1
|
Pan S, Yu W, Zhang J, Guo Y, Qiao X, Xu P, Zhai Y. Environmental chemical TCPOBOP exposure alters milk liposomes and offspring growth trajectories in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116061. [PMID: 38340598 DOI: 10.1016/j.ecoenv.2024.116061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Exposure to environmental endocrine disruptors (EEDs) has become a global health concern, and EEDs are known to be potent inducers of constitutive androstane receptor (CAR). 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP, hereafter abbreviated as TC), a specific ligand for CAR, has been considered as a potential EED. Here, we analyzed the effect of TC exposure to female mice on the histological morphology of their alveoli in the basic unit of lactation. We quantified differences in the milk metabolome of the control and TC-exposed group while assessing the correlations between metabolites and neonatal growth. Mammary histological results showed that TC exposure inhibited alveolar development. Based on the milk metabolomic data, we identified a total of 1505 differential metabolites in both the positive and negative ion mode, which indicated that TC exposure affected milk composition. As expected, the differential metabolites were significantly enriched in the drug metabolism pathway. Further analyses revealed that differential metabolites were significantly enriched in multiple lipid metabolic pathways, such as fatty acid biosynthesis, suggesting that most differential metabolites were concentrated in lipids. Simultaneously, a quantitative analysis showed that TC exposure led to a decrease in the relative abundance of total milk lipids, affecting the proportion of some lipid subclasses. Notably, a portion of lipid metabolites were associated with neonatal growth. Taken together, these findings suggest that TC exposure may affect milk lipidomes, resulting in the inability of mothers to provide adequate nutrients, ultimately affecting the growth and health of their offspring.
Collapse
Affiliation(s)
- Shijia Pan
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Wen Yu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Jia Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yuan Guo
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Xiaoxiao Qiao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Pengfei Xu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Yonggong Zhai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
2
|
Chen L, Taniguchi H, Bagnicka E. Microproteomic-Based Analysis of the Goat Milk Protein Synthesis Network and Casein Production Evaluation. Foods 2024; 13:619. [PMID: 38397596 PMCID: PMC10887518 DOI: 10.3390/foods13040619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Goat milk has been consumed by humans since ancient times and is highly nutritious. Its quality is mainly determined by its casein content. Milk protein synthesis is controlled by a complex network with many signal pathways. Therefore, the aim of our study is to clearly depict the signal pathways involved in milk protein synthesis in goat mammary epithelial cells (GMECs) using state-of-the-art microproteomic techniques and to identify the key genes involved in the signal pathway. The microproteomic analysis identified more than 2253 proteins, with 323 pathways annotated from the identified proteins. Knockdown of IRS1 expression significantly influenced goat casein composition (α, β, and κ); therefore, this study also examined the insulin receptor substrate 1 (IRS1) gene more closely. A total of 12 differential expression proteins (DEPs) were characterized as upregulated or downregulated in the IRS1-silenced sample compared to the negative control. The enrichment and signal pathways of these DEPs in GMECs were identified using GO annotation and KEGG, as well as KOG analysis. Our findings expand our understanding of the functional genes involved in milk protein synthesis in goats, paving the way for new approaches for modifying casein content for the dairy goat industry and milk product development.
Collapse
Affiliation(s)
- Li Chen
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland;
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Emilia Bagnicka
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| |
Collapse
|
3
|
Wu Y, Sun Y, Chen R, Qiao Y, Zhang Q, Li Q, Wang X, Pan Y, Li S, Wang Z. Analysis for lipid nutrient differences in the milk of 13 species from a quantitative non-targeted lipidomics perspective. Food Chem X 2023; 20:101024. [PMID: 38144754 PMCID: PMC10740049 DOI: 10.1016/j.fochx.2023.101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Lipids are essential organic components in milk and have been associated with various health benefits for newborns. However, a comprehensive analysis of lipid profiles across multiple species and levels has been lacking. In this study, we employed liquid chromatography-tandem mass spectrometry (LC-MS/MS) to accurately determine the absolute content of lipid molecules. It revealed that ruminants exhibit a higher concentration of short-chain fatty acids compared to non-ruminants. Additionally, we identified ALC (camel), MGH (horse), and DZD (donkey) as species that display similarities to components found in human milk fat. Remarkably, it reveals that porcine milk fat is characterized by long chain lengths, low saturation, and a high proportion of essential fatty acids. PS (22:5_18:2) could potentially serve as a biomarker in porcine milk. These unique characteristics present potential opportunities for the utilization of porcine milk. Overall, our findings provide valuable insights into the lipidomics profiles of milk from different species.
Collapse
Affiliation(s)
| | | | | | - Yanjun Qiao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiu Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qian Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaowei Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuan Pan
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Siyi Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
4
|
Mirzaei-Alamouti H, Hadionnejad R, Abdollahi A, Bahari A, Fatahnia F, Masoumi R, Green MP, Vazirigohar M, Mansouryar M. Pre- and post-weaning nutrition status affects sheep mammary gland morphology and promotes differential gene expression. Anim Biotechnol 2023; 34:1686-1693. [PMID: 34985376 DOI: 10.1080/10495398.2021.2020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Little is known about how varying the plane of nutrition before and after weaning can influence gene expression that drives mammary gland development (MGD). Therefore, the aim of this study was to investigate this paradigm in a seasonal sheep breed. Forty pre-weaning 30-day old Kurdish female lambs were fed either a low-nutrient and protein (L; 2.0 Mcal ME/kg DM; 8.70% crude protein [CP]) or high-nutrient and protein diet (H; 2.5 Mcal ME/kg DM; 14.80% CP). At d 120 (weaning), lambs were allocated into a 2 × 2 arrangement based on pre- and post-weaning diets, resulting in four groups (LL, LH, HL, HH). On d 210, mammary biopsy samples were taken for histomorphological and gene expression studies. Alveoli were larger in HH compared with all other groups (p < 0.05). Whilst estrogen receptor-alpha, progesterone receptor, growth hormone receptor and insulin-like growth factor binding protein-1 gene expression was modulated depending on pre- or post-weaning nutritional levels (p < 0.01). Overall, a consistent high plane of nutrition promoted MGD, with more a complex relationship evident between the expression of genes critical for mammary gland function and development. These findings provide scope for future tailored nutritional strategies to optimize both liveweight gain and MGD.
Collapse
Affiliation(s)
- H Mirzaei-Alamouti
- Department of Animal Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - R Hadionnejad
- Department of Animal Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - A Abdollahi
- Department of Animal Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | - A Bahari
- Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan, Iran
| | - F Fatahnia
- Department of Animal Science, Ilam University, Ilam, Iran
| | - R Masoumi
- Department of Animal Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - M P Green
- School of BioSciences, University of Melbourne, Melbourne, Australia
| | - M Vazirigohar
- Zist Dam Group, University Incubator Center, University of Zanjan, Zanjan, Iran
| | - M Mansouryar
- Zist Dam Group, University Incubator Center, University of Zanjan, Zanjan, Iran
| |
Collapse
|
5
|
Yang Y, Liu C, Zhang C, Xu Z, Zhang L, Cui Y, Wang C, Lin Y, Hou X. Acetate Upregulates GPR43 Expression and Function via PI3K-AKT-SP1 Signaling in Mammary Epithelial Cells during Milk Fat Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16003-16015. [PMID: 37870996 DOI: 10.1021/acs.jafc.3c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
This study investigated the mechanism underlying acetate-induced orphan G-protein-coupled receptor 43 (GPR43) expression and milk fat production. The mammary epithelial cells of dairy cows were treated with acetate, and the effects of GPR43 on acetate uptake and the expression of lipogenesis-related genes were determined by gas chromatography and quantitative polymerase chain reaction (qPCR), respectively. RNAi, inhibitor treatment, and luciferase assay were used to determine the effect of phosphoinositide 3-kinase-protein kinase B-specificity protein 1 (PI3K-AKT-SP1) signaling on acetate-induced GPR43 expression and function. The results showed that GPR43 was highly expressed in lactating cow mammary tissues, which was related to milk fat synthesis. 12 mM acetate significantly increased the GPR43 expression in mammary epithelial cells of dairy cows. In acetate-treated cells, GPR43 overexpression significantly increased the cellular uptake of acetate, the intracellular triacylglycerol (TAG) content, and acetate-induced lipogenesis gene expression. Acetate activated PI3K-AKT signaling and promoted SP1 translocation from the cytosol into the nucleus, where SP1 bound to the GPR43 promoter and upregulated GPR43 transcription. Moreover, the activation of PI3K-AKT-SP1 by acetate facilitated the trafficking of GPR43 from the cytosol to the plasma membrane. In conclusion, acetate upregulated GPR43 expression and function via PI3K-AKT-SP1 signaling in mammary epithelial cells, thereby increasing milk fat synthesis. These results provide an experimental strategy for improving milk lipid synthesis, which is important to the dairy industry.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Chuanping Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Caiyan Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Ziru Xu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Li Zhang
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Yingjun Cui
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Chunmei Wang
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Ye Lin
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoming Hou
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
6
|
Dong X, Lin X, Hou Q, Hu Z, Wang Y, Wang Z. Effect of Maternal Gradient Nutritional Restriction during Pregnancy on Mammary Gland Development in Offspring. Animals (Basel) 2023; 13:ani13050946. [PMID: 36899802 PMCID: PMC10000074 DOI: 10.3390/ani13050946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
We aimed to investigate the effect of different levels of nutritional restriction on mammary gland development during the embryonic period by gradient nutritional restriction in pregnant female mice. We started the nutritional restriction of 60 female CD-1(ICR) mice from day 9 of gestation based on 100%, 90%, 80%, 70% and 60% of ad libitum intake. After delivery, the weight and body fat of the offspring and the mother were recorded (n = 12). Offspring mammary development and gene expression were explored by whole mount and qPCR. Mammary development patterns of in offspring were constructed using Sholl analysis, principal component analysis (PCA) and regression analysis. We found that: (1) Mild maternal nutritional restriction (90-70% of ad libitum intake) did not affect offspring weight, while body fat percentage was more sensitive to nutritional restriction (lower at 80% ad libitum feeding). (2) A precipitous drop in mammary development and altered developmental patterns occurred when nutritional restriction ranged from 80% to 70% of ad libitum intake. (3) Mild maternal nutritional restriction (90% of ad libitum intake) promoted mammary-development-related gene expression. In conclusion, our results suggest that mild maternal nutritional restriction during gestation contributes to increased embryonic mammary gland development. When maternal nutritional restriction reaches 70% of ad libitum intake, the mammary glands of the offspring show noticeable maldevelopment. Our results help provide a theoretical basis for the effect of maternal nutritional restriction during gestation on offspring mammary development and a reference for the amount of maternal nutritional restriction.
Collapse
|
7
|
Javaheri Barfourooshi H, Sadeghipanah H, Asadzadeh N, Seyedabadi H, Borazjani M, Javanmard A. Changes in the gene expression profile of the mammary gland lipogenic enzymes in Saanen goats in response to dietary fats. Vet Med Sci 2023; 9:945-956. [PMID: 36595618 PMCID: PMC10029901 DOI: 10.1002/vms3.1062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The second half of the first pregnancy is a critical period in the growth and development of the mammary gland. The use of functional compounds during this period may positively impact livestock performance. OBJECTIVES In this study, changes in lipogenic enzyme gene expression in the mammary gland of Saanen goats in response to different dietary fat sources were analysed. METHODS Goats from four groups (10 each) received these diets from the last two months of pregnancy through four months of lactation: C-, no added fat (negative control group), C+, with saturated palm oil (positive control group), SB, with roasted soybeans (omega-6 group) and FS, with extruded flaxseed (omega-3 group). The fat content was about 4% of dry matter. Milk yield, milk fatty acid profile, milk health index (HI) and gene expression of four lipogenic enzymes in mammary tissue were measured. RESULTS The FS group had significantly higher milk production with lower omega-6 to omega-3, monounsaturated to polyunsaturated, and total saturated fatty acids compared to other groups. The shorter and longer than16-carbon chain of total milk fatty acid indicates significantly higher values for the C- and C+ groups, respectively. The milk HI for the SB group was significantly higher. The gene expression profile for acetyl-coenzyme A carboxylase was higher in the C- group than other experimental groups. CONCLUSIONS The results show that manipulation of the diet with unsaturated fat supplements improved milk production, synthesis of milk fat and molecular expression of lipogenic enzymes in mammary tissue in primiparous Saanen goats.
Collapse
Affiliation(s)
- Hoda Javaheri Barfourooshi
- Department of Animal Production Management, Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Hassan Sadeghipanah
- Department of Animal Production Management, Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Nader Asadzadeh
- Department of Animal Production Management, Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Hamidreza Seyedabadi
- Department of Biotechnology, Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Marjan Borazjani
- Central Laboratory, Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Arash Javanmard
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
8
|
Fan X, Qiu L, Huang L, Zhu W, Zhang Y, Miao Y. MiR-190a regulates milk protein biosynthesis through the mTOR and JAK2–STAT5 signaling pathways by targeting PTHLH in buffalo mammary epithelial cells. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
9
|
Fan X, Qiu L, Zhu W, Huang L, Tu X, Miao Y. CEBPA-Regulated Expression of SOCS1 Suppresses Milk Protein Synthesis through mTOR and JAK2-STAT5 Signaling Pathways in Buffalo Mammary Epithelial Cells. Foods 2023; 12:foods12040708. [PMID: 36832783 PMCID: PMC9955710 DOI: 10.3390/foods12040708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Milk protein content is a key quality indicator of milk, and therefore elucidating its synthesis mechanism has been the focus of research in recent years. Suppressor of cytokine signaling 1 (SOCS1) is an important inhibitor of cytokine signaling pathways that can inhibit milk protein synthesis in mice. However, it remains elusive whether SOCS1 plays roles in the milk protein synthesis in the buffalo mammary gland. In this study, we found that the mRNA and protein expression levels of SOCS1 in buffalo mammary tissue during the dry-off period was significantly lower than those during lactation. Overexpression and knockdown experiments of SOCS1 showed that it influenced the expression and phosphorylation of multiple key factors in the mTOR and JAK2-STAT5 signaling pathways in buffalo mammary epithelial cells (BuMECs). Consistently, intracellular milk protein content was significantly decreased in cells with SOCS1 overexpression, while it increased significantly in the cells with SOCS1 knockdown. The CCAAT/enhancer binding protein α (CEBPA) could enhance the mRNA and protein expression of SOCS1 and its promoter activity in BuMECs, but this effect was eliminated when CEBPA and NF-κB binding sites were deleted. Therefore, CEBPA was determined to promote SOCS1 transcription via the CEBPA and NF-κB binding sites located in the SOCS1 promoter. Our data indicate that buffalo SOCS1 plays a significant role in affecting milk protein synthesis through the mTOR and JAK2-STAT5 signaling pathways, and its expression is directly regulated by CEBPA. These results improve our understanding of the regulation mechanism of buffalo milk protein synthesis.
Collapse
|
10
|
Comparison of blood gas parameters, ions, and glucose concentration in polish Holstein-Friesian Dairy cows at different milk production levels. Sci Rep 2023; 13:1414. [PMID: 36697478 PMCID: PMC9876885 DOI: 10.1038/s41598-023-28644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Genetic selection for increased milk yield has been a key driver of dairy intensification. The modern dairy cow produces much higher amounts of milk than the cattle of several years ago, and this may have an influence on hematologic values at different stages of lactation and on cows with different levels of milk production. The purpose of the study was to investigate the variations in blood parameters such as Ht, tHb, sO2, FO2Hb, FCOHb, FMetHb, FHHb, pH, pCO2, pO2, standard HCO3-, actual HCO3-, BE, BE ecf, ctCO2, BO2, p50, and ctO2 in cows at different milk production levels. In addition, ions such as Na+, K+ , Ca++, Ca++ (7.4), and Cl-, and AnGap and glucose were examined. Our findings indicated that differences in the examined blood parameters between low and high-production dairy cattle do exist. The most apparent differences were connected with blood pH (p < 0.01), oxygen metabolism (Ht, tHb, sO2, FO2Hb; p < 0.01), and glucose utilization (p < 0.01) The results confirm that the parameters connected with blood oxygen metabolism and glucose metabolism increase significantly in high-production animals. In conclusion, reference values should be considered in light of the lactation stage and level of milk production, because these might influence how changes should be interpreted. The main limitation of the study is the delay to analysis. However, the blood was properly stored (4C), thus changes were delayed. Anyway, it is very hard in the field practice to perform it within 5 min after the blood collection and according to studies it has low impact on clinical outcomes.
Collapse
|
11
|
Feeding Corn Silage or Grass Hay as Sole Dietary Forage Sources: Overall Mechanism of Forages Regulating Health-Promoting Fatty Acid Status in Milk of Dairy Cows. Foods 2023; 12:foods12020303. [PMID: 36673395 PMCID: PMC9857621 DOI: 10.3390/foods12020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Different dietary forage sources regulate health-promoting fatty acids (HPFAs), such as conjugated linoleic acids (CLAs) and omega-3 polyunsaturated fatty acids (n-3 PUFAs), in the milk of lactating cows. However, the overall mechanism of forages regulating lipid metabolism from the gastrointestinal tract to the mammary glands (MGs) is not clear. Three isocaloric diets that contained (1) 46% corn silage (CS), (2) a mixture of 23% corn silage and 14% grass hays (MIX), and (3) 28% grass hays (GH) as the forage sources and six cannulated (rumen, proximal duodenum, and terminal ileum) lactating cows were assigned to a double 3 × 3 Latin square design. Our results show that a higher proportion of grass hay in the diets increased the relative contents of short-chain fatty acids (SCFAs), CLAs, and n-3 PUFAs. The lower relative content of SCFA in the milk of CS was predominantly due to the reduction in acetate production in the rumen and arteriovenous differences in the MG, indicating that the de novo synthesis pathways were inhibited. The elevated relative contents of total CLA and n-3 PUFA in the milk of GH were attributed to the increases in apparent intestinal digestion and arteriovenous differences in total CLA and n-3 PUFA, together with the higher Δ9-desaturase activity in the MG. In conclusion, this study provides an overall mechanism of dietary forages regulating HPFA status in the milk of dairy cows.
Collapse
|
12
|
Dietary Improvement during Lactation Normalizes miR-26a, miR-222 and miR-484 Levels in the Mammary Gland, but Not in Milk, of Diet-Induced Obese Rats. Biomedicines 2022; 10:biomedicines10061292. [PMID: 35740314 PMCID: PMC9219892 DOI: 10.3390/biomedicines10061292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
We aimed to evaluate in rats whether the levels of specific miRNA are altered in the mammary gland (MG) and milk of diet-induced obese dams, and whether improving maternal nutrition during lactation attenuates such alterations. Dams fed with a standard diet (SD) (control group), with a Western diet (WD) prior to and during gestation and lactation (WD group), or with WD prior to and during gestation but moved to SD during lactation (Rev group) were followed. The WD group showed higher miR-26a, miR-222 and miR-484 levels than the controls in the MG, but the miRNA profile in Rev animals was not different from those of the controls. The WD group also displayed higher miR-125a levels than the Rev group. Dams of the WD group, but not the Rev group, displayed lower mRNA expression levels of Rb1 (miR-26a’s target) and Elovl6 (miR-125a’s target) than the controls in the MG. The WD group also presented lower expression of Insig1 (miR-26a’s target) and Cxcr4 (miR-222’s target) than the Rev group. However, both WD and Rev animals displayed lower expression of Vegfa (miR-484’s target) than the controls. WD animals also showed greater miR-26a, miR-125a and miR-222 levels in the milk than the controls, but no differences were found between the WD and Rev groups. Thus, implementation of a healthy diet during lactation normalizes the expression levels of specific miRNAs and some target genes in the MG of diet-induced obese dams but not in milk.
Collapse
|