1
|
Liang Y, Wang Z, Gao N, Qi X, Zeng J, Cui K, Lu W, Bai S. Variations and Interseasonal Changes in the Gut Microbial Communities of Seven Wild Fish Species in a Natural Lake with Limited Water Exchange during the Closed Fishing Season. Microorganisms 2024; 12:800. [PMID: 38674744 PMCID: PMC11052518 DOI: 10.3390/microorganisms12040800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The gut microbiota of fish is crucial for their growth, development, nutrient uptake, physiological balance, and disease resistance. Yet our knowledge of these microbial communities in wild fish populations in their natural ecosystems is insufficient. This study systematically examined the gut microbial communities of seven wild fish species in Chaohu Lake, a fishing-restricted area with minimal water turnover, across four seasons. We found significant variations in gut microbial community structures among species. Additionally, we observed significant seasonal and regional variations in the gut microbial communities. The Chaohu Lake fish gut microbial communities were predominantly composed of the phyla Firmicutes, Proteobacteria(Gamma), Proteobacteria(Alpha), Actinobacteriota, and Cyanobacteria. At the genus level, Aeromonas, Cetobacterium, Clostridium sensu stricto 1, Romboutsia, and Pseudomonas emerged as the most prevalent. A co-occurrence network analysis revealed that C. auratus, C. carpio, and C. brachygnathus possessed more complex and robust gut microbial networks than H. molitrix, C. alburnus, C. ectenes taihuensis, and A. nobilis. Certain microbial groups, such as Clostridium sensu stricto 1, Romboutsia, and Pseudomonas, were both dominant and keystone in the fish gut microbial network. Our study offers a new approach for studying the wild fish gut microbiota in natural, controlled environments. It offers an in-depth understanding of gut microbial communities in wild fish living in stable, limited water exchange natural environments.
Collapse
Affiliation(s)
- Yangyang Liang
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (Y.L.); (N.G.); (K.C.); (W.L.)
| | - Zijia Wang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Z.W.); (X.Q.); (J.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Gao
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (Y.L.); (N.G.); (K.C.); (W.L.)
| | - Xiaoxue Qi
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Z.W.); (X.Q.); (J.Z.)
| | - Juntao Zeng
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Z.W.); (X.Q.); (J.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Cui
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (Y.L.); (N.G.); (K.C.); (W.L.)
| | - Wenxuan Lu
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (Y.L.); (N.G.); (K.C.); (W.L.)
| | - Shijie Bai
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Z.W.); (X.Q.); (J.Z.)
| |
Collapse
|
2
|
Liu C, Pan K, Xu H, Song Y, Qi X, Lu Y, Jiang X, Liu H. The effects of enrofloxacin exposure on responses to oxidative stress, intestinal structure and intestinal microbiome community of largemouth bass (Micropterus salmoides). CHEMOSPHERE 2024; 348:140751. [PMID: 37992902 DOI: 10.1016/j.chemosphere.2023.140751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Antibiotic residues in the aquaculture environments may lead to antibiotic resistance, and potentially exert adverse effects on health of the non-target organisms and humans. In order to evaluate the effect of enrofloxacin of environmental concentrations on largemouth bass (Micropterus salmoides). Two hundred and seventy largemouth basses (with an average weight of 7.88 ± 0.60 g) were randomly divided into three groups, and separately exposed to 0, 1, 100 μg/L enrofloxacin (Control, ENR1, ENR100) for 30 days to detect the effect of enrofloxacin on the growth performance, oxidative stress, intestinal microbiota structure, inflammatory response and structure of the intestine. The results showed that ENR significantly reduced the final body weight (FBW) and weight gain rate (WGR), and increased feed conversion ratio (FCR) (P < 0.05). The histopathological analysis revealed that the villus width and muscular thickness of anterior intestine were significantly decreased with the increasing of enrofloxacin concentration. The activity of SOD was significantly increased at enrofloxacin stress, while CAT and POD activity were significantly decreased compared to control group (P < 0.05). The activities of lysozyme (LZM), alkaline phosphatase (AKP) and peroxidase (POD) in ENR1 was higher than that of control and ENR100 groups. Enrofloxacin treatment up-regulated the expression IL-1β and TNF-α, and down-regulated IL-10, and decreasing the expression level ZO-1, claudin-1, and occludin. Furthermore, the enrofloxacin treatment significantly decreased the intestinal bacterial diversity (P < 0.05). Exposure to 100 μg/L enrofloxacin obviously increased the relative abundance of Bacteroidota, Myxococcota, and Zixibacteria of fish gut, and reduced Firmicutes; 1 μg/L enrofloxacin considerably increased Bacteroidota, Myxococcota, and Actinobacteria, and reduced Firmicutes. The relative abundance of DTB120 and Elusimicrobiota was positively correlated with the occludin and claudin-1 gene. Taken together, exposure to enrofloxacin inhibited the growth of largemouth bass, influenced intestinal health, and induced dysbiosis of the intestinal microbiota.
Collapse
Affiliation(s)
- Chengrong Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kuiquan Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongzhou Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanzhen Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoyu Qi
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yitong Lu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinxin Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haixia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Ye C, Geng S, Zhang Y, Qiu H, Zhou J, Zeng Q, Zhao Y, Wu D, Yu G, Gong H, Hu B, Hong Y. The impact of culture systems on the gut microbiota and gut metabolome of bighead carp (Hypophthalmichthys nobilis). Anim Microbiome 2023; 5:20. [PMID: 37005679 PMCID: PMC10067185 DOI: 10.1186/s42523-023-00239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/08/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND The gut microbiota of fish confers various effects on the host, including health, nutrition, metabolism, feeding behaviour, and immune response. Environment significantly impacts the community structure of fish gut microbiota. However, there is a lack of comprehensive research on the gut microbiota of bighead carp in culture systems. To demonstrate the impact of culture systems on the gut microbiome and metabolome in bighead carp and investigate a potential relationship between fish muscle quality and gut microbiota, we conducted a study using 16S ribosomal ribonucleic acid sequencing, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry techniques on bighead carp in three culture systems. RESULTS Our study revealed significant differences in gut microbial communities and metabolic profiles among the three culture systems. We also observed conspicuous changes in muscle structure. The reservoir had higher gut microbiota diversity indices than the pond and lake. We detected significant differences in phyla and genera, such as Fusobacteria, Firmicutes, and Cyanobacteria at the phylum level, Clostridium sensu stricto 1, Macellibacteroides, Blvii28 wastewater sludge group at the genus level. Multivariate statistical models, including principal component analysis and orthogonal projections to latent structures-discriminant analysis, indicated significant differences in the metabolic profiles. Key metabolites were significantly enriched in metabolic pathways involved in "arginine biosynthesis" and "glycine, serine, and threonine metabolism". Variation partitioning analysis revealed that environmental factors, such as pH, ammonium nitrogen, and dissolved oxygen, were the primary drivers of differences in microbial communities. CONCLUSIONS Our findings demonstrate that the culture system significantly impacted the gut microbiota of bighead carp, resulting in differences in community structure, abundance, and potential metabolic functions, and altered the host's gut metabolism, especially in pathways related to amino acid metabolism. These differences were influenced substantially by environmental factors. Based on our study, we discussed the potential mechanisms by which gut microbes affect muscle quality. Overall, our study contributes to our understanding of the gut microbiota of bighead carp under different culture systems.
Collapse
Affiliation(s)
- Chen Ye
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China
| | - Shiyu Geng
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China
| | - Yingyu Zhang
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China
| | - Huimin Qiu
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China
| | - Jie Zhou
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China
| | - Qi Zeng
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China
| | - Yafei Zhao
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Di Wu
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China
| | - Guilan Yu
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China
| | - Haibo Gong
- Jiangxi Provincial Aquatic Biology Protection and Rescue Center, Nanchang, 330000, China
| | - Beijuan Hu
- School of Life Science, Nanchang University, Nanchang, 330031, China.
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China.
- Modern Agricultural Research Institute, Nanchang University, Nanchang, 330031, China.
| | - Yijiang Hong
- School of Life Science, Nanchang University, Nanchang, 330031, China.
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China.
- Modern Agricultural Research Institute, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
4
|
Jiao X, Zhang DX, Chen C, Kong LC, Hu XY, Shan XF, Qian AD. Immunization effect of recombinant Lactobacillus casei displaying Aeromonas veronii Aha1 with an LTB adjuvant in carp. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108660. [PMID: 36940784 DOI: 10.1016/j.fsi.2023.108660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 01/09/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Aeromonas veronii is an important aquatic zoonotic, which elicits a range of diseases, such as haemorrhagic septicemia. To develop an effective oral vaccine against Aeromonas veronii infection in carp, the Aeromonas veronii adhesion (Aha1) gene was used as a target molecule to attach to intestinal epithelial cells. Two anchored recombinant. Lactic acid bacteria strains (LC-pPG-Aha1 1038 bp and LC-pPG-Aha1-LTB 1383 bp) were constructed by fusing them with the E. coli intolerant enterotoxin B subunit (LTB) gene and using Lactobacillus casei as antigen delivery vector to evaluate immune effects of these in carp. Western blotting and immunofluorescence were used to confirm that protein expression was successful. Additionally, levels of specific IgM in serum and the activities of ACP, AKP, SOD, LYS, C3, C4, and lectin enzymes-were assessed. Cytokines IL-10, IL-1β, TNF-α, IgZ1, and IgZ2 were measured in the liver, spleen, kidney, intestines, and gills tissue by qRT-PCR, which showed an increasing trend compared with the control group (P < 0.05). A colonization assay showed that the two L. casei recombinants colonized the middle and hind intestines of immunized fish. When immunized carp were experimentally challenged with Aeromonas veronii the relative percentage protection of LC-pPG-Aha1 was 53.57%, and LC-pPG-Aha1-LTB was 60.71%. In conclusion, these results demonstrate that Aha1 is a promising candidate antigen when it is displayed on lactic acid bacteria (Lc-pPG-Aha1 and Lc-pPG-Aha1-LTB) seems promising for a mucosal therapeutic approach. We plan to investigate the molecular mechanism of the L. casei recombinant in regulating the intestinal tissue of carp in future studies.
Collapse
Affiliation(s)
- Xue Jiao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Dong-Xing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chong Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ling-Cong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiao-Yu Hu
- College of Animal Science and Technology, Jilin University, Changchun, China
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.
| | - Ai-Dong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
5
|
Jiang S, Huang X. Host responses against the fish parasitizing ciliate Cryptocaryon irritans. Parasite Immunol 2023; 45:e12967. [PMID: 36606416 DOI: 10.1111/pim.12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
The parasitic ciliate Cryptocaryon irritans, which infects almost all marine fish species occurring in both tropical and subtropical regions throughout the world. The disease, cryptocaryonosis, accounts for significant economic losses to the aquaculture industry. This review attempts to provide a comprehensive overview of the biology of the parasite, host-parasite interactions and both specific and non-specific host defense mechanisms are responsible for the protection of fish against challenge infections with this ciliate. Also, this article reflects the current interest in this subject area and the quest to develop an available vaccine against the disease. Due to the high frequency of clinical fish cryptocaryonosis, the study of fish immune responses to C. irritans provides an optimal experimental model for understanding immunity against extracellular protozoa.
Collapse
Affiliation(s)
- Shuiqing Jiang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiaohong Huang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Zhai Z, Huang Y, Zhang Y, Zhao L, Li W. Clinical Research Progress of Small Molecule Compounds Targeting Nrf2 for Treating Inflammation-Related Diseases. Antioxidants (Basel) 2022; 11:1564. [PMID: 36009283 PMCID: PMC9405369 DOI: 10.3390/antiox11081564] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Studies have found that inflammation is a symptom of various diseases, such as coronavirus disease 2019 (COVID-19) and rheumatoid arthritis (RA); it is also the source of other diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), lupus erythematosus (LE), and liver damage. Nrf2 (nuclear factor erythroid 2-related factor 2) is an important multifunctional transcription factor in cells and plays a central regulatory role in cellular defense mechanisms. In recent years, several studies have found a strong association between the activation of Nrf2 and the fight against inflammation-related diseases. A number of small molecule compounds targeting Nrf2 have entered clinical research. This article reviews the research status of small molecule compounds that are in clinical trials for the treatment of COVID-19, rheumatoid arthritis, Alzheimer's disease, Parkinson's disease, lupus erythematosus, and liver injury.
Collapse
Affiliation(s)
- Zhenzhen Zhai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanxin Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yawei Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lili Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wen Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education & Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou 450001, China
| |
Collapse
|
7
|
Lu W, Wang Y, Fang Z, Wang H, Zhu J, Zhai Q, Zhao J, Zhang H, Chen W. Bifidobacterium longum CCFM752 prevented hypertension and aortic lesion, improved antioxidative ability, and regulated the gut microbiome in spontaneously hypertensive rats. Food Funct 2022; 13:6373-6386. [PMID: 35615892 DOI: 10.1039/d1fo04446j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oxidative stress and gut dysbiosis are important risk factors for hypertension. In this study, the preventive effect of Bifidobacterium longum CCFM752 (CCFM752) on hypertension was evaluated. 5-week-old spontaneously hypertensive rats (SHR) were treated with vehicle or CCFM752 (1.0 × 109 CFU day-1) for 12 weeks. The increase in systolic blood pressure and diastolic blood pressure was significantly prevented by CCFM752 treatment. Simultaneously, CCFM752 prevented aortic fibrosis and hypertrophy and increased aortic endothelial nitric oxide synthase (eNOS) activity. CCFM752 presented an antioxidative effect by inhibiting aortic NADPH oxidase activation and increasing aortic and serum catalase activity, and reducing aortic reactive oxygen species (ROS). The gut dysbiosis of SHR, including the increased Firmicutes/Bacteroidetes ratio, decreased Actinobacteria as well as reduced α-diversity, were restored by CCFM752. CCFM752 also increased the prevalence of Bifidobacterium and Lactobacillus, while decreasing Turicibacter at the genus level. Furthermore, serum metabolomic analysis revealed that CCFM752 up-regulated serum proline and pyridoxamine 5'-phosphate, both of which were negatively correlated with blood pressure. In conclusion, the positive impact of CCFM752 on the gut microbiota may contribute to the antioxidative effect as well as its preventive effect on hypertension.
Collapse
Affiliation(s)
- Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China. .,School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, PR China
| | - Yusheng Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China. .,School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Zhifeng Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China. .,School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China. .,School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China. .,School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China. .,School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China. .,School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China. .,School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, PR China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, PR China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China. .,School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, PR China
| |
Collapse
|
8
|
Tian Z, Pu H, Cai D, Luo G, Zhao L, Li K, Zou J, Zhao X, Yu M, Wu Y, Yang T, Guo P, Hu X. Characterization of the bacterial microbiota in different gut and oral compartments of splendid japalure (Japalura sensu lato). BMC Vet Res 2022; 18:205. [PMID: 35624481 PMCID: PMC9137078 DOI: 10.1186/s12917-022-03300-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Gut and oral microbes form complex communities and play key roles in co-evolution with their hosts. However, little is understood about the bacterial community in lizards. Results In this study, we investigated the gut and oral bacterial communities in Japalura sensu lato from Sichuan Province, China, using 16S rRNA gene sequencing. Results showed that Bacteroidota (36.5%) and Firmicutes (32.8%) were the main phyla in the gut, while Proteobacteria, Bacteroidota, Firmicutes, and Actinobacteriota were the dominant phyla in the oral cavity. 16 S rRNA sequencing analysis of fecal samples showed that: (1) Bacteroidota was the most abundant in Japalura sensu lato, which was different from the bacterial community of insectivorous animals; (2) Bacteroidota, Firmicutes, Actinobacteriota, Fusobacteriota, and Cyanobacteria were the most abundant phylum in Japalura sensu lato. (3) Proteobacteria was the dominant phylum in Japalura sensu lato and other domestic insectivorous lizards (Shinisaurus crocodilurus, Phrynocephalus vlangalii, and Takydromus septentrionalis); (4) Comparing with the bacterial community of Shinisaurus crocodilurus, Phrynocephalus vlangalii, Takydromus septentrionalis, Liolaemus parvus, L. ruibali, and Phymaturus williamsi, Desulfobacterota was uniquely present in the gut of Japalura sensu lato. 16 S rRNA sequencing of oral samples showed that Chloroflexi and Deinococcota phyla were enriched in the oral cavity, which may have a significant influence on living in extreme environments. Conclusions Thus, based on 16 S rRNA sequencing analysis of the community composition of the gut and oral microbiomes, this study firstly represents a foundation for understanding the gut and oral microbial ecology of Japalura sensu lato, and constitutes a detail account of the diversity of the microbiota inhabiting the gut and oral cavity of Japalura sensu lato. Further researches will continue to reveal how gut and oral microbial communities may be impacting the ecology and evolution of lizards. Supplementary information The online version contains supplementary material available at 10.1186/s12917-022-03300-w.
Collapse
Affiliation(s)
- Zhige Tian
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin University, 644000, Yibin, People's Republic of China
| | - Hongli Pu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin University, 644000, Yibin, People's Republic of China
| | - Dongdong Cai
- Sichuan Animal Disease Control Central, 610000, Chengdu, People's Republic of China
| | - Guangmei Luo
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin University, 644000, Yibin, People's Republic of China
| | - Lili Zhao
- College of Veterinary Medicine, Jilin University, 130000, Changchun, People's Republic of China
| | - Ke Li
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin University, 644000, Yibin, People's Republic of China
| | - Jie Zou
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin University, 644000, Yibin, People's Republic of China
| | - Xiang Zhao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin University, 644000, Yibin, People's Republic of China
| | - Min Yu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin University, 644000, Yibin, People's Republic of China
| | - Yayong Wu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin University, 644000, Yibin, People's Republic of China
| | - Tiankuo Yang
- Aviation Medical Appraisal Center, Civil Aviation Flight University of China, 618307, Guanghan, China.
| | - Peng Guo
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin University, 644000, Yibin, People's Republic of China.
| | - Xiaoliang Hu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin University, 644000, Yibin, People's Republic of China.
| |
Collapse
|