio Romero
- Oil Palm Biology and Breeding Research Program, Colombian Oil Palm Research Center—Cenipalma, Bogotá, Colombia
- Department of Biology, Universidad Nacional de Colombia, Bogotá, Colombia
- *Correspondence: Hernan Mauricio Romero,
| |
Collapse
|
17
|
Salazar‐Sarasua B, López‐Martín MJ, Roque E, Hamza R, Cañas LA, Beltrán JP, Gómez‐Mena C. The tapetal tissue is essential for the maintenance of redox homeostasis during microgametogenesis in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1281-1297. [PMID: 36307971 PMCID: PMC10100220 DOI: 10.1111/tpj.16014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The tapetum is a specialized layer of cells within the anther, adjacent to the sporogenous tissue. During its short life, it provides nutrients, molecules and materials to the pollen mother cells and microsporocytes, being essential during callose degradation and pollen wall formation. The interaction between the tapetum and sporogenous cells in Solanum lycopersicum (tomato) plants, despite its importance for breeding purposes, is poorly understood. To investigate this process, gene editing was used to generate loss-of-function mutants that showed the complete and specific absence of tapetal cells. These plants were obtained targeting the previously uncharacterized Solyc03g097530 (SlTPD1) gene, essential for tapetum specification in tomato plants. In the absence of tapetum, sporogenous cells developed and callose deposition was observed. However, sporocytes failed to undergo the process of meiosis and finally degenerated, leading to male sterility. Transcriptomic analysis conducted in mutant anthers lacking tapetum revealed the downregulation of a set of genes related to redox homeostasis. Indeed, mutant anthers showed a reduction in the accumulation of reactive oxygen species (ROS) at early stages and altered activity of ROS-scavenging enzymes. The results obtained highlight the importance of the tapetal tissue in maintaining redox homeostasis during male gametogenesis in tomato plants.
Collapse
Affiliation(s)
- Blanca Salazar‐Sarasua
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de Valencia)C/Ingeniero Fausto Elio s/n Edif. 8EValencia46022Spain
| | - María Jesús López‐Martín
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de Valencia)C/Ingeniero Fausto Elio s/n Edif. 8EValencia46022Spain
| | - Edelín Roque
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de Valencia)C/Ingeniero Fausto Elio s/n Edif. 8EValencia46022Spain
| | - Rim Hamza
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de Valencia)C/Ingeniero Fausto Elio s/n Edif. 8EValencia46022Spain
| | - Luis Antonio Cañas
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de Valencia)C/Ingeniero Fausto Elio s/n Edif. 8EValencia46022Spain
| | - José Pío Beltrán
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de Valencia)C/Ingeniero Fausto Elio s/n Edif. 8EValencia46022Spain
| | - Concepción Gómez‐Mena
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de Valencia)C/Ingeniero Fausto Elio s/n Edif. 8EValencia46022Spain
| |
Collapse
|
18
|
Tang N, Cao Z, Wu P, Zhang X, Lou J, Liu Y, Wang Q, Hu Y, Si S, Sun X, Chen Z. Genome-wide identification, interaction of the MADS-box proteins in Zanthoxylum armatum and functional characterization of ZaMADS80 in floral development. FRONTIERS IN PLANT SCIENCE 2022; 13:1038828. [PMID: 36507394 PMCID: PMC9732391 DOI: 10.3389/fpls.2022.1038828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
As a typical dioecious species, Zanthoxylum armatum establishes apomictic reproduction, hence only female trees are cultivated. However, male and hermaphrodite flowers have recently appeared in female plants, resulting in a dramatic yield reduction. To date, the genetic basis underlying sex determination and apomixis in Z. armatum has been largely unknown. Here, we observed abortion of the stamen or carpel prior to primordium initiation, thus corroborating the potential regulation of MADS-box in sex determination. In Z. armatum, a total of 105 MADS-box genes were identified, harboring 86 MIKC-type MADSs with lack of FLC orthologues. Transcriptome analysis revealed candidate MADSs involved in floral organ identity, including ten male-biased MADSs, represented by ZaMADS92/81/75(AP3/PI-like), and twenty-six female-specified, represented by ZaMADS80/49 (STK/AGL11-like) and ZaMADS42 (AG-like). Overexpressing ZaMADS92 resulted in earlier flowering, while ZaMADS80 overexpression triggered precocious fruit set and parthenocarpy as well as dramatic modifications in floral organs. To characterize their regulatory mechanisms, a comprehensive protein-protein interaction network of the represented MADSs was constructed based on yeast two-hybrid and bimolecular fluorescence complementation assays. Compared with model plants, the protein interaction patterns in Z. armatum exhibited both conservation and divergence. ZaMADS70 (SEP3-like) interacted with ZaMADS42 and ZaMADS48 (AP3-like) but not ZaMADS40 (AP1-like), facilitating the loss of petals in Z. armatum. The ZaMADS92/ZaMADS40 heterodimer could be responsible for accelerating flowering in ZaMADS92-OX lines. Moreover, the interactions between ZaMADS80 and ZaMADS67(AGL32-like) might contribute to apomixis. This work provides new insight into the molecular mechanisms of MADS-boxes in sex organ identity in Z. armatum.
Collapse
Affiliation(s)
- Ning Tang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Zhengyan Cao
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Peiyin Wu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Xian Zhang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Juan Lou
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Yanni Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
- College of Biology and Food Engineering, Chongqing Three Georges University, Chongqing, China
| | - Qiyao Wang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Yang Hu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Shuo Si
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Xiaofan Sun
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Zexiong Chen
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| |
Collapse
|
19
|
Genome-Wide Identification, Evolution, and Expression Characterization of the Pepper (Capsicum spp.) MADS-box Gene Family. Genes (Basel) 2022; 13:genes13112047. [PMID: 36360285 PMCID: PMC9690561 DOI: 10.3390/genes13112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
MADS domain transcription factors play roles throughout the whole lifecycle of plants from seeding to flowering and fruit-bearing. However, systematic research into MADS-box genes of the economically important vegetable crop pepper (Capsicum spp.) is still lacking. We identified 174, 207, and 72 MADS-box genes from the genomes of C. annuum, C. baccatum, and C. chinense, respectively. These 453 MADS-box genes were divided into type I (Mα, Mβ, Mγ) and type II (MIKC* and MIKCC) based on their phylogenetic relationships. Collinearity analysis identified 144 paralogous genes and 195 orthologous genes in the three Capsicum species, and 70, 114, and 10 MADS-box genes specific to C. annuum, C. baccatum, and C. chinense, respectively. Comparative genomic analysis highlighted functional differentiation among homologous MADS-box genes during pepper evolution. Tissue expression analysis revealed three main expression patterns: highly expressed in roots, stems, leaves, and flowers (CaMADS93/CbMADS35/CcMADS58); only expressed in roots; and specifically expressed in flowers (CaMADS26/CbMADS31/CcMADS11). Protein interaction network analysis showed that type II CaMADS mainly interacted with proteins related to flowering pathway and flower organ development. This study provides the basis for an in-depth study of the evolutionary features and biological functions of pepper MADS-box genes.
Collapse
|
20
|
Vignati E, Lipska M, Dunwell JM, Caccamo M, Simkin AJ. Options for the generation of seedless cherry, the ultimate snacking product. PLANTA 2022; 256:90. [PMID: 36171415 PMCID: PMC9519733 DOI: 10.1007/s00425-022-04005-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/21/2022] [Indexed: 05/09/2023]
Abstract
This manuscript identifies cherry orthologues of genes implicated in the development of pericarpic fruit and pinpoints potential options and restrictions in the use of these targets for commercial exploitation of parthenocarpic cherry fruit. Cherry fruit contain a large stone and seed, making processing of the fruit laborious and consumption by the consumer challenging, inconvenient to eat 'on the move' and potentially dangerous for children. Availability of fruit lacking the stone and seed would be potentially transformative for the cherry industry, since such fruit would be easier to process and would increase consumer demand because of the potential reduction in costs. This review will explore the background of seedless fruit, in the context of the ambition to produce the first seedless cherry, carry out an in-depth analysis of the current literature around parthenocarpy in fruit, and discuss the available technology and potential for producing seedless cherry fruit as an 'ultimate snacking product' for the twenty-first century.
Collapse
Affiliation(s)
- Edoardo Vignati
- NIAB East Malling, Department of Genetics, Genomics and Breeding, New Road, West Malling, Kent, ME19 6BJ, UK
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading, Berkshire, RG6 6EU, UK
| | - Marzena Lipska
- NIAB East Malling, Department of Genetics, Genomics and Breeding, New Road, West Malling, Kent, ME19 6BJ, UK
| | - Jim M Dunwell
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading, Berkshire, RG6 6EU, UK
| | - Mario Caccamo
- NIAB, Cambridge Crop Research, Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Andrew J Simkin
- NIAB East Malling, Department of Genetics, Genomics and Breeding, New Road, West Malling, Kent, ME19 6BJ, UK.
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
| |
Collapse
|
21
|
Transcriptomic, Hormonomic and Metabolomic Analyses Highlighted the Common Modules Related to Photosynthesis, Sugar Metabolism and Cell Division in Parthenocarpic Tomato Fruits during Early Fruit Set. Cells 2022; 11:cells11091420. [PMID: 35563726 PMCID: PMC9102895 DOI: 10.3390/cells11091420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/09/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Parthenocarpy, the pollination-independent fruit set, can raise the productivity of the fruit set even under adverse factors during the reproductive phase. The application of plant hormones stimulates parthenocarpy, but artificial hormones incur extra financial and labour costs to farmers and can induce the formation of deformed fruit. This study examines the performance of parthenocarpic mutants having no transcription factors of SlIAA9 and SlTAP3 and sldella that do not have the protein-coding gene, SlDELLA, in tomato (cv. Micro-Tom). At 0 day after the flowering (DAF) stage and DAFs after pollination, the sliaa9 mutant demonstrated increased pistil development compared to the other two mutants and wild type (WT). In contrast to WT and the other mutants, the sliaa9 mutant with pollination efficiently stimulated the build-up of auxin and GAs after flowering. Alterations in both transcript and metabolite profiles existed for WT with and without pollination, while the three mutants without pollination demonstrated the comparable metabolomic status of pollinated WT. Network analysis showed key modules linked to photosynthesis, sugar metabolism and cell proliferation. Equivalent modules were noticed in the famous parthenocarpic cultivars ‘Severianin’, particularly for emasculated samples. Our discovery indicates that controlling the genes and metabolites proffers future breeding policies for tomatoes.
Collapse
|
22
|
Htwe YM, Shi P, Zhang D, Li Z, Xiao Y, Yang Y, Lei X, Wang Y. Programmed Cell Death May Be Involved in the Seedless Phenotype Formation of Oil Palm. FRONTIERS IN PLANT SCIENCE 2022; 13:832017. [PMID: 35401608 PMCID: PMC8984474 DOI: 10.3389/fpls.2022.832017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Oil palm (Elaeis guineensis Jacq.) is a well-known vegetable oil-yielding crop. Seedlessness is one of the most prominent traits in oil palm due to its low processing costs and high oil content. Nevertheless, an extensive study on molecular mechanisms regulating seedless phenotype formation in oil palm is very limited so far. In this study, stigma, style, and ovary from seedless and seeded (Tenera and Pisifera) oil palm trees were used to investigate the possible mechanism. Results showed that non-pollination resulted in no fruits, and self- and cross-pollinations resulted in seedless fruits, while boron treatment had no effect on seedless phenotype formation, implying that seedless trees have incomplete self and outcrossing incompatibility. Furthermore, the transcriptome data analysis highlighted eight programmed cell death (PCD) genes and three groups of PCD-related genes: 4-coumarate-CoA ligase (4CL), S-RNase, and MADS-box. The majority of these genes were significantly up-regulated in the stigma and style of Seedless palm trees compared to Tenera and Pisifera. In addition, the co-expression network analysis confirmed the significant correlation among these genes. Moreover, two simple sequence repeats (SSR) markers (S41 and S44) were developed to identify the seedless phenotype. The up-regulation of 4CL and MADS-box TFs activated the expression of PCD genes; on the other hand, S-RNase resulted in pollen tube RNA degradation and triggered PCD. While the link between PCD and seedless phenotype formation in oil palm has not been extensively studied to date, these findings suggest a role of PCD in pollen tube lethality, leading to double fertilization failure and the seedless phenotype.
Collapse
Affiliation(s)
- Yin Min Htwe
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Peng Shi
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Dapeng Zhang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Zhiying Li
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Yong Xiao
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Yaodong Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Xintao Lei
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- Tropical Crops Genetic Resources Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yong Wang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| |
Collapse
|
23
|
Zhang S, Gu X, Shao J, Hu Z, Yang W, Wang L, Su H, Zhu L. Auxin Metabolism Is Involved in Fruit Set and Early Fruit Development in the Parthenocarpic Tomato "R35-P". FRONTIERS IN PLANT SCIENCE 2021; 12:671713. [PMID: 34408758 PMCID: PMC8365229 DOI: 10.3389/fpls.2021.671713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Parthenocarpic tomato can set fruit and develop without pollination and exogenous hormone treatments under unfavorable environmental conditions, which is beneficial to tomato production from late fall to early spring in greenhouses. In this study, the endogenous hormones in the ovaries of the parthenocarpic tomato line "R35-P" (stigma removed or self-pollination) and the non-parthenocarpic tomato line "R35-N" (self-pollination) at four stages between preanthesis and postanthesis investigated, using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). A nearly twofold IAA (indoleacetic acid) content was found in "R35-P" rather than in "R35-N" at -2 and 0 days after anthesis (DAA). Except at -2 DAA, a lower ABA (abscisic acid) content was observed in Pe (stigma removed in "R35-P") compared to that in Ps (self-pollination in "R35-P") or CK (self-pollination in "R35-N"). After pollination, although the content of GA1 (gibberellins acid 1) in CK increased, the levels of GAs (gibberellins acids) were notably low. At all four stages, a lower SA (salicylic acid) content was found in Ps and CK than in Pe, while the content and the change trend were similar in Ps and CK. The variation tendencies of JA (jasmonic acid) varied among Pe, Ps, and CK at the studied periods. Furthermore, KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses of transcriptomic data identified 175 differentially expressed genes (DEGs) related to plant hormone signal transduction, including 63 auxin-related genes, 27 abscisic acid-related genes, 22 ethylene-related genes, 16 cytokinin-related genes, 16 salicylic acid-related genes, 14 brassinosteroid-related genes, 13 jasmonic acid-related genes, and 4 gibberellin-related genes at -2 DAA and 0 DAA. Our results suggest that the fate of a fruit set or degeneration occurred before anthesis in tomato. Auxins, whose levels were independent of pollination and fertilization, play prominent roles in controlling a fruit set in "R35-P," and other hormones are integrated in a synergistic or antagonistic way.
Collapse
Affiliation(s)
- Shaoli Zhang
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), College of Agriculture, Ludong University, Yantai, China
- Institute of Vegetable, Gansu Academy of Agricultural Science, Lanzhou, China
| | - Xin Gu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Jingcheng Shao
- Institute of Vegetable, Gansu Academy of Agricultural Science, Lanzhou, China
| | - Zhifeng Hu
- Institute of Vegetable, Gansu Academy of Agricultural Science, Lanzhou, China
| | - Wencai Yang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Liping Wang
- Agricultural and Rural Bureau of Shouguang, Shouguang, China
| | - Hongyan Su
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), College of Agriculture, Ludong University, Yantai, China
| | - Luying Zhu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), College of Agriculture, Ludong University, Yantai, China
| |
Collapse
|