1
|
Zhang Y, Du Q, Gao H, Pan Y, Liu N, Qiu C, Liu X. Prenatal risk assessment of Xp21.1 duplication involving the DMD gene by optical genome mapping. Life Sci Alliance 2024; 7:e202402780. [PMID: 39117454 PMCID: PMC11310561 DOI: 10.26508/lsa.202402780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Structural variants (SVs) of unknown significance are great challenges for prenatal risk assessment, especially when involving dose-sensitive genes such as DMD The pathogenicities of 5'-terminal DMD duplications in the database remain controversial. Four prenatal cases with Xp21.1 duplications were identified by routine prenatal genomic testing, encompassing the 5'-UTR to exons 1-2 in family 1 and family 2, and to exons 1-9 in family 3. The duplication in family 4 was non-contiguous covering the 5'-UTR to exon 1 and exons 3-7. All were traced to unaffected males in the family pedigrees. A new genome-wide approach of optical genome mapping was performed in families 1, 2, and 3 to delineate the breakpoints and orientation of the duplicated fragments. The extra copies were tandemly inserted into the upstream of DMD, preserving the integrity of ORF from the second copy. The pathogenicities were thus reclassified as likely benign. Our data highlight the importance of structural delineation by optical genome mapping in prenatal risk assessment of incidentally identified SVs involving DMD and other similar large dose-sensitive genes.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Du
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haiming Gao
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yujie Pan
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ningyang Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chuang Qiu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoliang Liu
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Health, Liaoning Research Institute of Reproductive Health and Development, Reproductive Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Trinh J, Schaake S, Gabbert C, Lüth T, Cowley SA, Fienemann A, Ullrich KK, Klein C, Seibler P. Optical genome mapping of structural variants in Parkinson's disease-related induced pluripotent stem cells. BMC Genomics 2024; 25:980. [PMID: 39425080 PMCID: PMC11490025 DOI: 10.1186/s12864-024-10902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Certain structural variants (SVs) including large-scale genetic copy number variants, as well as copy number-neutral inversions and translocations may not all be resolved by chromosome karyotype studies. The identification of genetic risk factors for Parkinson's disease (PD) has been primarily focused on the gene-disruptive single nucleotide variants. In contrast, larger SVs, which may significantly influence human phenotypes, have been largely underexplored. Optical genomic mapping (OGM) represents a novel approach that offers greater sensitivity and resolution for detecting SVs. In this study, we used induced pluripotent stem cell (iPSC) lines of patients with PD-linked SNCA and PRKN variants as a proof of concept to (i) show the detection of pathogenic SVs in PD with OGM and (ii) provide a comprehensive screening of genetic abnormalities in iPSCs. RESULTS OGM detected SNCA gene triplication and duplication in patient-derived iPSC lines, which were not identified by long-read sequencing. Additionally, various exon deletions were confirmed by OGM in the PRKN gene of iPSCs, of which exon 3-5 and exon 2 deletions were unable to phase with conventional multiplex-ligation-dependent probe amplification. In terms of chromosomal abnormalities in iPSCs, no gene fusions, no aneuploidy but two balanced inter-chromosomal translocations were detected in one line that were absent in the parental fibroblasts and not identified by routine single nucleotide variant karyotyping. CONCLUSIONS In summary, OGM can detect pathogenic SVs in PD-linked genes as well as reveal genomic abnormalities for iPSCs that were not identified by other techniques, which is supportive for OGM's future use in gene discovery and iPSC line screening.
Collapse
Affiliation(s)
- Joanne Trinh
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Susen Schaake
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Theresa Lüth
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Sally A Cowley
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - André Fienemann
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Kristian K Ullrich
- Division Scientific IT Group, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
3
|
Ma Y, Gui C, Shi M, Wei L, He J, Xie B, Zheng H, Lei X, Wei X, Cheng Z, Zhou X, Chen S, Luo J, Huang Y, Gui B. The cryptic complex rearrangements involving the DMD gene: etiologic clues about phenotypical differences revealed by optical genome mapping. Hum Genomics 2024; 18:103. [PMID: 39285482 PMCID: PMC11406873 DOI: 10.1186/s40246-024-00653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Deletion or duplication in the DMD gene is one of the most common causes of Duchenne and Becker muscular dystrophy (DMD/BMD). However, the pathogenicity of complex rearrangements involving DMD, especially segmental duplications with unknown breakpoints, is not well understood. This study aimed to evaluate the structure, pattern, and potential impact of rearrangements involving DMD duplication. METHODS Two families with DMD segmental duplications exhibiting phenotypical differences were recruited. Optical genome mapping (OGM) was used to explore the cryptic pattern of the rearrangements. Breakpoints were validated using long-range polymerase chain reaction combined with next-generation sequencing and Sanger sequencing. RESULTS A multi-copy duplication involving exons 64-79 of DMD was identified in Family A without obvious clinical symptoms. Family B exhibited typical DMD neuromuscular manifestations and presented a duplication involving exons 10-13 of DMD. The rearrangement in Family A involved complex in-cis tandem repeats shown by OGM but retained a complete copy (reading frame) of DMD inferred from breakpoint validation. A reversed insertion with a segmental repeat was identified in Family B by OGM, which was predicted to disrupt the normal structure and reading frame of DMD after confirming the breakpoints. CONCLUSIONS Validating breakpoint and rearrangement pattern is crucial for the functional annotation and pathogenic classification of genomic structural variations. OGM provides valuable insights into etiological analysis of DMD/BMD and enhances our understanding for cryptic effects of complex rearrangements.
Collapse
Affiliation(s)
- Yunting Ma
- The Second School of Medicine, Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
| | - Chunrong Gui
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
| | - Meizhen Shi
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
| | - Lilin Wei
- Department of Obstetrics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
| | - Junfang He
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Guilin Medical University, No. 212, Renmin Road, Lingui District, Guilin, Guangxi Zhuang Autonomous Region, 541100, China
| | - Bobo Xie
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
| | - Haiyang Zheng
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
| | - Xiaoyun Lei
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
| | - Xianda Wei
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
| | - Zifeng Cheng
- The Second School of Medicine, Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
| | - Xu Zhou
- The Second School of Medicine, Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
| | - Shaoke Chen
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
| | - Jiefeng Luo
- The Second School of Medicine, Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China.
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China.
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China.
| | - Yan Huang
- The Second School of Medicine, Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China.
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China.
- Department of Obstetrics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China.
| | - Baoheng Gui
- The Second School of Medicine, Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China.
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China.
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, No. 166, Daxuedong Road, Xixiangtang District, Nanning, Guangxi Zhuang Autonomous Region, 530007, China.
| |
Collapse
|
4
|
Cull AH, Kent DG, Warren AJ. Emerging genetic technologies informing personalized medicine in Shwachman-Diamond syndrome and other inherited BMF disorders. Blood 2024; 144:931-939. [PMID: 38905596 DOI: 10.1182/blood.2023019986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
ABSTRACT Ribosomopathy Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive inherited bone marrow failure syndrome (IBMFS) caused by mutations in the Shwachman-Bodian-Diamond syndrome gene, which is associated with an increased risk of myeloid malignancy. Tracking how hematopoietic stem cell (HSC) clonal dynamics change over time, assessing whether somatic genetic rescue mechanisms affect these dynamics, and mapping out when leukemic driver mutations are acquired is important to understand which individuals with SDS may go on to develop leukemia. In this review, we discuss how new technologies that allow researchers to map mutations at the level of single HSC clones are generating important insights into genetic rescue mechanisms and their relative risk for driving evolution to leukemia, and how these data can inform the future development of personalized medicine approaches in SDS and other IBMFSs.
Collapse
Affiliation(s)
- Alyssa H Cull
- Department of Biology, Centre for Blood Research, York Biomedical Research Institute, University of York, York, United Kingdom
| | - David G Kent
- Department of Biology, Centre for Blood Research, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Alan J Warren
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
- Department of Hematology, School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Adams DR, van Karnebeek CDM, Agulló SB, Faùndes V, Jamuar SS, Lynch SA, Pintos-Morell G, Puri RD, Shai R, Steward CA, Tumiene B, Verloes A. Addressing diagnostic gaps and priorities of the global rare diseases community: Recommendations from the IRDiRC diagnostics scientific committee. Eur J Med Genet 2024; 70:104951. [PMID: 38848991 DOI: 10.1016/j.ejmg.2024.104951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
The International Rare Diseases Research Consortium (IRDiRC) Diagnostic Scientific Committee (DSC) is charged with discussion and contribution to progress on diagnostic aspects of the IRDiRC core mission. Specifically, IRDiRC goals include timely diagnosis, use of globally coordinated diagnostic pipelines, and assessing the impact of rare diseases on affected individuals. As part of this mission, the DSC endeavored to create a list of research priorities to achieve these goals. We present a discussion of those priorities along with aspects of current, global rare disease needs and opportunities that support our prioritization. In support of this discussion, we also provide clinical vignettes illustrating real-world examples of diagnostic challenges.
Collapse
Affiliation(s)
- David R Adams
- National Human Genome Research Institute, National Institutes of Health, USA.
| | - Clara D M van Karnebeek
- Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Amsterdam Gastro-enterology Endocrinology Metabolism, Amsterdam University Medical Centers, the Netherlands
| | - Sergi Beltran Agulló
- Centre Nacional d'Anàlisi Genòmica (CNAG), Spain; Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Spain
| | - Víctor Faùndes
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Chile
| | - Saumya Shekhar Jamuar
- Genetics Service, KK Women's and Children's Hospital and Paediatrics ACP, Duke-NUS Medical School, Singapore; Singhealth Duke-NUS Institute of Precision Medicine, Singapore
| | | | - Guillem Pintos-Morell
- Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital, Spain; MPS-Spain Patient Advocacy Organization, Spain
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, India
| | - Ruty Shai
- Pediatric Cancer Molecular Lab, Sheba Medical Center, Israel
| | | | - Biruté Tumiene
- Vilnius University, Faculty of Medicine, Institute of Biomedical Sciences, Lithuania
| | - Alain Verloes
- Département de Génétique, CHU Paris - Hôpital Robert Debré, France
| |
Collapse
|
6
|
O’Donovan CJ, Tan LT, Abidin MAZ, Roderick MR, Grammatikos A, Bernatoniene J. Diagnosis of Chronic Granulomatous Disease: Strengths and Challenges in the Genomic Era. J Clin Med 2024; 13:4435. [PMID: 39124702 PMCID: PMC11313294 DOI: 10.3390/jcm13154435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Chronic granulomatous disease (CGD) is a group of rare primary inborn errors of immunity characterised by a defect in the phagocyte respiratory burst, which leads to severe and life-threatening infective and inflammatory complications. Despite recent advances in our understanding of the genetic and molecular pathophysiology of X-linked and autosomal recessive CGD, and growth in the availability of functional and genetic testing, there remain significant barriers to early and accurate diagnosis. In the current review, we provide an up-to-date summary of CGD pathophysiology, underpinning current methods of diagnostic testing for CGD and closely related disorders. We present an overview of the benefits of early diagnosis and when to suspect and test for CGD. We discuss current and historical methods for functional testing of NADPH oxidase activity, as well as assays for measuring protein expression of NADPH oxidase subunits. Lastly, we focus on genetic and genomic methods employed to diagnose CGD, including gene-targeted panels, comprehensive genomic testing and ancillary methods. Throughout, we highlight general limitations of testing, and caveats specific to interpretation of results in the context of CGD and related disorders, and provide an outlook for newborn screening and the future.
Collapse
Affiliation(s)
- Conor J. O’Donovan
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Lay Teng Tan
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
- Department of Paediatrics, University Malaya Medical Center, Lembah Pantai, Kuala Lumpur 59100, Malaysia
| | - Mohd A. Z. Abidin
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
- Department of Paediatrics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Marion R. Roderick
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Alexandros Grammatikos
- Department of Immunology, Southmead Hospital, North Bristol NHS Trust, Bristol BS10 5NB, UK
| | - Jolanta Bernatoniene
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
7
|
Pei Y, Tanguy M, Giess A, Dixit A, Wilson LC, Gibbons RJ, Twigg SRF, Elgar G, Wilkie AOM. A Comparison of Structural Variant Calling from Short-Read and Nanopore-Based Whole-Genome Sequencing Using Optical Genome Mapping as a Benchmark. Genes (Basel) 2024; 15:925. [PMID: 39062704 PMCID: PMC11276380 DOI: 10.3390/genes15070925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The identification of structural variants (SVs) in genomic data represents an ongoing challenge because of difficulties in reliable SV calling leading to reduced sensitivity and specificity. We prepared high-quality DNA from 9 parent-child trios, who had previously undergone short-read whole-genome sequencing (Illumina platform) as part of the Genomics England 100,000 Genomes Project. We reanalysed the genomes using both Bionano optical genome mapping (OGM; 8 probands and one trio) and Nanopore long-read sequencing (Oxford Nanopore Technologies [ONT] platform; all samples). To establish a "truth" dataset, we asked whether rare proband SV calls (n = 234) made by the Bionano Access (version 1.6.1)/Solve software (version 3.6.1_11162020) could be verified by individual visualisation using the Integrative Genomics Viewer with either or both of the Illumina and ONT raw sequence. Of these, 222 calls were verified, indicating that Bionano OGM calls have high precision (positive predictive value 95%). We then asked what proportion of the 222 true Bionano SVs had been identified by SV callers in the other two datasets. In the Illumina dataset, sensitivity varied according to variant type, being high for deletions (115/134; 86%) but poor for insertions (13/58; 22%). In the ONT dataset, sensitivity was generally poor using the original Sniffles variant caller (48% overall) but improved substantially with use of Sniffles2 (36/40; 90% and 17/23; 74% for deletions and insertions, respectively). In summary, we show that the precision of OGM is very high. In addition, when applying the Sniffles2 caller, the sensitivity of SV calling using ONT long-read sequence data outperforms Illumina sequencing for most SV types.
Collapse
Affiliation(s)
- Yang Pei
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; (Y.P.); (S.R.F.T.)
| | - Melanie Tanguy
- Genomics England Limited, One Canada Square, London E14 5AB, UK
| | - Adam Giess
- Genomics England Limited, One Canada Square, London E14 5AB, UK
| | - Abhijit Dixit
- Clinical Genetics Service, Nottingham University Hospitals NHS Foundation Trust, City Hospital, Nottingham NG5 1PB, UK
| | - Louise C. Wilson
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Richard J. Gibbons
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Stephen R. F. Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; (Y.P.); (S.R.F.T.)
| | - Greg Elgar
- Genomics England Limited, One Canada Square, London E14 5AB, UK
| | - Andrew O. M. Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; (Y.P.); (S.R.F.T.)
| |
Collapse
|
8
|
Gupta N, Kabra M. Unexplained Intellectual Disability: Diagnostic Workflow Moving Towards "Exome Sequencing First Approach"? Indian J Pediatr 2024; 91:653-654. [PMID: 38814510 DOI: 10.1007/s12098-024-05173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Affiliation(s)
- Neerja Gupta
- Division of Genetics, Department of Pediatrics, AIIMS, New Delhi, India
| | - Madhulika Kabra
- Division of Genetics, Department of Pediatrics, AIIMS, New Delhi, India.
| |
Collapse
|
9
|
Lederbogen RC, Hoffjan S, Thiels C, Mau-Holzmann UA, Singer S, Yusenko MV, Nguyen HHP, Gerding WM. Optical Genome Mapping Reveals Disruption of the RASGRF2 Gene in a Patient with Developmental Delay Carrying a De Novo Balanced Reciprocal Translocation. Genes (Basel) 2024; 15:809. [PMID: 38927744 PMCID: PMC11203114 DOI: 10.3390/genes15060809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
While balanced reciprocal translocations are relatively common, they often remain clinically silent unless they lead to the disruption of functional genes. In this study, we present the case of a boy exhibiting developmental delay and mild intellectual disability. Initial karyotyping revealed a translocation t(5;6)(q13;q23) between chromosomes 5 and 6 with limited resolution. Optical genome mapping (OGM) enabled a more precise depiction of the breakpoint regions involved in the reciprocal translocation. While the breakpoint region on chromosome 6 did not encompass any known gene, OGM revealed the disruption of the RASGRF2 (Ras protein-specific guanine nucleotide releasing factor 2) gene on chromosome 5, implicating RASGRF2 as a potential candidate gene contributing to the observed developmental delay in the patient. Variations in RASGRF2 have so far not been reported in developmental delay, but research on the RASGRF2 gene underscores its significance in various aspects of neurodevelopment, including synaptic plasticity, signaling pathways, and behavioral responses. This study highlights the utility of OGM in identifying breakpoint regions, providing possible insights into the understanding of neurodevelopmental disorders. It also helps affected individuals in gaining more knowledge about potential causes of their conditions.
Collapse
Affiliation(s)
- Rosa Catalina Lederbogen
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany; (R.C.L.); (S.H.); (M.V.Y.); (H.H.P.N.)
| | - Sabine Hoffjan
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany; (R.C.L.); (S.H.); (M.V.Y.); (H.H.P.N.)
| | - Charlotte Thiels
- Department of Neuropediatrics, University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany;
| | - Ulrike Angelika Mau-Holzmann
- Institute of Medical Genetics and Applied Genomics, University Tübingen, 72074 Tübingen, Germany; (U.A.M.-H.); (S.S.)
| | - Sylke Singer
- Institute of Medical Genetics and Applied Genomics, University Tübingen, 72074 Tübingen, Germany; (U.A.M.-H.); (S.S.)
| | - Maria Viktorovna Yusenko
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany; (R.C.L.); (S.H.); (M.V.Y.); (H.H.P.N.)
| | - Hoa Huu Phuc Nguyen
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany; (R.C.L.); (S.H.); (M.V.Y.); (H.H.P.N.)
| | - Wanda Maria Gerding
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany; (R.C.L.); (S.H.); (M.V.Y.); (H.H.P.N.)
| |
Collapse
|
10
|
Vales JP, Barbaric I. Culture-acquired genetic variation in human pluripotent stem cells: Twenty years on. Bioessays 2024:e2400062. [PMID: 38873900 DOI: 10.1002/bies.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Genetic changes arising in human pluripotent stem cells (hPSC) upon culture may bestow unwanted or detrimental phenotypes to cells, thus potentially impacting on the applications of hPSCs for clinical use and basic research. In the 20 years since the first report of culture-acquired genetic aberrations in hPSCs, a characteristic spectrum of recurrent aberrations has emerged. The preponderance of such aberrations implies that they provide a selective growth advantage to hPSCs upon expansion. However, understanding the consequences of culture-acquired variants for specific applications in cell therapy or research has been more elusive. The rapid progress of hPSC-based therapies to clinics is galvanizing the field to address this uncertainty and provide definitive ways both for risk assessment of variants and reducing their prevalence in culture. Here, we aim to provide a timely update on almost 20 years of research on this fascinating, but a still unresolved and concerning, phenomenon.
Collapse
Affiliation(s)
- John P Vales
- Centre for Stem Cell Biology, School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- INSIGNEO Institute, University of Sheffield, Sheffield, UK
| | - Ivana Barbaric
- Centre for Stem Cell Biology, School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- INSIGNEO Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
11
|
Jourdy Y, Chatron N, Frétigny M, Zawadzki C, Lienhart A, Stieltjes N, Rohrlich PS, Thauvin-Robinet C, Volot F, Hamida YF, Hariti G, Leuci A, Dargaud Y, Sanlaville D, Vinciguerra C. Whole F8 gene sequencing identified pathogenic structural variants in the remaining unsolved patients with severe hemophilia A. J Thromb Haemost 2024; 22:1616-1626. [PMID: 38484912 DOI: 10.1016/j.jtha.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND No F8 genetic abnormality is detected in approximately 1% to 2% of patients with severe hemophilia A (HA) using conventional genetic approaches. In these patients, deep intronic variation or F8 disrupting genomic rearrangement could be causal. OBJECTIVES The study aimed to identify the causal variation in families with a history of severe HA for whom genetic investigations failed. METHODS We performed whole F8 gene sequencing in 8 propositi. Genomic rearrangements were confirmed by Sanger sequencing of breakpoint junctions and/or quantitative polymerase chain reaction. RESULTS A structural variant disrupting F8 was found in each propositus, so that all the 815 families with a history of severe HA registered in our laboratory received a conclusive genetic diagnosis. These structural variants consisted of 3 balanced inversions, 3 large insertions of gained regions, and 1 retrotransposition of a mobile element. The 3 inversions were 105 Mb, 1.97 Mb, and 0.362 Mb in size. Among the insertions of gained regions, one corresponded to the insertion of a 34 kb gained region from chromosome 6q27 in F8 intron 6, another was the insertion of a 447 kb duplicated region from chromosome 9p22.1 in F8 intron 14, and the last one was the insertion of an Xq28 349 kb gained in F8 intron 5. CONCLUSION All the genetically unsolved cases of severe HA in this cohort were due to structural variants disrupting F8. This study highlights the effectiveness of whole F8 sequencing to improve the molecular diagnosis of HA when the conventional approach fails.
Collapse
Affiliation(s)
- Yohann Jourdy
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France; Université Claude Bernard Lyon 1, UR4609 Hémostase et thrombose, Lyon, France.
| | - Nicolas Chatron
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service de génétique, Bron, France; Université Claude Bernard Lyon 1 - CNRS UMR 5261 -INSERM U1315, Institute NeuroMyoGène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, Lyon, France
| | - Mathilde Frétigny
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France
| | - Christophe Zawadzki
- Pôle de Biologie Pathologie Génétique, Institut d'Hématologie - Transfusion, CHU Lille, Lille, France
| | - Anne Lienhart
- Hospices Civils de Lyon, Lyon Hemophilia Center and Clinical Haemostasis Unit, Bron, France
| | | | | | - Christel Thauvin-Robinet
- Centre de Génétique, Centre de Référence, Déficiences Intellectuelles de Causes Rares, Hôpital d'Enfants, CHU Dijon Bourgogne, Dijon, France
| | | | | | - Ghania Hariti
- Laboratoire de recherche en hémostase, Université d'Alger 1, Alger, Algérie
| | - Alexandre Leuci
- Université Claude Bernard Lyon 1, UR4609 Hémostase et thrombose, Lyon, France
| | - Yesim Dargaud
- Université Claude Bernard Lyon 1, UR4609 Hémostase et thrombose, Lyon, France; Hospices Civils de Lyon, Lyon Hemophilia Center and Clinical Haemostasis Unit, Bron, France
| | - Damien Sanlaville
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service de génétique, Bron, France; Université Claude Bernard Lyon 1 - CNRS UMR 5261 -INSERM U1315, Institute NeuroMyoGène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, Lyon, France
| | - Christine Vinciguerra
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France; Université Claude Bernard Lyon 1, UR4609 Hémostase et thrombose, Lyon, France
| |
Collapse
|
12
|
Kernohan KD, Boycott KM. The expanding diagnostic toolbox for rare genetic diseases. Nat Rev Genet 2024; 25:401-415. [PMID: 38238519 DOI: 10.1038/s41576-023-00683-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 05/23/2024]
Abstract
Genomic technologies, such as targeted, exome and short-read genome sequencing approaches, have revolutionized the care of patients with rare genetic diseases. However, more than half of patients remain without a diagnosis. Emerging approaches from research-based settings such as long-read genome sequencing and optical genome mapping hold promise for improving the identification of disease-causal genetic variants. In addition, new omic technologies that measure the transcriptome, epigenome, proteome or metabolome are showing great potential for variant interpretation. As genetic testing options rapidly expand, the clinical community needs to be mindful of their individual strengths and limitations, as well as remaining challenges, to select the appropriate diagnostic test, correctly interpret results and drive innovation to address insufficiencies. If used effectively - through truly integrative multi-omics approaches and data sharing - the resulting large quantities of data from these established and emerging technologies will greatly improve the interpretative power of genetic and genomic diagnostics for rare diseases.
Collapse
Affiliation(s)
- Kristin D Kernohan
- CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada
- Newborn Screening Ontario, CHEO, Ottawa, ON, Canada
| | - Kym M Boycott
- CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada.
- Department of Genetics, CHEO, Ottawa, ON, Canada.
| |
Collapse
|
13
|
Hu P, Xu Y, Zhang Q, Zhou R, Ji X, Wang Y, Xu Z. Prenatal diagnosis of chromosomal abnormalities using optical genome mapping vs chromosomal microarray. Am J Obstet Gynecol 2024; 230:e82-e83. [PMID: 38097028 DOI: 10.1016/j.ajog.2023.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 01/07/2024]
Affiliation(s)
- Ping Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei St, Nanjing, China 210029.
| | - Yiyun Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei St, Nanjing, China 210029
| | - Qinxin Zhang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei St, Nanjing, China 210029
| | - Ran Zhou
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei St, Nanjing, China 210029
| | - Xiuqing Ji
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei St, Nanjing, China 210029
| | - Yan Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei St, Nanjing, China 210029.
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei St, Nanjing, China 210029.
| |
Collapse
|
14
|
Iriondo J, Gómez A, Zubicaray J, Garcia-Martinez J, Abad L, Matesanz C, Giménez R, Galán A, Sanz A, Sebastián E, González de Pablo J, de la Cruz A, Ramírez M, Sevilla J. Optical Genome Mapping as a New Tool to Overcome Conventional Cytogenetics Limitations in Patients with Bone Marrow Failure. Genes (Basel) 2024; 15:559. [PMID: 38790188 PMCID: PMC11121707 DOI: 10.3390/genes15050559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Cytogenetic studies are essential in the diagnosis and follow up of patients with bone marrow failure syndromes (BMFSs), but obtaining good quality results is often challenging due to hypocellularity. Optical Genome Mapping (OGM), a novel technology capable of detecting most types chromosomal structural variants (SVs) at high resolution, is being increasingly used in many settings, including hematologic malignancies. Herein, we compared conventional cytogenetic techniques to OGM in 20 patients with diverse BMFSs. Twenty metaphases for the karyotype were only obtained in three subjects (15%), and no SVs were found in any of the samples. One patient with culture failure showed a gain in chromosome 1q by fluorescence in situ hybridization, which was confirmed by OGM. In contrast, OGM provided good quality results in all subjects, and SVs were detected in 14 of them (70%), mostly corresponding to cryptic submicroscopic alterations not observed by standard techniques. Therefore, OGM emerges as a powerful tool that provides complete and evaluable results in hypocellular BMFSs, reducing multiple tests into a single assay and overcoming some of the main limitations of conventional techniques. Furthermore, in addition to confirming the abnormalities detected by conventional techniques, OGM found new alterations beyond their detection limits.
Collapse
Affiliation(s)
- June Iriondo
- Hematology and Hemotherapy Unit, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (J.Z.); (A.S.); (E.S.)
- Biomedical Research Foundation, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (J.G.d.P.); (A.d.l.C.)
| | - Ana Gómez
- Laboratory and Clinical Analysis Department, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (L.A.); (C.M.); (R.G.); (M.R.)
| | - Josune Zubicaray
- Hematology and Hemotherapy Unit, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (J.Z.); (A.S.); (E.S.)
- Biomedical Research Foundation, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (J.G.d.P.); (A.d.l.C.)
| | - Jorge Garcia-Martinez
- Pediatric Onco-Hematology Department, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain;
- Health Research Institute at Hospital de La Princesa (IIS-Princesa), 28006 Madrid, Spain
| | - Lorea Abad
- Laboratory and Clinical Analysis Department, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (L.A.); (C.M.); (R.G.); (M.R.)
| | - Carmen Matesanz
- Laboratory and Clinical Analysis Department, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (L.A.); (C.M.); (R.G.); (M.R.)
| | - Reyes Giménez
- Laboratory and Clinical Analysis Department, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (L.A.); (C.M.); (R.G.); (M.R.)
| | - Almudena Galán
- Biomedical Research Foundation, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (J.G.d.P.); (A.d.l.C.)
- Laboratory and Clinical Analysis Department, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (L.A.); (C.M.); (R.G.); (M.R.)
| | - Alejandro Sanz
- Hematology and Hemotherapy Unit, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (J.Z.); (A.S.); (E.S.)
- Biomedical Research Foundation, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (J.G.d.P.); (A.d.l.C.)
| | - Elena Sebastián
- Hematology and Hemotherapy Unit, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (J.Z.); (A.S.); (E.S.)
- Biomedical Research Foundation, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (J.G.d.P.); (A.d.l.C.)
| | - Jesús González de Pablo
- Biomedical Research Foundation, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (J.G.d.P.); (A.d.l.C.)
| | - Ana de la Cruz
- Biomedical Research Foundation, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (J.G.d.P.); (A.d.l.C.)
- Laboratory and Clinical Analysis Department, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (L.A.); (C.M.); (R.G.); (M.R.)
| | - Manuel Ramírez
- Laboratory and Clinical Analysis Department, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (L.A.); (C.M.); (R.G.); (M.R.)
- Pediatric Onco-Hematology Department, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain;
- Health Research Institute at Hospital de La Princesa (IIS-Princesa), 28006 Madrid, Spain
| | - Julián Sevilla
- Hematology and Hemotherapy Unit, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (J.Z.); (A.S.); (E.S.)
- Biomedical Research Foundation, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain; (A.G.); (J.G.d.P.); (A.d.l.C.)
| |
Collapse
|
15
|
Bouassida M, Molina‐Gomes D, Koraichi F, Hervé B, Lhuilier M, Duvillier C, Le Gall J, Gauthier‐Villars M, Serazin V, Quibel T, Dard R, Vialard F. The clinical value of optical genome mapping in the rapid characterization of RB1 duplication and 15q23q24.2 triplication, for more appropriate prenatal genetic counselling. Mol Genet Genomic Med 2024; 12:e2437. [PMID: 38588252 PMCID: PMC11000809 DOI: 10.1002/mgg3.2437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Despite recent advances in prenatal genetic diagnosis, medical geneticists still face considerable difficulty in interpreting the clinical outcome of copy-number-variant duplications and defining the mechanisms underlying the formation of certain chromosomal rearrangements. Optical genome mapping (OGM) is an emerging cytogenomic tool with proved ability to identify the full spectrum of cytogenetic aberrations. METHODS Here, we report on the use of OGM in a prenatal diagnosis setting. Detailed breakpoint mapping was used to determine the relative orientations of triplicated and duplicated segments in two unrelated foetuses harbouring chromosomal aberrations: a de novo 15q23q24.2 triplication and a paternally inherited 13q14.2 duplication that overlapped partially with the RB1 gene. RESULTS OGM enabled us to suggest a plausible mechanism for the triplication and confirmed that the RB1 duplication was direct oriented and in tandem. This enabled us to predict the pathogenic consequences, refine the prognosis and adapt the follow-up and familial screening appropriately. CONCLUSION Along with an increase in diagnostic rates, OGM can rapidly highlight genotype-phenotype correlations, improve genetic counselling and significantly influence prenatal management.
Collapse
Affiliation(s)
- Malek Bouassida
- Genetics DepartmentCHI de Poissy‐St Germain en LayePoissyFrance
| | | | | | - Bérénice Hervé
- Genetics DepartmentCHI de Poissy‐St Germain en LayePoissyFrance
| | | | | | | | | | - Valérie Serazin
- Genetics DepartmentCHI de Poissy‐St Germain en LayePoissyFrance
| | - Thibaud Quibel
- Obstetrics DepartmentCHI de Poissy‐St Germain en LayePoissyFrance
| | - Rodolphe Dard
- Genetics DepartmentCHI de Poissy‐St Germain en LayePoissyFrance
- RHuMA TeamUMR‐BREED, UVSQ, INRAE, ENVAMontigny le BretonneuxFrance
| | - François Vialard
- Genetics DepartmentCHI de Poissy‐St Germain en LayePoissyFrance
- RHuMA TeamUMR‐BREED, UVSQ, INRAE, ENVAMontigny le BretonneuxFrance
| |
Collapse
|
16
|
Alesi V, Genovese S, Roberti MC, Sallicandro E, Di Tommaso S, Loddo S, Orlando V, Pompili D, Calacci C, Mei V, Pisaneschi E, Faggiano MV, Morgia A, Mammì C, Astrea G, Battini R, Priolo M, Dentici ML, Milone R, Novelli A. Structural rearrangements as a recurrent pathogenic mechanism for SETBP1 haploinsufficiency. Hum Genomics 2024; 18:29. [PMID: 38520002 PMCID: PMC10960460 DOI: 10.1186/s40246-024-00600-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
Chromosomal structural rearrangements consist of anomalies in genomic architecture that may or may not be associated with genetic material gain and loss. Evaluating the precise breakpoint is crucial from a diagnostic point of view, highlighting possible gene disruption and addressing to appropriate genotype-phenotype association. Structural rearrangements can either occur randomly within the genome or present with a recurrence, mainly due to peculiar genomic features of the surrounding regions. We report about three non-related individuals, harboring chromosomal structural rearrangements interrupting SETBP1, leading to gene haploinsufficiency. Two out of them resulted negative to Chromosomal Microarray Analysis (CMA), being the rearrangement balanced at a microarray resolution. The third one, presenting with a complex three-chromosome rearrangement, had been previously diagnosed with SETBP1 haploinsufficiency due to a partial gene deletion at one of the chromosomal breakpoints. We thoroughly characterized the rearrangements by means of Optical Genome Mapping (OGM) and Whole Genome Sequencing (WGS), providing details about the involved sequences and the underlying mechanisms. We propose structural variants as a recurrent event in SETBP1 haploinsufficiency, which may be overlooked by laboratory routine genomic analyses (CMA and Whole Exome Sequencing) or only partially determined when associated with genomic losses at breakpoints. We finally introduce a possible role of SETBP1 in a Noonan-like phenotype.
Collapse
Affiliation(s)
- V Alesi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| | - S Genovese
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy.
| | - M C Roberti
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| | - E Sallicandro
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| | - S Di Tommaso
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| | - S Loddo
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| | - V Orlando
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| | - D Pompili
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| | - C Calacci
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| | - V Mei
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| | - E Pisaneschi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| | - M V Faggiano
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| | - A Morgia
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| | - C Mammì
- Operative Unit of Medical Genetics, Great Metropolitan Hospital of Reggio Calabria, 89100, Reggio Calabria, Italy
| | - G Astrea
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56125, Pisa, Italy
| | - R Battini
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56125, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56100, Pisa, Italy
| | - M Priolo
- Operative Unit of Medical Genetics, Great Metropolitan Hospital of Reggio Calabria, 89100, Reggio Calabria, Italy
| | - M L Dentici
- Medical Genetics Unit, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| | - R Milone
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56125, Pisa, Italy
| | - A Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| |
Collapse
|
17
|
Budurlean L, Tukaramrao DB, Zhang L, Dovat S, Broach J. Integrating Optical Genome Mapping and Whole Genome Sequencing in Somatic Structural Variant Detection. J Pers Med 2024; 14:291. [PMID: 38541033 PMCID: PMC10971281 DOI: 10.3390/jpm14030291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024] Open
Abstract
Structural variants drive tumorigenesis by disrupting normal gene function through insertions, inversions, translocations, and copy number changes, including deletions and duplications. Detecting structural variants is crucial for revealing their roles in tumor development, clinical outcomes, and personalized therapy. Presently, most studies rely on short-read data from next-generation sequencing that aligns back to a reference genome to determine if and, if so, where a structural variant occurs. However, structural variant discovery by short-read sequencing is challenging, primarily because of the difficulty in mapping regions of repetitive sequences. Optical genome mapping (OGM) is a recent technology used for imaging and assembling long DNA strands to detect structural variations. To capture the structural variant landscape more thoroughly in the human genome, we developed an integrated pipeline that combines Bionano OGM and Illumina whole-genome sequencing and applied it to samples from 29 pediatric B-ALL patients. The addition of OGM allowed us to identify 511 deletions, 506 insertions, 93 duplications/gains, and 145 translocations that were otherwise missed in the short-read data. Moreover, we identified several novel gene fusions, the expression of which was confirmed by RNA sequencing. Our results highlight the benefit of integrating OGM and short-read detection methods to obtain a comprehensive analysis of genetic variation that can aid in clinical diagnosis, provide new therapeutic targets, and improve personalized medicine in cancers driven by structural variation.
Collapse
Affiliation(s)
- Laura Budurlean
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | - Lijun Zhang
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sinisa Dovat
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Pediatrics, Penn State Cancer Institute, Hershey, PA 17033, USA
| | - James Broach
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
18
|
Wagener R, Brandes D, Jung M, Huetzen MA, Bergmann AK, Panier S, Picard D, Fischer U, Jachimowicz RD, Borkhardt A, Brozou T. Optical genome mapping identifies structural variants in potentially new cancer predisposition candidate genes in pediatric cancer patients. Int J Cancer 2024; 154:607-614. [PMID: 37776287 DOI: 10.1002/ijc.34721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 10/02/2023]
Abstract
Genetic predisposition is one of the major risk factors for pediatric cancer, with ~10% of children being carriers of a predisposing germline alteration. It is likely that this is the tip of the iceberg and many children are underdiagnosed, as most of the analysis focuses on single or short nucleotide variants, not considering the full spectrum of DNA alterations. Hence, we applied optical genome mapping (OGM) to our cohort of 34 pediatric cancer patients to perform an unbiased germline screening and analyze the frequency of structural variants (SVs) and their impact on cancer predisposition. All children were clinically highly suspicious for germline alterations (concomitant conditions or congenital anomalies, positive family cancer history, particular cancer type, synchronous or metachronous tumors), but whole exome sequencing (WES) had failed to detect pathogenic variants in cancer predisposing genes. OGM detected a median of 49 rare SVs (range 27-149) per patient. By analysis of 18 patient-parent trios, we identified three de novo SVs. Moreover, we discovered a likely pathogenic deletion of exon 3 in the known cancer predisposition gene BRCA2, and identified a duplication in RPA1, which might represent a new cancer predisposition gene. We conclude that optical genome mapping is a suitable tool for detecting potentially predisposing SVs in addition to WES in pediatric cancer patients.
Collapse
Affiliation(s)
- Rabea Wagener
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Danielle Brandes
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marie Jung
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maxim A Huetzen
- Max Planck Research Group Mechanisms of DNA Repair, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Anke K Bergmann
- Institute of Human Genetics, Hannover Medical School (MHH), Hannover, Germany
| | - Stephanie Panier
- Max Planck Research Group Mechanisms of DNA Repair, Max Planck Institute for Biology of Ageing, Cologne, Germany
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Cologne, Germany
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Ron D Jachimowicz
- Max Planck Research Group Mechanisms of DNA Repair, Max Planck Institute for Biology of Ageing, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne and Düsseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Triantafyllia Brozou
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
19
|
Xu Y, Zhang Q, Wang Y, Zhou R, Ji X, Meng L, Luo C, Liu A, Jiao J, Chen H, Zeng H, Hu P, Xu Z. Optical Genome Mapping for Chromosomal Aberrations Detection-False-Negative Results and Contributing Factors. Diagnostics (Basel) 2024; 14:165. [PMID: 38248042 PMCID: PMC10814618 DOI: 10.3390/diagnostics14020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Optical genome mapping (OGM) has been known as an all-in-one technology for chromosomal aberration detection. However, there are also aberrations beyond the detection range of OGM. This study aimed to report the aberrations missed by OGM and analyze the contributing factors. OGM was performed by taking both GRCh37 and GRCh38 as reference genomes. The OGM results were analyzed in blinded fashion and compared to standard assays. Quality control (QC) metrics, sample types, reference genome, effective coverage and classes and locations of aberrations were then analyzed. In total, 154 clinically reported variations from 123 samples were investigated. OGM failed to detect 10 (6.5%, 10/154) aberrations with GRCh37 assembly, including five copy number variations (CNVs), two submicroscopic balanced translocations, two pericentric inversion and one isochromosome (mosaicism). All the samples passed pre-analytical and analytical QC. With GRCh38 assembly, the false-negative rate of OGM fell to 4.5% (7/154). The breakpoints of the CNVs, balanced translocations and inversions undetected by OGM were located in segmental duplication (SD) regions or regions with no DLE-1 label. In conclusion, besides variations with centromeric breakpoints, structural variations (SVs) with breakpoints located in large repetitive sequences may also be missed by OGM. GRCh38 is recommended as the reference genome when OGM is performed. Our results highlight the necessity of fully understanding the detection range and limitation of OGM in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ping Hu
- Department of Prenatal Diagnosis, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Health Care Hospital, Nanjing 210004, China; (Y.X.); (Q.Z.); (Y.W.); (R.Z.); (X.J.); (L.M.); (C.L.); (A.L.); (J.J.); (H.C.); (H.Z.)
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Health Care Hospital, Nanjing 210004, China; (Y.X.); (Q.Z.); (Y.W.); (R.Z.); (X.J.); (L.M.); (C.L.); (A.L.); (J.J.); (H.C.); (H.Z.)
| |
Collapse
|
20
|
Mathew MT, Babcock M, Hou YCC, Hunter JM, Leung ML, Mei H, Schieffer K, Akkari Y. Clinical Cytogenetics: Current Practices and Beyond. J Appl Lab Med 2024; 9:61-75. [PMID: 38167757 DOI: 10.1093/jalm/jfad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/17/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Throughout history, the field of cytogenetics has witnessed significant changes due to the constant evolution of technologies used to assess chromosome number and structure. Similar to the evolution of single nucleotide variant detection from Sanger sequencing to next-generation sequencing, the identification of chromosome alterations has progressed from banding to fluorescence in situ hybridization (FISH) to chromosomal microarrays. More recently, emerging technologies such as optical genome mapping and genome sequencing have made noteworthy contributions to clinical laboratory testing in the field of cytogenetics. CONTENT In this review, we journey through some of the most pivotal discoveries that have shaped the development of clinical cytogenetics testing. We also explore the current test offerings, their uses and limitations, and future directions in technology advancements. SUMMARY Cytogenetics methods, including banding and targeted assessments like FISH, continue to hold crucial roles in cytogenetic testing. These methods offer a rapid turnaround time, especially for conditions with a known etiology involving recognized cytogenetic aberrations. Additionally, laboratories have the flexibility to now employ higher-throughput methodologies to enhance resolution for cases with greater complexity.
Collapse
Affiliation(s)
- Mariam T Mathew
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Melanie Babcock
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Ying-Chen Claire Hou
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Jesse M Hunter
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Marco L Leung
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Hui Mei
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Kathleen Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Yassmine Akkari
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
21
|
Paulraj P, Barrie E, Jackson‐Cook C. Optical genome mapping reveals balanced and unbalanced genetic changes associated with tumor-forming potential in an early-stage prostate cancer epithelial subline (M2205). Mol Genet Genomic Med 2024; 12:e2307. [PMID: 37902189 PMCID: PMC10767587 DOI: 10.1002/mgg3.2307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Identifying cytogenetic changes in tumors can aid in diagnosis/prognosis and disease management. Complete cytogenetic characterization has historically required a multimethod/time-consuming approach. Optical genome mapping (OGM) offers a potential solution to this challenge by detecting both balanced and unbalanced abnormalities in a single assay. METHODS Genetic changes acquired with tumor-forming potential in a prostate xenograft subline [M2205] (derived from a Black male) that were detected using cytogenetic versus OGM analyses were compared to assess the utility of OGM for analyzing solid tumors. RESULTS Cytogenetic/OGM concordance was noted for (a) copy number gains (16, 1p, 3q, 5q, 7p, 8q, 9q, 11p, 11q, 15q, 20q), (b) copy number losses (Y, 3p, 4p, 6p, 7p, 9p, 11q), and (c) structural changes, including multibreak rearrangements. Discordance was noted for two structural findings, both of which had breakpoints localized to repetitive sequences. The OGM studies identified new findings and confirmed/further characterized 8q24 structural abnormalities. It also detected genes gained/disrupted in the 8q24 region (e.g., MYC, DEPTOR, and EXT1); but recognizing a jumping translocation required cytogenetic analyses. CONCLUSION These results support using OGM as a tool to analyze solid tumors in clinical/research settings. Moreover, this OGM analysis expanded the characterization of cytogenetic changes present in the M2205 subline, including alterations associated with tumors from Black males diagnosed with prostate cancer.
Collapse
Affiliation(s)
- Prabakaran Paulraj
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- NeogenomicsPhoenixArizonaUSA
| | - Elizabeth Barrie
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Colleen Jackson‐Cook
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Human & Molecular GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
22
|
Coccaro N, Zagaria A, Anelli L, Tarantini F, Tota G, Conserva MR, Cumbo C, Parciante E, Redavid I, Ingravallo G, Minervini CF, Minervini A, Specchia G, Musto P, Albano F. Optical Genome Mapping as a Tool to Unveil New Molecular Findings in Hematological Patients with Complex Chromosomal Rearrangements. Genes (Basel) 2023; 14:2180. [PMID: 38137002 PMCID: PMC10742895 DOI: 10.3390/genes14122180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Standard cytogenetic techniques (chromosomal banding analysis-CBA, and fluorescence in situ hybridization-FISH) show limits in characterizing complex chromosomal rearrangements and structural variants arising from two or more chromosomal breaks. In this study, we applied optical genome mapping (OGM) to fully characterize two cases of complex chromosomal rearrangements at high resolution. In case 1, an acute myeloid leukemia (AML) patient showing chromothripsis, OGM analysis was fully concordant with classic cytogenetic techniques and helped to better refine chromosomal breakpoints. The OGM results of case 2, a patient with non-Hodgkin lymphoma, were only partially in agreement with previous cytogenetic analyses and helped to better define clonal heterogeneity, overcoming the bias related to clonal selection due to cell culture of cytogenetic techniques. In both cases, OGM analysis led to the identification of molecular markers, helping to define the pathogenesis, classification, and prognosis of the analyzed patients. Despite extensive efforts to study hematologic diseases, standard cytogenetic methods display unsurmountable limits, while OGM is a tool that has the power to overcome these limitations and provide a cytogenetic analysis at higher resolution. As OGM also shows limits in defining regions of a repetitive nature, combining OGM with CBA to obtain a complete cytogenetic characterization would be desirable.
Collapse
Affiliation(s)
- Nicoletta Coccaro
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Antonella Zagaria
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Luisa Anelli
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Francesco Tarantini
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Giuseppina Tota
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Maria Rosa Conserva
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Cosimo Cumbo
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Elisa Parciante
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Immacolata Redavid
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Giuseppe Ingravallo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Crescenzio Francesco Minervini
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Angela Minervini
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Giorgina Specchia
- School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Pellegrino Musto
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| | - Francesco Albano
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (A.Z.); (L.A.); (F.T.); (G.T.); (M.R.C.); (C.C.); (E.P.); (I.R.); (C.F.M.); (A.M.); (P.M.)
| |
Collapse
|
23
|
Qu J, Li S, Yu D. Detection of complex chromosome rearrangements using optical genome mapping. Gene 2023; 884:147688. [PMID: 37543218 DOI: 10.1016/j.gene.2023.147688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/15/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Chromosomal structural variations (SVs) are a main cause of human genetic disease. Currently, karyotype, chromosomal microarray analysis (CMA), and fluorescent in situ hybridization (FISH) form the backbone of current routine diagnostics (CRD). These methods have their own limitations. CRD cannot identify cryptic balanced SVs and complex SVs even if these techniques were performed either simultaneously or in a sequential manner. Optical genome mapping (OGM) is a novel technology that can identify several classes of SVs with higher resolution, but studies on the applicability of OGM and its comparison with CRD are inadequate for difficult and complicated chromosomal SVs are lacking. Herein, seven patients with definite complicated SVs involving at least two breakpoints (BPs) were recruited for this study. The results of BPs and SVs from OGM were compared with those from CRD. The results showed that all BPs of five samples and partial BPs of two samples were detected by OGM. The undetected BPs were all close to the repeat-rich gap region. Besides, OGM also detected additional SVs including a cryptic balanced translocation, two additional complex chromosomal rearrangement (CCR). OGM yielded the additional information, such as the orientation of acentric fragments, BP positions, and genes mapped in the BP region for all the cases. The accuracy of additional SVs and BPs detected by OGM was verified by FISH panel and next-generation sequencing and Sanger sequencing. Taken together, OGM exhibit a better performance in detecting chromosomal SVs compared to the CRD. We suggested that OGM method should be utilized in the clinical examination to improve the efficiency and accuracy of genetic disease diagnosis, supplemented by FISH or karyotyping to compensate for the SVs in the repeat-rich gap region if necessary.
Collapse
Affiliation(s)
- Jiangbo Qu
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, Shandong, China.
| | - Shuo Li
- Genetic Testing Center, Qingdao Women and Children's Hospital, Qingdao 266034, Shandong, China.
| | - Dongyi Yu
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, Shandong, China.
| |
Collapse
|
24
|
Penkova A, Kuziakova O, Gulaia V, Tiasto V, Goncharov NV, Lanskikh D, Zhmenia V, Baklanov I, Farniev V, Kumeiko V. Comprehensive clinical assays for molecular diagnostics of gliomas: the current state and future prospects. Front Mol Biosci 2023; 10:1216102. [PMID: 37908227 PMCID: PMC10613994 DOI: 10.3389/fmolb.2023.1216102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Abstract
Glioma is one of the most intractable types of cancer, due to delayed diagnosis at advanced stages. The clinical symptoms of glioma are unclear and due to a variety of glioma subtypes, available low-invasive testing is not effective enough to be introduced into routine medical laboratory practice. Therefore, recent advances in the clinical diagnosis of glioma have focused on liquid biopsy approaches that utilize a wide range of techniques such as next-generation sequencing (NGS), droplet-digital polymerase chain reaction (ddPCR), and quantitative PCR (qPCR). Among all techniques, NGS is the most advantageous diagnostic method. Despite the rapid cheapening of NGS experiments, the cost of such diagnostics remains high. Moreover, high-throughput diagnostics are not appropriate for molecular profiling of gliomas since patients with gliomas exhibit only a few diagnostic markers. In this review, we highlighted all available assays for glioma diagnosing for main pathogenic glioma DNA sequence alterations. In the present study, we reviewed the possibility of integrating routine molecular methods into the diagnosis of gliomas. We state that the development of an affordable assay covering all glioma genetic aberrations could enable early detection and improve patient outcomes. Moreover, the development of such molecular diagnostic kits could potentially be a good alternative to expensive NGS-based approaches.
Collapse
Affiliation(s)
- Alina Penkova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Olga Kuziakova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Gulaia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vladlena Tiasto
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Nikolay V. Goncharov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| | - Daria Lanskikh
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Zhmenia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Ivan Baklanov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| | - Vladislav Farniev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vadim Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| |
Collapse
|
25
|
Zhang Q, Wang Y, Zhou J, Zhou R, Liu A, Meng L, Ji X, Hu P, Xu Z. 11q13.3q13.4 deletion plus 9q21.13q21.33 duplication in an affected girl arising from a familial four-way balanced chromosomal translocation. Mol Genet Genomic Med 2023; 11:e2248. [PMID: 37475652 PMCID: PMC10568374 DOI: 10.1002/mgg3.2248] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND We describe a 13-year-old girl with a 11q13.3q13.4 deletion encompassing the SHANK2 gene and a 9q21.13q21.33 duplication. She presented with pre- and postnatal growth retardation, global developmental delay, severe language delay, cardiac abnormalities, and dysmorphisms. Her maternal family members all had histories of reproductive problems. METHODS Maternal family members with histories of reproductive problems were studied using G-banded karyotyping and optical genome mapping (OGM). Long-range PCR (LR-PCR) and Sanger sequencing were used to confirm the precise break point sequences obtained by OGM. RESULTS G-banded karyotyping characterized the cytogenetic results as 46,XX,der(9)?del(9)(q21q22)t(9;14)(q22;q24),der(11)ins(11;?9)(q13;?q21q22),der(14)t(9;14). Using OGM, we determined that asymptomatic female family members with reproductive problems were carriers of a four-way balanced chromosome translocation. Their karyotype results were further refined as 46,XX,der(9)del(9)(q21.13q21.33)t(9;14)(q21.33;q22.31),der(11)del(11)(q13.3q13.4)ins(11;9)(q13.3;q21.33q21.13),der(14)t(9:14)ins(14;11)(q23.1;q13.4q13.3). Thus, we confirmed that the affected girl inherited the maternally derived chromosome 11. Furthermore, using LR-PCR, we showed that three disease-related genes (TMC1, NTRK2, and KIAA0586) were disrupted by the breakpoints. CONCLUSIONS Our case highlights the importance of timely parental origin testing for patients with rare copy number variations, as well as the accurate characterization of balanced chromosomal rearrangements in families with reproductive problems. In addition, our case demonstrates that OGM is a useful clinical application for analyzing complex structural variations within the human genome.
Collapse
Affiliation(s)
- Qinxin Zhang
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Yan Wang
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Jing Zhou
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Ran Zhou
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - An Liu
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Lulu Meng
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Xiuqing Ji
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Ping Hu
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Zhengfeng Xu
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| |
Collapse
|
26
|
Erbe LS, Hoffjan S, Janßen S, Kneifel M, Krause K, Gerding WM, Döring K, Güttsches AK, Roos A, Buena Atienza E, Gross C, Lücke T, Nguyen HHP, Vorgerd M, Köhler C. Exome Sequencing and Optical Genome Mapping in Molecularly Unsolved Cases of Duchenne Muscular Dystrophy: Identification of a Causative X-Chromosomal Inversion Disrupting the DMD Gene. Int J Mol Sci 2023; 24:14716. [PMID: 37834164 PMCID: PMC10572545 DOI: 10.3390/ijms241914716] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe progressive muscle disease that mainly affects boys due to X-linked recessive inheritance. In most affected individuals, MLPA or sequencing-based techniques detect deletions, duplications, or point mutations in the dystrophin-encoding DMD gene. However, in a small subset of patients clinically diagnosed with DMD, the molecular cause is not identified with these routine methods. Evaluation of the 60 DMD patients in our center revealed three cases without a known genetic cause. DNA samples of these patients were analyzed using whole-exome sequencing (WES) and, if unconclusive, optical genome mapping (OGM). WES led to a diagnosis in two cases: one patient was found to carry a splice mutation in the DMD gene that had not been identified during previous Sanger sequencing. In the second patient, we detected two variants in the fukutin gene (FKTN) that were presumed to be disease-causing. In the third patient, WES was unremarkable, but OGM identified an inversion disrupting the DMD gene (~1.28 Mb) that was subsequently confirmed with long-read sequencing. These results highlight the importance of reanalyzing unsolved cases using WES and demonstrate that OGM is a useful method for identifying large structural variants in cases with unremarkable exome sequencing.
Collapse
Affiliation(s)
- Leoni S. Erbe
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany; (L.S.E.); (W.M.G.); (K.D.); (H.H.P.N.)
| | - Sabine Hoffjan
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany; (L.S.E.); (W.M.G.); (K.D.); (H.H.P.N.)
- Center for Rare Diseases Ruhr (CeSER), 44791 Bochum, Germany; (C.K.); (T.L.)
| | - Sören Janßen
- Department of Neuropediatrics, University Children’s Hospital, Ruhr-University Bochum, 44801 Bochum, Germany;
| | - Moritz Kneifel
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44801 Bochum, Germany; (M.K.); (K.K.); (A.-K.G.); (A.R.); (M.V.)
| | - Karsten Krause
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44801 Bochum, Germany; (M.K.); (K.K.); (A.-K.G.); (A.R.); (M.V.)
| | - Wanda M. Gerding
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany; (L.S.E.); (W.M.G.); (K.D.); (H.H.P.N.)
| | - Kristina Döring
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany; (L.S.E.); (W.M.G.); (K.D.); (H.H.P.N.)
| | - Anne-Katrin Güttsches
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44801 Bochum, Germany; (M.K.); (K.K.); (A.-K.G.); (A.R.); (M.V.)
| | - Andreas Roos
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44801 Bochum, Germany; (M.K.); (K.K.); (A.-K.G.); (A.R.); (M.V.)
| | - Elena Buena Atienza
- Institute of Medical Genetics and Applied Genomics, University Tübingen, 72074 Tübingen, Germany; (E.B.A.); (C.G.)
- NGS Competence Center Tübingen, 72076 Tübingen, Germany
| | - Caspar Gross
- Institute of Medical Genetics and Applied Genomics, University Tübingen, 72074 Tübingen, Germany; (E.B.A.); (C.G.)
- NGS Competence Center Tübingen, 72076 Tübingen, Germany
| | - Thomas Lücke
- Center for Rare Diseases Ruhr (CeSER), 44791 Bochum, Germany; (C.K.); (T.L.)
- Department of Neuropediatrics, University Children’s Hospital, Ruhr-University Bochum, 44801 Bochum, Germany;
| | - Hoa Huu Phuc Nguyen
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany; (L.S.E.); (W.M.G.); (K.D.); (H.H.P.N.)
- Center for Rare Diseases Ruhr (CeSER), 44791 Bochum, Germany; (C.K.); (T.L.)
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44801 Bochum, Germany; (M.K.); (K.K.); (A.-K.G.); (A.R.); (M.V.)
| | - Cornelia Köhler
- Center for Rare Diseases Ruhr (CeSER), 44791 Bochum, Germany; (C.K.); (T.L.)
- Department of Neuropediatrics, University Children’s Hospital, Ruhr-University Bochum, 44801 Bochum, Germany;
| |
Collapse
|
27
|
Rao H, Zhang H, Zou Y, Ma P, Huang T, Yuan H, Zhou J, Lu W, Li Q, Huang S, Liu Y, Yang B. Analysis of chromosomal structural variations in patients with recurrent spontaneous abortion using optical genome mapping. Front Genet 2023; 14:1248755. [PMID: 37732322 PMCID: PMC10507169 DOI: 10.3389/fgene.2023.1248755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Background and aims: Certain chromosomal structural variations (SVs) in biological parents can lead to recurrent spontaneous abortions (RSAs). Unequal crossing over during meiosis can result in the unbalanced rearrangement of gamete chromosomes such as duplication or deletion. Unfortunately, routine techniques such as karyotyping, fluorescence in situ hybridization (FISH), chromosomal microarray analysis (CMA), and copy number variation sequencing (CNV-seq) cannot detect all types of SVs. In this study, we show that optical genome mapping (OGM) quickly and accurately detects SVs for RSA patients with a high resolution and provides more information about the breakpoint regions at gene level. Methods: Seven couples who had suffered RSA with unbalanced chromosomal rearrangements of aborted embryos were recruited, and ultra-high molecular weight (UHMW) DNA was isolated from their peripheral blood. The consensus genome map was created by de novo assembly on the Bionano Solve data analysis software. SVs and breakpoints were identified via alignments of the reference genome GRCh38/hg38. The exact breakpoint sequences were verified using either Oxford Nanopore sequencing or Sanger sequencing. Results: Various SVs in the recruited couples were successfully detected by OGM. Also, additional complex chromosomal rearrangement (CCRs) and four cryptic balanced reciprocal translocations (BRTs) were revealed, further refining the underlying genetic causes of RSA. Two of the disrupted genes identified in this study, FOXK2 [46,XY,t(7; 17)(q31.3; q25)] and PLXDC2 [46,XX,t(10; 16)(p12.31; q23.1)], had been previously shown to be associated with male fertility and embryo transit. Conclusion: OGM accurately detects chromosomal SVs, especially cryptic BRTs and CCRs. It is a useful complement to routine human genetic diagnostics, such as karyotyping, and detects cryptic BRTs and CCRs more accurately than routine genetic diagnostics.
Collapse
Affiliation(s)
- Huihua Rao
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Haoyi Zhang
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Yongyi Zou
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Pengpeng Ma
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Tingting Huang
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Huizhen Yuan
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Jihui Zhou
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Wan Lu
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Qiao Li
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Shuhui Huang
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Yanqiu Liu
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Bicheng Yang
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
28
|
Büki G, Bekő A, Bödör C, Urbán P, Németh K, Hadzsiev K, Fekete G, Kehrer-Sawatzki H, Bene J. Identification of an NF1 Microdeletion with Optical Genome Mapping. Int J Mol Sci 2023; 24:13580. [PMID: 37686382 PMCID: PMC10487413 DOI: 10.3390/ijms241713580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is a clinically heterogeneous neurocutaneous disorder inherited in autosomal dominant manner. Approximately 5-10% of the cases are caused by NF1 microdeletions involving the NF1 gene and its flanking regions. Microdeletions, which lead to more severe clinical manifestations, can be subclassified into four different types (type 1, 2, 3 and atypical) according to their size, the genomic location of the breakpoints and the number of genes included within the deletion. Besides the prominent hallmarks of NF1, patients with NF1 microdeletions frequently exhibit specific additional clinical manifestations like dysmorphic facial features, macrocephaly, overgrowth, global developmental delay, cognitive disability and an increased risk of malignancies. It is important to identify the genes co-deleted with NF1, because they are likely to have an effect on the clinical manifestation. Multiplex ligation-dependent probe amplification (MLPA) and microarray analysis are the primary techniques for the investigation of NF1 microdeletions. However, based on previous research, optical genome mapping (OGM) could also serve as an alternative method to identify copy number variations (CNVs). Here, we present a case with NF1 microdeletion identified by means of OGM and demonstrate that this novel technology is a suitable tool for the identification and classification of the NF1 microdeletions.
Collapse
Affiliation(s)
- Gergely Büki
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.B.); (K.H.)
| | - Anna Bekő
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary; (A.B.); (C.B.)
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary; (A.B.); (C.B.)
| | - Péter Urbán
- Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary;
| | - Krisztina Németh
- Pediatric Center, Tűzoltó Street Department, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary; (K.N.); (G.F.)
| | - Kinga Hadzsiev
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.B.); (K.H.)
| | - György Fekete
- Pediatric Center, Tűzoltó Street Department, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary; (K.N.); (G.F.)
| | | | - Judit Bene
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.B.); (K.H.)
| |
Collapse
|
29
|
Rogac M, Kovanda A, Lovrečić L, Peterlin B. Optical genome mapping in an atypical Pelizaeus-Merzbacher prenatal challenge. Front Genet 2023; 14:1173426. [PMID: 37560384 PMCID: PMC10407396 DOI: 10.3389/fgene.2023.1173426] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023] Open
Abstract
Pathogenic genetic variants represent a challenge in prenatal counseling, especially when clinical presentation in familial carriers is atypical. We describe a prenatal case involving a microarray-detected duplication of PLP1 which causes X-linked Pelizaeus-Merzbacher disease, a progressive hypomyelinating leukodystrophy. Because of atypical clinical presentation in an older male child, the duplication was examined using a novel technology, optical genome mapping, and was found to be an inverted duplication, which has not been previously described. Simultaneously, segregation analysis identified another healthy adult male carrier of this unique structural rearrangement. The novel PLP1 structural variant was reclassified, and a healthy boy was delivered. In conclusion, we suggest that examining structural variants with novel methods is warranted especially in cases with atypical clinical presentation and may in these cases lead to improved prenatal and postnatal genetic counseling.
Collapse
Affiliation(s)
- Mihael Rogac
- Clinical Institute of Genomic Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Kovanda
- Clinical Institute of Genomic Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Luca Lovrečić
- Clinical Institute of Genomic Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
30
|
Laufer VA, Glover TW, Wilson TE. Applications of advanced technologies for detecting genomic structural variation. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108475. [PMID: 37931775 PMCID: PMC10792551 DOI: 10.1016/j.mrrev.2023.108475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Chromosomal structural variation (SV) encompasses a heterogenous class of genetic variants that exerts strong influences on human health and disease. Despite their importance, many structural variants (SVs) have remained poorly characterized at even a basic level, a discrepancy predicated upon the technical limitations of prior genomic assays. However, recent advances in genomic technology can identify and localize SVs accurately, opening new questions regarding SV risk factors and their impacts in humans. Here, we first define and classify human SVs and their generative mechanisms, highlighting characteristics leveraged by various SV assays. We next examine the first-ever gapless assembly of the human genome and the technical process of assembling it, which required third-generation sequencing technologies to resolve structurally complex loci. The new portions of that "telomere-to-telomere" and subsequent pangenome assemblies highlight aspects of SV biology likely to develop in the near-term. We consider the strengths and limitations of the most promising new SV technologies and when they or longstanding approaches are best suited to meeting salient goals in the study of human SV in population-scale genomics research, clinical, and public health contexts. It is a watershed time in our understanding of human SV when new approaches are expected to fundamentally change genomic applications.
Collapse
Affiliation(s)
- Vincent A Laufer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Thomas W Glover
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Thomas E Wilson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
31
|
Zhang Q, Wang Y, Xu Y, Zhou R, Huang M, Qiao F, Meng L, Liu A, Zhou J, Li L, Ji X, Xu Z, Hu P. Optical genome mapping for detection of chromosomal aberrations in prenatal diagnosis. Acta Obstet Gynecol Scand 2023. [PMID: 37366235 PMCID: PMC10378017 DOI: 10.1111/aogs.14613] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION Chromosomal aberrations are the most important etiological factors for birth defects. Optical genome mapping is a novel cytogenetic tool for detecting a broad range of chromosomal aberrations in a single assay, but relevant clinical feasibility studies of optical genome mapping in prenatal diagnosis are limited. MATERIAL AND METHODS We retrospectively performed optical genome mapping analysis of amniotic fluid samples from 34 fetuses with various clinical indications and chromosomal aberrations detected through standard-of-care technologies, including karyotyping, fluorescence in situ hybridization, and/or chromosomal microarray analysis. RESULTS In total, we analyzed 46 chromosomal aberrations from 34 amniotic fluid samples, including 5 aneuploidies, 10 large copy number variations, 27 microdeletions/microduplications, 2 translocations, 1 isochromosome, and 1 region of homozygosity. Overall, 45 chromosomal aberrations could be confirmed by our customized analysis strategy. Optical genome mapping reached 97.8% concordant clinical diagnosis with standard-of-care methods for all chromosomal aberrations in a blinded fashion. Compared with the widely used chromosomal microarray analysis, optical genome mapping additionally determined the relative orientation and position of repetitive segments for seven cases with duplications or triplications. The additional information provided by optical genome mapping will be conducive to characterizing complex chromosomal rearrangements and allowing us to propose mechanisms to explain rearrangements and predict the genetic recurrence risk. CONCLUSIONS Our study highlights that optical genome mapping can provide comprehensive and accurate information on chromosomal aberrations in a single test, suggesting that optical genome mapping has the potential to become a promising cytogenetic tool for prenatal diagnosis.
Collapse
Affiliation(s)
- Qinxin Zhang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yan Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yiyun Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ran Zhou
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Mingtao Huang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Fengchang Qiao
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lulu Meng
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - An Liu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jing Zhou
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Li Li
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiuqing Ji
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ping Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
32
|
Coccaro N, Anelli L, Zagaria A, Tarantini F, Cumbo C, Tota G, Minervini CF, Minervini A, Conserva MR, Redavid I, Parciante E, Macchia MG, Specchia G, Musto P, Albano F. Feasibility of Optical Genome Mapping in Cytogenetic Diagnostics of Hematological Neoplasms: A New Way to Look at DNA. Diagnostics (Basel) 2023; 13:diagnostics13111841. [PMID: 37296693 DOI: 10.3390/diagnostics13111841] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Optical genome mapping (OGM) is a new genome-wide technology that can reveal both structural genomic variations (SVs) and copy number variations (CNVs) in a single assay. OGM was initially employed to perform genome assembly and genome research, but it is now more widely used to study chromosome aberrations in genetic disorders and in human cancer. One of the most useful OGM applications is in hematological malignancies, where chromosomal rearrangements are frequent and conventional cytogenetic analysis alone is insufficient, necessitating further confirmation using ancillary techniques such as fluorescence in situ hybridization, chromosomal microarrays, or multiple ligation-dependent probe amplification. The first studies tested OGM efficiency and sensitivity for SV and CNV detection, comparing heterogeneous groups of lymphoid and myeloid hematological sample data with those obtained using standard cytogenetic diagnostic tests. Most of the work based on this innovative technology was focused on myelodysplastic syndromes (MDSs), acute myeloid leukemia (AML), and acute lymphoblastic leukemia (ALL), whereas little attention was paid to chronic lymphocytic leukemia (CLL) or multiple myeloma (MM), and none was paid to lymphomas. The studies showed that OGM can now be considered as a highly reliable method, concordant with standard cytogenetic techniques but able to detect novel clinically significant SVs, thus allowing better patient classification, prognostic stratification, and therapeutic choices in hematological malignancies.
Collapse
Affiliation(s)
- Nicoletta Coccaro
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Luisa Anelli
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Antonella Zagaria
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Francesco Tarantini
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Cosimo Cumbo
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giuseppina Tota
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Crescenzio Francesco Minervini
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Angela Minervini
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Maria Rosa Conserva
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Immacolata Redavid
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Elisa Parciante
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Maria Giovanna Macchia
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giorgina Specchia
- School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Pellegrino Musto
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Francesco Albano
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
33
|
Ogiwara Y, Hattori A, Ikegawa K, Hasegawa Y, Kuroki Y, Miyado M, Fukami M. Optical Genome Mapping for a Patient with a Congenital Disorder and Chromosomal Translocation. Cytogenet Genome Res 2023; 162:617-624. [PMID: 37231804 DOI: 10.1159/000531103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
We performed optical genome mapping (OGM), a newly developed cytogenetic technique, for a patient with a disorder of sex development (DSD) and a 46,XX,t(9;11)(p22;p13) karyotype. The results of OGM were validated using other methods. OGM detected a 9;11 reciprocal translocation and successfully mapped its breakpoints to small regions of 0.9-12.3 kb. OGM identified 46 additional small structural variants, only three of which were detected by array-based comparative genomic hybridization. OGM suggested the presence of complex rearrangements on chromosome 10; however, these variants appeared to be artifacts. The 9;11 translocation was unlikely to be associated with DSD, while the pathogenicity of the other structural variants remained unknown. These results indicate that OGM is a powerful tool for detecting and characterizing chromosomal structural variations, although the current methods of OGM data analyses need to be improved.
Collapse
Affiliation(s)
- Yasuko Ogiwara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Tokyo, Japan
| | - Atsushi Hattori
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kento Ikegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Yukihiro Hasegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Yoko Kuroki
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Genome Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
34
|
Grether A, Ivanovski I, Russo M, Begemann A, Steindl K, Abela L, Papik M, Zweier M, Oneda B, Joset P, Rauch A. The current benefit of genome sequencing compared to exome sequencing in patients with developmental or epileptic encephalopathies. Mol Genet Genomic Med 2023; 11:e2148. [PMID: 36785910 PMCID: PMC10178799 DOI: 10.1002/mgg3.2148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND As the technology of next generation sequencing rapidly develops and costs are constantly reduced, the clinical availability of whole genome sequencing (WGS) increases. Thereby, it remains unclear what exact advantage WGS offers in comparison to whole exome sequencing (WES) for the diagnosis of genetic diseases using current technologies. METHODS Trio-WGS was conducted for 20 patients with developmental or epileptic encephalopathies who remained undiagnosed after WES and chromosomal microarray analysis. RESULTS A diagnosis was reached for four patients (20%). However, retrospectively all pathogenic variants could have been detected in a WES analysis conducted with today's methods and knowledge. CONCLUSION The additional diagnostic yield of WGS versus WES is currently largely explained by new scientific insights and the general technological progress. Nevertheless, it is noteworthy that whole genome sequencing has greater potential for the analysis of small copy number and copy number neutral variants not seen with WES as well as variants in noncoding regions, especially as potentially more knowledge of the function of noncoding regions arises. We, therefore, conclude that even though today the added value of WGS versus WES seems to be limited, it may increase substantially in the future.
Collapse
Affiliation(s)
- Anna Grether
- Institute of Medical GeneticsUniversity of ZurichZurichSwitzerland
| | - Ivan Ivanovski
- Institute of Medical GeneticsUniversity of ZurichZurichSwitzerland
| | - Martina Russo
- Institute of Medical GeneticsUniversity of ZurichZurichSwitzerland
| | - Anaïs Begemann
- Institute of Medical GeneticsUniversity of ZurichZurichSwitzerland
| | | | - Lucia Abela
- Division of Child NeurologyUniversity Children's Hospital ZurichZurichSwitzerland
| | - Michael Papik
- Institute of Medical GeneticsUniversity of ZurichZurichSwitzerland
| | - Markus Zweier
- Institute of Medical GeneticsUniversity of ZurichZurichSwitzerland
| | - Beatrice Oneda
- Institute of Medical GeneticsUniversity of ZurichZurichSwitzerland
| | - Pascal Joset
- Medical Genetics, Institute of Medical Genetics and PathologyUniversity Hospital BaselBaselSwitzerland
| | - Anita Rauch
- Institute of Medical GeneticsUniversity of ZurichZurichSwitzerland
- University Children's Hospital ZurichZurichSwitzerland
- University of Zurich Clinical Research Priority Program (CRPP) Praeclare – Personalized prenatal and reproductive medicineZurichSwitzerland
- University of Zurich Research Priority Program (URPP) AdaBD: Adaptive Brain Circuits in Development and LearningZurichSwitzerland
- University of Zurich Research Priority Program (URPP) ITINERARE: Innovative Therapies in Rare DiseasesZurichSwitzerland
| |
Collapse
|
35
|
Ke X, Yang H, Pan H, Jiang Y, Li M, Zhang H, Hao N, Zhu H. The Application of Optical Genome Mapping (OGM) in Severe Short Stature Caused by Duplication of 15q14q21.3. Genes (Basel) 2023; 14:genes14051016. [PMID: 37239376 DOI: 10.3390/genes14051016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: Optical genome mapping (OGM) is a novel approach to identifying genomic structural variations with high accuracy and resolution. We report a proband with severe short stature caused by 46, XY, der (16) ins (16;15) (q23; q21.3q14) that was detected by OGM combined with other tests and review the clinical features of patients with duplication within 15q14q21.3; (2) Methods: OGM, whole exon sequencing (WES), copy number variation sequencing (CNV-seq), and karyotyping were used; (3) Results: The proband was a 10.7-year-old boy with a complaint of severe short stature (-3.41SDS) and abnormal gait. He had growth hormone deficiency, lumbar lordosis, and epiphyseal dysplasia of both femurs. WES and CNV-seq showed a 17.27 Mb duplication of chromosome 15, and there was an insertion in chromosome 16 found by karyotyping. Furthermore, OGM revealed that duplication of 15q14q21.3 was inversely inserted into 16q23.1, resulting in two fusion genes. A total of fourteen patients carried the duplication of 15q14q21.3, with thirteen previously reported and one from our center, 42.9% of which were de novo. In addition, neurologic symptoms (71.4%,10/14) were the most common phenotypes; (4) Conclusions: OGM combined with other genetic methods can reveal the genetic etiology of patients with the clinical syndrome, presenting great potential for use in properly diagnosing in the genetic cause of the clinical syndrome.
Collapse
Affiliation(s)
- Xiaoan Ke
- State Key Laboratory of Complex Severe and Rare Diseases, Chinese Research Center for Behavior Medicine in Growth and Development, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Hongbo Yang
- State Key Laboratory of Complex Severe and Rare Diseases, Chinese Research Center for Behavior Medicine in Growth and Development, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Hui Pan
- State Key Laboratory of Complex Severe and Rare Diseases, Chinese Research Center for Behavior Medicine in Growth and Development, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Yulin Jiang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Mengmeng Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hanzhe Zhang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Na Hao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huijuan Zhu
- State Key Laboratory of Complex Severe and Rare Diseases, Chinese Research Center for Behavior Medicine in Growth and Development, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
36
|
Shi S, Huang P, Yan R, Li R. Identification of complex and cryptic chromosomal rearrangements by optical genome mapping. Mol Cytogenet 2023; 16:5. [PMID: 37101225 PMCID: PMC10134526 DOI: 10.1186/s13039-023-00636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Optical genome mapping (OGM) has developed into a highly promising method for detecting structural variants (SVs) in human genomes. Complex chromosomal rearrangements (CCRs) and cryptic translocations are rare events that are considered difficult to detect by routine cytogenetic methods. In this study, OGM was applied to delineate the precise chromosomal rearrangements in three cases with uncertain or unconfirmed CCRs detected by conventional karyotyping and one case with a cryptic translocation suggested by fetal chromosomal microarray analysis (CMA). RESULTS In the three cases with CCRs, OGM not only confirmed or revised the original karyotyping results but also refined the precise chromosomal structures. In the case with a suspected translocation not detected by karyotyping, OGM efficiently identified the cryptic translocation and defined the genomic breakpoints with relatively high accuracy. CONCLUSIONS Our study confirmed OGM as a robust alternative approach to karyotyping for the detection of chromosomal structural rearrangements, including CCRs and cryptic translocations.
Collapse
Affiliation(s)
- Shanshan Shi
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, No. 613 Huangpu West Road, Guangzhou, 510630, People's Republic of China
| | - Peizhi Huang
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ruiling Yan
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, No. 613 Huangpu West Road, Guangzhou, 510630, People's Republic of China.
| | - Ruiman Li
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, No. 613 Huangpu West Road, Guangzhou, 510630, People's Republic of China.
| |
Collapse
|
37
|
Ren J, Keqie Y, Li Y, Li L, Luo M, Gao M, Peng C, Chen H, Hu T, Chen X, Liu S. Case report: Optical genome mapping revealed double rearrangements in a male undergoing preimplantation genetic testing. Front Genet 2023; 14:1132404. [PMID: 37065489 PMCID: PMC10102332 DOI: 10.3389/fgene.2023.1132404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Chromosome rearrangement is one of the main causes of abortion. In individuals with double chromosomal rearrangements, the abortion rate and the risk of producing abnormal chromosomal embryos are increased. In our study, preimplantation genetic testing for structural rearrangement (PGT-SR) was performed for a couple because of recurrent abortion and the karyotype of the male was 45, XY der (14; 15)(q10; q10). The PGT-SR result of the embryo in this in vitro fertilization (IVF) cycle showed microduplication and microdeletion at the terminals of chromosomes 3 and 11, respectively. Therefore, we speculated whether the couple might have a cryptic reciprocal translocation which was not detected by karyotyping. Then, optical genome mapping (OGM) was performed for this couple, and cryptic balanced chromosomal rearrangements were detected in the male. The OGM data were consistent with our hypothesis according to previous PGT results. Subsequently, this result was verified by fluorescence in situ hybridization (FISH) in metaphase. In conclusion, the male’s karyotype was 45, XY, t(3; 11)(q28; p15.4), der(14; 15)(q10; q10). Compared with traditional karyotyping, chromosomal microarray, CNV-seq and FISH, OGM has significant advantages in detecting cryptic and balanced chromosomal rearrangements.
Collapse
Affiliation(s)
- Jun Ren
- Center of Prenatal Diagnosis, Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuezhi Keqie
- Center of Prenatal Diagnosis, Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yutong Li
- Center of Prenatal Diagnosis, Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Lingping Li
- Center of Prenatal Diagnosis, Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Min Luo
- Center of Prenatal Diagnosis, Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Meng Gao
- Center of Prenatal Diagnosis, Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Cuiting Peng
- Center of Prenatal Diagnosis, Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Han Chen
- Center of Prenatal Diagnosis, Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ting Hu
- Center of Prenatal Diagnosis, Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xinlian Chen
- Center of Prenatal Diagnosis, Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- *Correspondence: Xinlian Chen, ; Shanling Liu,
| | - Shanling Liu
- Center of Prenatal Diagnosis, Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- *Correspondence: Xinlian Chen, ; Shanling Liu,
| |
Collapse
|
38
|
The Power of Clinical Diagnosis for Deciphering Complex Genetic Mechanisms in Rare Diseases. Genes (Basel) 2023; 14:genes14010196. [PMID: 36672937 PMCID: PMC9858967 DOI: 10.3390/genes14010196] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Complex genetic disease mechanisms, such as structural or non-coding variants, currently pose a substantial difficulty in frontline diagnostic tests. They thus may account for most unsolved rare disease patients regardless of the clinical phenotype. However, the clinical diagnosis can narrow the genetic focus to just a couple of genes for patients with well-established syndromes defined by prominent physical and/or unique biochemical phenotypes, allowing deeper analyses to consider complex genetic origin. Then, clinical-diagnosis-driven genome sequencing strategies may expedite the development of testing and analytical methods to account for complex disease mechanisms as well as to advance functional assays for the confirmation of complex variants, clinical management, and the development of new therapies.
Collapse
|
39
|
Andrews PW, Barbaric I, Benvenisty N, Draper JS, Ludwig T, Merkle FT, Sato Y, Spits C, Stacey GN, Wang H, Pera MF. The consequences of recurrent genetic and epigenetic variants in human pluripotent stem cells. Cell Stem Cell 2022; 29:1624-1636. [PMID: 36459966 DOI: 10.1016/j.stem.2022.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022]
Abstract
It is well established that human pluripotent stem cells (hPSCs) can acquire genetic and epigenetic changes during culture in vitro. Given the increasing use of hPSCs in research and therapy and the vast expansion in the number of hPSC lines available for researchers, the International Society for Stem Cell Research has recognized the need to reassess quality control standards for ensuring the genetic integrity of hPSCs. Here, we summarize current knowledge of the nature of recurrent genetic and epigenetic variants in hPSC culture, the methods for their detection, and what is known concerning their effects on cell behavior in vitro or in vivo. We argue that the potential consequences of low-level contamination of cell therapy products with cells bearing oncogenic variants are essentially unknown at present. We highlight the key challenges facing the field with particular reference to safety assessment of hPSC-derived cellular therapeutics.
Collapse
Affiliation(s)
- Peter W Andrews
- Centre for Stem Cell Biology, School of Biological Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK; Steering Committee, International Stem Cell Initiative
| | - Ivana Barbaric
- Centre for Stem Cell Biology, School of Biological Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK; Steering Committee, International Stem Cell Initiative
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel; Steering Committee, International Stem Cell Initiative
| | - Jonathan S Draper
- Stem Cell Network, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Steering Committee, International Stem Cell Initiative
| | - Tenneille Ludwig
- WiCell Research Institute, Madison, WI, USA; University of Wisconsin-Madison, Madison, WI 53719, USA; Steering Committee, International Stem Cell Initiative
| | - Florian T Merkle
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0QQ, UK; Steering Committee, International Stem Cell Initiative
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki Ward, Kawasaki City, Kanagawa 210-9501, Japan; Steering Committee, International Stem Cell Initiative
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Steering Committee, International Stem Cell Initiative
| | - Glyn N Stacey
- International Stem Cell Banking Initiative, 2 High Street, Barley, UK; National Stem Cell Resource Centre, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100190, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Steering Committee, International Stem Cell Initiative
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China; Steering Committee, International Stem Cell Initiative
| | - Martin F Pera
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; Steering Committee, International Stem Cell Initiative.
| |
Collapse
|
40
|
Enhancing Molecular Testing for Effective Delivery of Actionable Gene Diagnostics. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120745. [PMID: 36550951 PMCID: PMC9774983 DOI: 10.3390/bioengineering9120745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022]
Abstract
There is a deep need to navigate within our genomic data to find, understand and pave the way for disease-specific treatments, as the clinical diagnostic journey provides only limited guidance. The human genome is enclosed in every nucleated cell, and yet at the single-cell resolution many unanswered questions remain, as most of the sequencing techniques use a bulk approach. Therefore, heterogeneity, mosaicism and many complex structural variants remain partially uncovered. As a conceptual approach, nanopore-based sequencing holds the promise of being a single-molecule-based, long-read and high-resolution technique, with the ability of uncovering the nucleic acid sequence and methylation almost in real time. A key limiting factor of current clinical genetics is the deciphering of key disease-causing genomic sequences. As the technological revolution is expanding regarding genetic data, the interpretation of genotype-phenotype correlations should be made with fine caution, as more and more evidence points toward the presence of more than one pathogenic variant acting together as a result of intergenic interplay in the background of a certain phenotype observed in a patient. This is in conjunction with the observation that many inheritable disorders manifest in a phenotypic spectrum, even in an intra-familial way. In the present review, we summarized the relevant data on nanopore sequencing regarding clinical genomics as well as highlighted the importance and content of pre-test and post-test genetic counselling, yielding a complex approach to phenotype-driven molecular diagnosis. This should significantly lower the time-to-right diagnosis as well lower the time required to complete a currently incomplete genotype-phenotype axis, which will boost the chance of establishing a new actionable diagnosis followed by therapeutical approach.
Collapse
|
41
|
Dai P, Zhu X, Pei Y, Chen P, Li J, Gao Z, Liang Y, Kong X. Evaluation of optical genome mapping for detecting chromosomal translocation in clinical cytogenetics. Mol Genet Genomic Med 2022; 10:e1936. [PMID: 35384386 PMCID: PMC9184658 DOI: 10.1002/mgg3.1936] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Balanced reciprocal translocation is one of the most common chromosomal abnormalities in humans that may lead to infertility, recurrent pregnancy loss, or having children with physical or mental abnormalities. Karyotyping and FISH are traditional detection approaches with a low resolution. Bionano optical genome mapping (OGM) developed in recent years can be used to analyze chromosomal abnormalities at a higher resolution, providing the possibility of more in‐depth analyses of balanced chromosome translocations. Methods To evaluate the feasibility of OGM to detect chromosome balanced translocations, 10 genetic outpatients were collected and detected simultaneously by karyotype analysis, FISH, CNV‐seq, and Bionano OGM in this study. Results The results showed that the karyotypes of the patients were detected by karyotype analysis, FISH, and Bionano OGM, but one patient with karyotype t(Y,19) was not correctly detected by OGM. There were not find any chromosome abnormality by CNV‐seq. More importantly, OGM allowed the location of the mutation to the gene level, which is important for aiding diagnoses, compared to karyotype analysis, and FISH. Conclusions This study shows that OGM can be a high adjunctive diagnostic method for detecting balanced chromosome translocations, but the accuracy and precision of OGM detecting mutations need to be gradually improved in telomere and centromere regions.
Collapse
Affiliation(s)
- Peng Dai
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaofan Zhu
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Peng Chen
- Department of Neurology, The First Hospital of Yulin, Yulin, China
| | | | - Zhi Gao
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Liang
- GrandOmics Diagnostic, Wuhan, China
| | - Xiangdong Kong
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
42
|
Ahmed SF, Alimusina M, Batista RL, Domenice S, Lisboa Gomes N, McGowan R, Patjamontri S, Mendonca BB. The Use of Genetics for Reaching a Diagnosis in XY DSD. Sex Dev 2022; 16:207-224. [DOI: 10.1159/000524881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Reaching a firm diagnosis is vital for the long-term management of a patient with a difference or disorder of sex development (DSD). This is especially the case in XY DSD where the diagnostic yield is particularly low. Molecular genetic technology is playing an increasingly important role in the diagnostic process, and it is highly likely that it will be used more often at an earlier stage in the diagnostic process. In many cases of DSD, the clinical utility of molecular genetics is unequivocally clear, but in many other cases there is a need for careful exploration of the benefit of genetic diagnosis through long-term monitoring of these cases. Furthermore, the incorporation of molecular genetics into the diagnostic process requires a careful appreciation of the strengths and weaknesses of the evolving technology, and the interpretation of the results requires a clear understanding of the wide range of conditions that are associated with DSD.
Collapse
|
43
|
Suttorp J, Lühmann JL, Behrens YL, Göhring G, Steinemann D, Reinhardt D, von Neuhoff N, Schneider M. Optical Genome Mapping as a Diagnostic Tool in Pediatric Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:2058. [PMID: 35565187 PMCID: PMC9102001 DOI: 10.3390/cancers14092058] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022] Open
Abstract
Pediatric AML is characterized by numerous genetic aberrations (chromosomal translocations, deletions, insertions) impacting its classification for risk of treatment failure. Aberrations are described by classical cytogenetic procedures (karyotyping, FISH), which harbor limitations (low resolution, need for cell cultivation, cost-intensiveness, experienced staff required). Optical Genome Mapping (OGM) is an emerging chip-based DNA technique combining high resolution (~500 bp) with a relatively short turnaround time. Twenty-four pediatric patients with AML, bi-lineage leukemia, and mixed-phenotype acute leukemia were analyzed by OGM, and the results were compared with cytogenetics. Results were discrepant in 17/24 (70%) cases, including 32 previously unknown alterations called by OGM only. One newly detected deletion and two translocations were validated by primer walking, breakpoint-spanning PCR, and DNA sequencing. As an added benefit, in two cases, OGM identified a new minimal residual disease (MRD) marker. Comparing impact on risk stratification in de novo AML, 19/20 (95%) cases had concordant results while only OGM unraveled another high-risk aberration. Thus, OGM considerably expands the methodological spectrum to optimize the diagnosis of pediatric AML via the identification of new aberrations. Results will contribute to a better understanding of leukemogenesis in pediatric AML. In addition, aberrations identified by OGM may provide markers for MRD monitoring.
Collapse
Affiliation(s)
- Julia Suttorp
- Clinic of Pediatrics III, University Hospital Essen, Virchow-Straße 171, 45147 Essen, Germany; (J.S.); (D.R.); (N.v.N.)
| | - Jonathan Lukas Lühmann
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (Y.L.B.); (G.G.); (D.S.)
| | - Yvonne Lisa Behrens
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (Y.L.B.); (G.G.); (D.S.)
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (Y.L.B.); (G.G.); (D.S.)
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (Y.L.B.); (G.G.); (D.S.)
| | - Dirk Reinhardt
- Clinic of Pediatrics III, University Hospital Essen, Virchow-Straße 171, 45147 Essen, Germany; (J.S.); (D.R.); (N.v.N.)
| | - Nils von Neuhoff
- Clinic of Pediatrics III, University Hospital Essen, Virchow-Straße 171, 45147 Essen, Germany; (J.S.); (D.R.); (N.v.N.)
| | - Markus Schneider
- Clinic of Pediatrics III, University Hospital Essen, Virchow-Straße 171, 45147 Essen, Germany; (J.S.); (D.R.); (N.v.N.)
| |
Collapse
|