1
|
Asif S, Nisar M, Ullah S, Naeem M. Reviewing the impact of seed-borne mycoflora on mycotoxin accumulation: A threat to lentil genetic resources. Toxicon 2025; 256:108290. [PMID: 39954863 DOI: 10.1016/j.toxicon.2025.108290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/08/2025] [Accepted: 02/13/2025] [Indexed: 02/17/2025]
Abstract
Lentil is an important legume crop with high nutritional value but susceptible to fungal attacks which due to mycotoxins production not only affect its nutritional quality but also pose high risk to its genetic resources. This review paper aims to explore that how mycotoxin accumulation by seed-borne mycoflora influence Lentil's genetic resources. We also discussed sources of toxins produced by mycoflora, their impacts on lentil production, and effective management strategies. Our study showed that genetic resources in Lentils are rich due to presence of wide range of traits, physiological, morphological and biochemical attributes. Based on literature review we highlighted common mycoflora and mycotoxins of Lentil's seeds are Penicillium, Fusarium, and Aspergillus. These pathogens produce different mycotoxins such as ochratoxins, aflatoxins, and Fusarium toxins. Based on literature review we recommend that advance agronomic practices, molecular techniques, breeding practices and post-harvest management can help to reduce the risk of mycotoxins accumulation. Overall, this study conclude that control of fungal attacks s and mycotoxins production will help to increase genetic resources of Lentil's by seed selection of prime quality and high nutritional values.
Collapse
Affiliation(s)
- Sanam Asif
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Momina Nisar
- Department of Biotechnology, Mohi-ud-Din Islamic University, Nerian Sharif 12080, AJ&K, Pakistan
| | - Shakir Ullah
- State Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Beijing 100093, China
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
2
|
Kumari N, Aski MS, Mishra GP, Roy A, Dikshit HK, Saxena S, Kohli M, Mandal B, Sinha SK, Mishra DC, Mondal MF, Kumar RR, Kumar A, Nair RM. Development of infectious clones of mungbean yellow mosaic India virus (MYMIV, Begomovirus vignaradiataindiaense) infecting mungbean [Vigna radiata (L.) R. Wilczek] and evaluation of a RIL population for MYMIV resistance. PLoS One 2024; 19:e0310003. [PMID: 39436879 PMCID: PMC11495560 DOI: 10.1371/journal.pone.0310003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 08/23/2024] [Indexed: 10/25/2024] Open
Abstract
Yellow mosaic disease (YMD) is a major constraint for the low productivity of mungbean, mainly in South Asia. Addressing this issue requires a comprehensive approach, integrating field and challenge inoculation evaluations to identify effective solutions. In this study, an infectious clone of Begomovirus vignaradiataindiaense (MYMIV) was developed to obtain a pure culture of the virus and to confirm resistance in mungbean plants exhibiting resistance under natural field conditions. The infectivity and efficiency of three Agrobacterium tumefaciens strains (EHA105, LBA4404, and GV3101) were evaluated using the susceptible mungbean genotype PS16. Additionally, a recombinant inbred line (RIL) population comprising 175 lines derived from Pusa Baisakhi (MYMIV susceptible) and PMR-1 (MYMIV resistant) cross was developed and assessed for YMD response. Among the tested Agrobacterium tumefaciens strains, EHA105 exhibited the highest infectivity (84.7%), followed by LBA4404 (54.7%) and GV3101 (9.80%). Field resistance was evaluated using the coefficient of infection (CI) and area under disease progress curve (AUDPC), identifying seven RILs with consistent resistant reactions (CI≤9) and low AUDPC (≤190). Upon challenge inoculation, six RILs exhibited resistance, while RIL92 displayed a resistance response, with infection occurring in less than 10% of plants after 24 to 29 days post inoculation (dpi). Despite some plants remaining asymptomatic, MYMIV presence was confirmed through specific PCR amplification of the MYMIV coat protein (AV1) gene. Quantitative PCR revealed a very low relative viral load (0.1-5.1% relative fold change) in asymptomatic RILs and the MYMIV resistant parent (PMR1) compared to the susceptible parent (Pusa Baisakhi). These findings highlight the potential utility of the developed infectious clone and the identified MYMIV-resistant RILs in future mungbean breeding programs aimed at cultivating MYMIV-resistant varieties.
Collapse
Affiliation(s)
- Nikki Kumari
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Muraleedhar S. Aski
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Gyan Prakash Mishra
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Anirban Roy
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Harsh Kumar Dikshit
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Shipra Saxena
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Manju Kohli
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Bikash Mandal
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | | | - Dwijesh Chandra Mishra
- Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Md Firoz Mondal
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| | - Atul Kumar
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
3
|
Yadav S, Mehta P, Soni J, Chattopadhyay P, Devi P, Habyarimana T, Tardalkar K, Joshi M, Pandey R. Single-cell RNA-Seq reveals intracellular microbial diversity within immune cells during SARS-CoV-2 infection and recovery. iScience 2023; 26:108357. [PMID: 38026191 PMCID: PMC10663746 DOI: 10.1016/j.isci.2023.108357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Intracellular microorganisms, like viruses, bacteria, and fungi, pose challenges in detection due to their non-culturable forms. Transcriptomic analysis at cellular level enables exploration of distributions and the impact of these microorganisms on host cells, a domain that remains underexplored because of methodological limitations. Single-cell technology shows promise in addressing this by capturing polyadenine-tailed transcripts, because recent studies confirmed polyadenylation in microbial transcriptomes. We utilized single-cell RNA-seq from PBMCs to probe intracellular microbes in healthy, SARS-CoV-2-positive, and recovered individuals. Among 76 bacterial species detected, 16 showed significant abundance differences. Buchnera aphidicola, Streptomyces clavuligerus, and Ehrlichia canis emerged significantly in memory-B, Naïve-T, and Treg cells. Staphylococcus aureus, Mycoplasma mycoides, Leptospira interrogans, and others displayed elevated levels in SARS-CoV-2-positive patients, suggesting possible disease association. This highlights the strength of single-cell technology in revealing potential microorganism's cell-specific functions. Further research is essential for functional understanding of their cell-specific abundance across physiological states.
Collapse
Affiliation(s)
- Sunita Yadav
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Priyanka Mehta
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jyoti Soni
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Partha Chattopadhyay
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priti Devi
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Thierry Habyarimana
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Department of Biomedical Laboratory Sciences, INES-Ruhengeri, Ruhengeri, Rwanda
| | - Kishore Tardalkar
- Dr. D. Y. Patil Medical College, Hospital and Research Institute, Kolhapur, Maharashtra 416003, India
| | - Meghnad Joshi
- Dr. D. Y. Patil Medical College, Hospital and Research Institute, Kolhapur, Maharashtra 416003, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Basso MF, Contaldi F, Lo Celso F, Baratto CM, Grossi-de-Sa MF, Barone G, Ferrante A, Martinelli F. Identification and expression profile of the SMAX/SMXL family genes in chickpea and lentil provide important players of biotechnological interest involved in plant branching. PLANTA 2023; 259:1. [PMID: 37966555 PMCID: PMC10651550 DOI: 10.1007/s00425-023-04277-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/28/2023] [Indexed: 11/16/2023]
Abstract
MAIN CONCLUSION SMAX/SMXL family genes were successfully identified and characterized in the chickpea and lentil and gene expression data revealed several genes associated with the modulation of plant branching and powerful targets for use in transgenesis and genome editing. Strigolactones (SL) play essential roles in plant growth, rooting, development, and branching, and are associated with plant resilience to abiotic and biotic stress conditions. Likewise, karrikins (KAR) are "plant smoke-derived molecules" that act in a hormonal signaling pathway similar to SL playing an important role in seed germination and hairy root elongation. The SMAX/SMXL family genes are part of these two signaling pathways, in addition to some of these members acting in a still little known SL- and KAR-independent signaling pathway. To date, the identification and functional characterization of the SMAX/SMXL family genes has not been performed in the chickpea and lentil. In this study, nine SMAX/SMXL genes were systematically identified and characterized in the chickpea and lentil, and their expression profiles were explored under different unstressless or different stress conditions. After a comprehensive in silico characterization of the genes, promoters, proteins, and protein-protein interaction network, the expression profile for each gene was determined using a meta-analysis from the RNAseq datasets and complemented with real-time PCR analysis. The expression profiles of the SMAX/SMXL family genes were very dynamic in different chickpea and lentil organs, with some genes assuming a tissue-specific expression pattern. In addition, these genes were significantly modulated by different stress conditions, indicating that SMAX/SMXL genes, although working in three distinct signaling pathways, can act to modulate plant resilience. Most CaSMAX/SMXL and partner genes such as CaTiE1 and CaLAP1, have a positive correlation with the plant branching level, while most LcSMAX/SMXL genes were less correlated with the plant branching level. The SMXL6, SMXL7, SMXL8, TiE1, LAP1, BES1, and BRC1 genes were highlighted as powerful targets for use in transgenesis and genome editing aiming to develop chickpea and lentil cultivars with improved architecture. Therefore, this study presented a detailed characterization of the SMAX/SMXL genes in the chickpea and lentil, and provided new insights for further studies focused on each SMAX/SMXL gene.
Collapse
Affiliation(s)
| | - Felice Contaldi
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Fabrizio Lo Celso
- Department of Physics and Chemical, University of Palermo, Viale Delle Scienze, Edificio 17, 90128, Palermo, Italy
| | - César Milton Baratto
- University of Western Santa Catarina, Biotechnological Center, UNOESC, Videira, SC, 89566-252, Brazil
| | | | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale Delle Scienze, Edificio 17, 90128, Palermo, Italy
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, University of Milan, Via Festa del Perdono, 20122, Milan, Italy
| | - Federico Martinelli
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
5
|
Basso MF, Contaldi F, Celso FL, Karalija E, Paz-Carrasco LC, Barone G, Ferrante A, Martinelli F. Expression profile of the NCED/CCD genes in chickpea and lentil during abiotic stress reveals a positive correlation with increased plant tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111817. [PMID: 37562731 DOI: 10.1016/j.plantsci.2023.111817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Carotenoid cleavage dioxygenase (CCD) gene family is organized in two subfamilies: (i) 9-cis epoxycarotenoid dioxygenase (NCED) genes and (ii) CCD genes. NCED genes are essential for catalyzing the first step of the abscisic-acid (ABA) biosynthesis, while CCD genes produce precursors of the strigolactones hormone. The functional characterization of these gene subfamilies has not been yet performed in chickpea and lentil. Herein, were identified and systematically characterized two NCED and five CCD genes in the chickpea and two NCED and six CCD genes in lentil. After in silico sequence analysis and phylogeny, the expression profile of the NCED/CCD genes was determined by meta-analysis and real-time PCR in plants under different stress conditions. Sequence data revealed that NCED/CCD genes are highly conserved between chickpea and lentil. This conservation was observed both at gene and protein sequence levels and phylogenetic relationships. Analysis of the promoter sequences revealed that all NCED/CCD genes have a considerable number of cis-regulatory elements responsive to biotic and abiotic stress. Protein sequence analysis evidenced that NCED/CCD genes share several conserved motifs and that they have a highly interconnected interaction network. Furthermore, the three-dimensional structure of these proteins was determined and indicated that some proteins have structures with considerable similarity. The meta-analysis revealed that NCED/CCD genes are dynamically modulated in different organs and under different stress conditions, but they have a positive correlation with plant tolerance. In accordance, real-time PCR data showed that both NCED and CCD genes are differentially modulated in plants under drought stress. In particular, CaNCED2, CaCCD5, LcNCED2, LcCCD1, and LcCCD2 genes have a positive correlation with improved plant tolerance to drought stress. Therefore, this study presented a detailed characterization of the chickpea and lentil NCED/CCD genes and provided new insights to improve abiotic stress tolerance in these two important crops.
Collapse
Affiliation(s)
- Marcos Fernando Basso
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Florence, Italy; University of Western Santa Catarina, Biotechnological Center, UNOESC, Videira, SC 89566-252, Brazil
| | - Felice Contaldi
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Florence, Italy
| | - Fabrizio Lo Celso
- Department of Physics and Chemical, University of Palermo, Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | - Erna Karalija
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Florence, Italy; Department of Biology, Faculty of science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
| | - Lenin Celiano Paz-Carrasco
- National Institute of Agricultural Research (INIAP), Plant Pathology Department and Rice Breeding Program, Km 26 vía Duran-Tambo, Yaguachi, Guayas, Ecuador
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Federico Martinelli
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Florence, Italy.
| |
Collapse
|
6
|
Negi NP, Prakash G, Narwal P, Panwar R, Kumar D, Chaudhry B, Rustagi A. The calcium connection: exploring the intricacies of calcium signaling in plant-microbe interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1248648. [PMID: 37849843 PMCID: PMC10578444 DOI: 10.3389/fpls.2023.1248648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/24/2023] [Indexed: 10/19/2023]
Abstract
The process of plant immune response is orchestrated by intracellular signaling molecules. Since plants are devoid of a humoral system, they develop extensive mechanism of pathogen recognition, signal perception, and intricate cell signaling for their protection from biotic and abiotic stresses. The pathogenic attack induces calcium ion accumulation in the plant cells, resulting in calcium signatures that regulate the synthesis of proteins of defense system. These calcium signatures induct different calcium dependent proteins such as calmodulins (CaMs), calcineurin B-like proteins (CBLs), calcium-dependent protein kinases (CDPKs) and other signaling molecules to orchestrate the complex defense signaling. Using advanced biotechnological tools, the role of Ca2+ signaling during plant-microbe interactions and the role of CaM/CMLs and CDPKs in plant defense mechanism has been revealed to some extent. The Emerging perspectives on calcium signaling in plant-microbe interactions suggest that this complex interplay could be harnessed to improve plant resistance against pathogenic microbes. We present here an overview of current understanding in calcium signatures during plant-microbe interaction so as to imbibe a future direction of research.
Collapse
Affiliation(s)
- Neelam Prabha Negi
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Geeta Prakash
- Department of Botany, Gargi College, New Delhi, India
| | - Parul Narwal
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Ruby Panwar
- Department of Botany, Gargi College, New Delhi, India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | | |
Collapse
|
7
|
Mazzucotelli E, Mastrangelo AM. Coping with Fungal Diseases in Crops: New Advances in Genomics, Breeding and Management. Genes (Basel) 2023; 14:1758. [PMID: 37761898 PMCID: PMC10531414 DOI: 10.3390/genes14091758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 09/29/2023] Open
Abstract
This Special Issue comprises a collection of eight peer-reviewed articles centered around the plant-pathogen interaction with the aim of proposing strategies that enhance plant resistance to pathogens and limit the damage to crop production, utilizing a multidisciplinary approach [...].
Collapse
Affiliation(s)
- Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinfomatics, 29017 Fiorenzuola d’Arda, Italy;
| | - Anna Maria Mastrangelo
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy
| |
Collapse
|
8
|
Bhar A, Chakraborty A, Roy A. The captivating role of calcium in plant-microbe interaction. FRONTIERS IN PLANT SCIENCE 2023; 14:1138252. [PMID: 36938033 PMCID: PMC10020633 DOI: 10.3389/fpls.2023.1138252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Plant immune response is fascinating due to the complete absence of a humoral system. The adaptive immune response in plants relies on the intracellular orchestration of signalling molecules or intermediates associated with transcriptional reprogramming. Plant disease response phenomena largely depend on pathogen recognition, signal perception, and intracellular signal transduction. The pathogens possess specific pathogen-associated molecular patterns (PAMP) or microbe-associated molecular patterns (MAMP), which are first identified by pattern recognition receptors (PRRs) of host plants for successful infection. After successful pathogen recognition, the defence response is initiated within plants. The first line of non-specific defence response is called PAMP-triggered immunity (PTI), followed by the specific robust signalling is called effector-triggered immunity (ETI). Calcium plays a crucial role in both PTI and ETI. The biphasic induction of reactive oxygen species (ROS) is inevitable in any plant-microbe interaction. Calcium ions play crucial roles in the initial oxidative burst and ROS induction. Different pathogens can induce calcium accumulation in the cytosol ([Ca2+]Cyt), called calcium signatures. These calcium signatures further control the diverse defence-responsive proteins in the intracellular milieu. These calcium signatures then activate calcium-dependent protein kinases (CDPKs), calcium calmodulins (CaMs), calcineurin B-like proteins (CBLs), etc., to impart intricate defence signalling within the cell. Decoding this calcium ionic map is imperative to unveil any plant microbe interplay and modulate defence-responsive pathways. Hence, the present review is unique in developing concepts of calcium signature in plants and their subsequent decoding mechanism. This review also intends to articulate early sensing of calcium oscillation, signalling events, and comprehensive mechanistic roles of calcium within plants during pathogenic ingression. This will accumulate and summarize the exciting roles of calcium ions in plant immunity and provide the foundation for future research.
Collapse
Affiliation(s)
- Anirban Bhar
- Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Amrita Chakraborty
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
9
|
Dutta H, K. M. S, Aski MS, Mishra GP, Sinha SK, Vijay D, C. T. MP, Das S, Pawar PAM, Mishra DC, Singh AK, Kumar A, Tripathi K, Kumar RR, Gupta S, Kumar S, Dikshit HK. Morpho-biochemical characterization of a RIL population for seed parameters and identification of candidate genes regulating seed size trait in lentil ( Lens culinaris Medik.). FRONTIERS IN PLANT SCIENCE 2023; 14:1091432. [PMID: 36875597 PMCID: PMC9975752 DOI: 10.3389/fpls.2023.1091432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The seed size and shape in lentil (Lens culinaris Medik.) are important quality traits as these influences the milled grain yield, cooking time, and market class of the grains. Linkage analysis was done for seed size in a RIL (F5:6) population derived by crossing L830 (20.9 g/1000 seeds) with L4602 (42.13 g/1000 seeds) which consisted of 188 lines (15.0 to 40.5 g/1000 seeds). Parental polymorphism survey using 394 SSRs identified 31 polymorphic primers, which were used for the bulked segregant analysis (BSA). Marker PBALC449 differentiated the parents and small seed size bulk only, whereas large seeded bulk or the individual plants constituting the large-seeded bulk could not be differentiated. Single plant analysis identified only six recombinant and 13 heterozygotes, of 93 small-seeded RILs (<24.0 g/1000 seed). This clearly showed that the small seed size trait is very strongly regulated by the locus near PBLAC449; whereas, large seed size trait seems governed by more than one locus. The PCR amplified products from the PBLAC449 marker (149bp from L4602 and 131bp from L830) were cloned, sequenced and BLAST searched using the lentil reference genome and was found amplified from chromosome 03. Afterward, the nearby region on chromosome 3 was searched, and a few candidate genes like ubiquitin carboxyl-terminal hydrolase, E3 ubiquitin ligase, TIFY-like protein, and hexosyltransferase having a role in seed size determination were identified. Validation study in another RIL mapping population which is differing for seed size, showed a number of SNPs and InDels among these genes when studied using whole genome resequencing (WGRS) approach. Biochemical parameters like cellulose, lignin, and xylose content showed no significant differences between parents and the extreme RILs, at maturity. Various seed morphological traits like area, length, width, compactness, volume, perimeter, etc., when measured using VideometerLab 4.0 showed significant differences for the parents and RILs. The results have ultimately helped in better understanding the region regulating the seed size trait in genomically less explored crops like lentils.
Collapse
Affiliation(s)
- Haragopal Dutta
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Shivaprasad K. M.
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Muraleedhar S. Aski
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Gyan P. Mishra
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Subodh Kumar Sinha
- Indian Council of Agricultural Research (ICAR)-National Institute for Plant Biotechnology, New Delhi, India
| | - Dunna Vijay
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Manjunath Prasad C. T.
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Shouvik Das
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, Faridabad, India
| | | | - Dwijesh C. Mishra
- Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Amit Kumar Singh
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, New Delhi, India
| | - Atul Kumar
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Kuldeep Tripathi
- Germplasm Evaluation Division, National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| | - Sanjeev Gupta
- Krishi Bhawan, Indian Council of Agricultural Research, New Delhi, India
| | - Shiv Kumar
- South Asia and China Program, International Center for Agricultural Research in the Dry Areas, National Agriculture Science Complex (NASC) Complex, New Delhi, India
| | - Harsh Kumar Dikshit
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
10
|
Guo J, Yang F, Wang L, Xuan X, Zhao J, He L. A novel promising diagnostic candidate selected by screening the transcriptome of Babesia gibsoni (Wuhan isolate) asexual stages in infected beagles. Parasit Vectors 2022; 15:362. [PMID: 36217160 PMCID: PMC9549657 DOI: 10.1186/s13071-022-05468-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Babesia gibsoni is one of the causative agents of canine babesiosis worldwide. Some dogs infected with B. gibsoni show severe clinical signs with progressive anemia, hemoglobinuria and splenomegaly. However, most infected dogs present a state of chronic infection and thereby may be a persistent pathogen carrier, increasing the risk of pathogen spreading. To date, little is known about this pathogen, with genomic and transcriptomic data in particular generally unavailable. This lack of knowledge extensively limits the development of effective diagnostic strategies and vaccines. METHODS High-throughput RNA sequencing of total RNA of B. gibsoni asexual stages collected from infected beagles was performed. The unigenes were annotated in seven databases. The genes were sorted according to their fragments per kilobase per million (FPKM) value, which was used as an indicator for expression level. The gene with the highest FPKM value was cloned from the genome of B. gibsoni and further tested for immunogenicity, cellular localization and efficacy as a potential diagnostic candidate for detecting B. gibsoni in sera collected from beagles. RESULTS A total of 62,580,653 clean reads were screened from the 64,336,475 raw reads, and the corresponding 70,134 transcripts and 36,587 unigenes were obtained. The gene with the highest FPKM value was screened from the unigenes; its full length was 1276 bp, and it was named BgP30. The BgP30 gene comprised three exons and two introns, with a 786-bp open reading frame, and encoded 261 amino acids with a predicted molecular weight of 30 kDa. The cellular localization assay confirmed the existence of P30 protein in B. gibsoni parasites. Moreover, P30 was detected in the serum of experimentally B. gibsoni-infected beagles, from 15 days up to 422 days post-infection, suggesting its usefulness as a diagnostic candidate for both acute and chronic infections. CONCLUSIONS We sequenced the transcriptome of B. gibsoni asexual stages for the first time. The BgP30 gene was highly expressed in the transcriptome screening experiments, with further studies demonstrating that it could induce immune response in B. gibsoni-infected dogs. These results lead us to suggest that bgP30 may be a good diagnostic candidate marker to detect both acute and chronic B. gibsoni infections.
Collapse
Affiliation(s)
- Jiaying Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China.,Northeast Agricultural University, Harbin, 150000, Heilongjiang, China
| | - Furong Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Lingna Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China.
| |
Collapse
|
11
|
Dutta H, Mishra GP, Aski MS, Bosamia TC, Mishra DC, Bhati J, Sinha SK, Vijay D, C. T. MP, Das S, Pawar PAM, Kumar A, Tripathi K, Kumar RR, Yadava DK, Kumar S, Dikshit HK. Comparative transcriptome analysis, unfolding the pathways regulating the seed-size trait in cultivated lentil (Lens culinaris Medik.). Front Genet 2022; 13:942079. [PMID: 36035144 PMCID: PMC9399355 DOI: 10.3389/fgene.2022.942079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Market class, cooking time, quality, and milled grain yield are largely influenced by the seed size and shape of the lentil (Lens culinaris Medik.); thus, they are considered to be important quality traits. To unfold the pathways regulating seed size in lentils, a transcriptomic approach was performed using large-seeded (L4602) and small-seeded (L830) genotypes. The study has generated nearly 375 million high-quality reads, of which 98.70% were properly aligned to the reference genome. Among biological replicates, very high similarity in fragments per kilobase of exon per million mapped fragments values (R > 0.9) showed the consistency of RNA-seq results. Various differentially expressed genes associated mainly with the hormone signaling and cell division pathways, transcription factors, kinases, etc. were identified as having a role in cell expansion and seed growth. A total of 106,996 unigenes were used for differential expression (DE) analysis. String analysis identified various modules having certain key proteins like Ser/Thr protein kinase, seed storage protein, DNA-binding protein, microtubule-associated protein, etc. In addition, some growth and cell division–related micro-RNAs like miR3457 (cell wall formation), miR1440 (cell proliferation and cell cycles), and miR1533 (biosynthesis of plant hormones) were identified as having a role in seed size determination. Using RNA-seq data, 5254 EST-SSR primers were generated as a source for future studies aiming for the identification of linked markers. In silico validation using Genevestigator® was done for the Ser/Thr protein kinase, ethylene response factor, and Myb transcription factor genes. It is of interest that the xyloglucan endotransglucosylase gene was found differentially regulated, suggesting their role during seed development; however, at maturity, no significant differences were recorded for various cell wall parameters including cellulose, lignin, and xylose content. This is the first report on lentils that has unfolded the key seed size regulating pathways and unveiled a theoretical way for the development of lentil genotypes having customized seed sizes.
Collapse
Affiliation(s)
- Haragopal Dutta
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Gyan P. Mishra
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Gyan P. Mishra, ; Shiv Kumar, ; Harsh Kumar Dikshit,
| | - Muraleedhar S. Aski
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Tejas C. Bosamia
- Plant Omics Division, Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
| | - Dwijesh C. Mishra
- Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Jyotika Bhati
- Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Dunna Vijay
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Manjunath Prasad C. T.
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Shouvik Das
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, Faridabad, India
| | | | - Atul Kumar
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Kuldeep Tripathi
- Germplasm Evaluation Division, National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| | | | - Shiv Kumar
- South Asia and China Program, International Center for Agricultural Research in the Dry Areas, NASC Complex, New Delhi, India
- *Correspondence: Gyan P. Mishra, ; Shiv Kumar, ; Harsh Kumar Dikshit,
| | - Harsh Kumar Dikshit
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Gyan P. Mishra, ; Shiv Kumar, ; Harsh Kumar Dikshit,
| |
Collapse
|
12
|
Morphological, Molecular, and Biochemical Characterization of a Unique Lentil (Lens culinaris Medik.) Genotype Showing Seed-Coat Color Anomalies Due to Altered Anthocyanin Pathway. PLANTS 2022; 11:plants11141815. [PMID: 35890449 PMCID: PMC9319573 DOI: 10.3390/plants11141815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
This study reports the identification of a unique lentil (Lens culinaris Medik.) genotype L4717-NM, a natural mutant (NM) derived from a variety L4717, producing brown, black, and spotted seed-coat colored seeds in a single plant, generation after generation, in different frequencies. The genetic similarity of L4717 with that of L4717-NM expressing anomalous seed-coat color was established using 54 SSR markers. In addition, various biochemical parameters such as TPC (total phenolic content), TFC (total flavonoid content), DPPH (2,2-diphenyl-1-picrylhydrazyl), FRAP (ferric reducing antioxidant power), H2O2 (peroxide quantification), TCC (total carotenoids content), TAC (total anthocyanin content), and TAA (total ascorbic acid) were also studied in the seeds, sprouts, and seedlings of L4717, brown, black, and spotted seed-coat colored seeds. Stage-specific variations for the key biochemical parameters were recorded, and seedling stage was found the best for many parameters. Moreover, seeds with black seed coat showed better nutraceutical values for most of the studied traits. A highly significant (p ≤ 0.01) and positive correlation was observed between DPPH and TPC, TAA, TFC, etc., whereas, protein content showed a negative correlation with the other studied parameters. The seed coat is maternal tissue and we expect expression of seed-coat color as per the maternal genotype. However, such an anomalous seed-coat expression, which seems to probably be governed by some transposable element in the identified genotype, warrants more detailed studies involving exploitation of the anthocyanin pathway.
Collapse
|