1
|
Zhao J, Song W, Zhang X. Genetic and molecular regulation of fruit development in cucumber. THE NEW PHYTOLOGIST 2024; 244:1742-1749. [PMID: 39400327 DOI: 10.1111/nph.20192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Fruit development can be generally classified into a set of biologically sequential stages including fruit initiation, growth, and ripening. Cucumber, a globally important vegetable crop, displays two important features during fruit development: parthenocarpy at fruit initiation and prematurity at harvest for consumption. Therefore, fruit growth plays essential role for cucumber yield and quality formation, and has become the research hot spot in cucumber fruit development. Here, we describe recent advances in molecular mechanisms underlying fruit growth in cucumber, include key players and regulatory networks controlling fruit length variation, fruit neck elongation, and locule development. We also provide insights into future directions for scientific research and breeding strategies in cucumber.
Collapse
Affiliation(s)
- Jianyu Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Weiyuan Song
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
2
|
Gu J, Sohail H, Qiu L, Chen C, Yue H, Li Z, Yang X, Zhang L. Genome-Wide Characterization and Expression Analysis of CsPALs in Cucumber ( Cucumis sativus L.) Reveal Their Potential Roles in Abiotic Stress and Aphid Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2537. [PMID: 39339512 PMCID: PMC11435200 DOI: 10.3390/plants13182537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024]
Abstract
Phenylalanine ammonia lyase (PAL) is a pivotal enzyme in the phenylalanine metabolic pathway in plants and has a crucial role in the plant's response to environmental stress. Although the PAL family has been widely studied in many plant species, limited is known about its particular role in cucumbers under stress. We investigated the physicochemical properties, gene structure, gene duplication events, conserved motifs, cis-acting elements, protein interaction networks, stress-related transcriptome data, and quantitatively validated key stress-related genes. The main results indicated that 15 PAL genes were grouped into four clades: I, II, and III when arranged in a phylogenetic tree of PAL genes in angiosperms. The analysis of the promoter sequence revealed the presence of multiple cis-acting elements related to hormones and stress responses in the cucumber PAL genes (CsPALs). The analysis of protein interaction networks suggested that CsPAL1 interacts with eight other members of the PAL family through CsELI5 and CsHISNA, and directly interacts with multiple proteins in the 4CL family. Further investigation into the expression patterns of CsPAL genes in different tissues and under various stress treatments (NaCl, Cu2+, Zn2+, PEG6000, aphids) demonstrated significant differential expression of CsPALs across cucumber tissues. In summary, our characterization of the CsPAL family offers valuable insights and provides important clues regarding the molecular mechanisms of CsPALs in managing abiotic and biotic stress interactions in cucumbers.
Collapse
Affiliation(s)
- Jieni Gu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Hamza Sohail
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Lei Qiu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Chaoyan Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Haoyu Yue
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Ziyi Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xiaodong Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Lili Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Guan H, Yang X, Lin Y, Xie B, Zhang X, Ma C, Xia R, Chen R, Hao Y. The hormone regulatory mechanism underlying parthenocarpic fruit formation in tomato. FRONTIERS IN PLANT SCIENCE 2024; 15:1404980. [PMID: 39119498 PMCID: PMC11306060 DOI: 10.3389/fpls.2024.1404980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Parthenocarpic fruits, known for their superior taste and reliable yields in adverse conditions, develop without the need for fertilization or pollination. Exploring the physiological and molecular mechanisms behind parthenocarpic fruit development holds both theoretical and practical significance, making it a crucial area of study. This review examines how plant hormones and MADS-box transcription factors control parthenocarpic fruit formation. It delves into various aspects of plant hormones-including auxin, gibberellic acid, cytokinins, ethylene, and abscisic acid-ranging from external application to biosynthesis, metabolism, signaling pathways, and their interplay in influencing parthenocarpic fruit development. The review also explores the involvement of MADS family gene functions in these processes. Lastly, we highlight existing knowledge gaps and propose directions for future research on parthenocarpy.
Collapse
Affiliation(s)
- Hongling Guan
- College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Xiaolong Yang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yuxiang Lin
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Baoxing Xie
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xinyue Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Chongjian Ma
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Rui Xia
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yanwei Hao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Vignati E, Caccamo M, Dunwell JM, Simkin AJ. Morphological Changes to Fruit Development Induced by GA 3 Application in Sweet Cherry ( Prunus avium L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2052. [PMID: 39124170 PMCID: PMC11314404 DOI: 10.3390/plants13152052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Cherry (Prunus avium) fruits are important sources of vitamins, minerals, and nutrients in the human diet; however, they contain a large stone, making them inconvenient to eat 'on the move' and process. The exogenous application of gibberellic acid (GA3) can induce parthenocarpy in a variety of fruits during development. Here, we showed that the application of GA3 to sweet cherry unpollinated pistils acted as a trigger for fruit set and permitted the normal formation of fruit up to a period of twenty-eight days, indicating that gibberellins are involved in the activation of the cell cycle in the ovary wall cells, leading to fruit initiation. However, after this period, fruit development ceased and developing fruit began to be excised from the branch by 35 days post treatment. This work also showed that additional signals are required for the continued development of fully mature parthenocarpic fruit in sweet cherry.
Collapse
Affiliation(s)
- Edoardo Vignati
- Genetics, Genomics and Breeding, NIAB East Malling, New Road, Kent ME19 6BJ, UK;
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6EU, UK;
| | - Mario Caccamo
- Crop Bioinformatics, NIAB, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK;
| | - Jim M. Dunwell
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6EU, UK;
| | - Andrew J. Simkin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
5
|
Xue W, Ding H, Jin T, Meng J, Wang S, Liu Z, Ma X, Li J. CucumberAI: Cucumber Fruit Morphology Identification System Based on Artificial Intelligence. PLANT PHENOMICS (WASHINGTON, D.C.) 2024; 6:0193. [PMID: 39144674 PMCID: PMC11324094 DOI: 10.34133/plantphenomics.0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/30/2024] [Indexed: 08/16/2024]
Abstract
Cucumber is an important vegetable crop that has high nutritional and economic value and is thus favored by consumers worldwide. Exploring an accurate and fast technique for measuring the morphological traits of cucumber fruit could be helpful for improving its breeding efficiency and further refining the development models for pepo fruits. At present, several sets of measurement schemes and standards have been proposed and applied for the characterization of cucumber fruits; however, these manual methods are time-consuming and inefficient. Therefore, in this paper, we propose a cucumber fruit morphological trait identification framework and software called CucumberAI, which combines image processing techniques with deep learning models to efficiently identify up to 51 cucumber features, including 32 newly defined parameters. The proposed tool introduces an algorithm for performing cucumber contour extraction and fruit segmentation based on image processing techniques. The identification framework comprises 6 deep learning models that combine fruit feature recognition rules with MobileNetV2 to construct a decision tree for fruit shape recognition. Additionally, the framework employs U-Net segmentation models for fruit stripe and endocarp segmentation, a MobileNetV2 model for carpel classification, a ResNet50 model for stripe classification and a YOLOv5 model for tumor identification. The relationships between the image-based manual and algorithmic traits are highly correlated, and validation tests were conducted to perform correlation analyses of fruit surface smoothness and roughness, and a fruit appearance cluster analysis was also performed. In brief, CucumberAI offers an efficient approach for extracting and analyzing cucumber phenotypes and provides valuable information for future cucumber genetic improvements.
Collapse
Affiliation(s)
- Wei Xue
- College of Artificial Intelligence,
Nanjing Agricultural University, Nanjing 210095, China
| | - Haifeng Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture,
Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Tao Jin
- College of Artificial Intelligence,
Nanjing Agricultural University, Nanjing 210095, China
| | - Jialing Meng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture,
Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Shiyou Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture,
Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Zuo Liu
- College of Artificial Intelligence,
Nanjing Agricultural University, Nanjing 210095, China
| | - Xiupeng Ma
- College of Foreign Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture,
Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| |
Collapse
|
6
|
Tian S, Zhang Z, Qin G, Xu Y. Parthenocarpy in Cucurbitaceae: Advances for Economic and Environmental Sustainability. PLANTS (BASEL, SWITZERLAND) 2023; 12:3462. [PMID: 37836203 PMCID: PMC10574560 DOI: 10.3390/plants12193462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Parthenocarpy is an important agricultural trait that not only produces seedless fruits, but also increases the rate of the fruit set under adverse environmental conditions. The study of parthenocarpy in Cucurbitaceae crops has considerable implications for cultivar improvement. This article provides a comprehensive review of relevant studies on the parthenocarpic traits of several major Cucurbitaceae crops and offers a perspective on future developments and research directions.
Collapse
Affiliation(s)
- Shouwei Tian
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Zeliang Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yong Xu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| |
Collapse
|
7
|
Grumet R, Lin YC, Rett-Cadman S, Malik A. Morphological and Genetic Diversity of Cucumber ( Cucumis sativus L.) Fruit Development. PLANTS (BASEL, SWITZERLAND) 2022; 12:23. [PMID: 36616152 PMCID: PMC9824707 DOI: 10.3390/plants12010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 06/03/2023]
Abstract
Cucumber (Cucumis sativus L.) fruits, which are eaten at an immature stage of development, can vary extensively in morphological features such as size, shape, waxiness, spines, warts, and flesh thickness. Different types of cucumbers that vary in these morphological traits are preferred throughout the world. Numerous studies in recent years have added greatly to our understanding of cucumber fruit development and have identified a variety of genetic factors leading to extensive diversity. Candidate genes influencing floral organ establishment, cell division and cell cycle regulation, hormone biosynthesis and response, sugar transport, trichome development, and cutin, wax, and pigment biosynthesis have all been identified as factors influencing cucumber fruit morphology. The identified genes demonstrate complex interplay between structural genes, transcription factors, and hormone signaling. Identification of genetic factors controlling these traits will facilitate breeding for desired characteristics to increase productivity, improve shipping, handling, and storage traits, and enhance consumer-desired qualities. The following review examines our current understanding of developmental and genetic factors driving diversity of cucumber fruit morphology.
Collapse
Affiliation(s)
- Rebecca Grumet
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Ying-Chen Lin
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Stephanie Rett-Cadman
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Ajaz Malik
- Department of Horticulture-Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 190 025, India
| |
Collapse
|
8
|
Devi S, Sharma PK, Behera TK, Jaiswal S, Boopalakrishnan G, Kumari K, Mandal NK, Iquebal MA, Gopala Krishnan S, Bharti, Ghosal C, Munshi AD, Dey SS. Identification of a major QTL, Parth6.1 associated with parthenocarpic fruit development in slicing cucumber genotype, Pusa Parthenocarpic Cucumber-6. FRONTIERS IN PLANT SCIENCE 2022; 13:1064556. [PMID: 36589066 PMCID: PMC9795203 DOI: 10.3389/fpls.2022.1064556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/17/2022] [Indexed: 10/15/2023]
Abstract
Parthenocarpy is an extremely important trait that revolutionized the worldwide cultivation of cucumber under protected conditions. Pusa Parthenocarpic Cucumber-6 (PPC-6) is one of the important commercially cultivated varieties under protected conditions in India. Understanding the genetics of parthenocarpy, molecular mapping and the development of molecular markers closely associated with the trait will facilitate the introgression of parthenocarpic traits into non-conventional germplasm and elite varieties. The F1, F2 and back-crosses progenies with a non-parthenocarpic genotype, Pusa Uday indicated a single incomplete dominant gene controlling parthenocarpy in PPC-6. QTL-seq comprising of the early parthenocarpy and non-parthenocarpic bulks along with the parental lines identified two major genomic regions, one each in chromosome 3 and chromosome 6 spanning over a region of 2.7 Mb and 7.8 Mb, respectively. Conventional mapping using F2:3 population also identified two QTLs, Parth6.1 and Parth6.2 in chromosome 6 which indicated the presence of a major effect QTL in chromosome 6 determining parthenocarpy in PPC-6. The flanking markers, SSR01148 and SSR 01012 for Parth6.1 locus and SSR10476 and SSR 19174 for Parth6.2 locus were identified and can be used for introgression of parthenocarpy through the marker-assisted back-crossing programme. Functional annotation of the QTL-region identified two major genes, Csa_6G396640 and Csa_6G405890 designated as probable indole-3-pyruvate monooxygenase YUCCA11 and Auxin response factor 16, respectively associated with auxin biosynthesis as potential candidate genes. Csa_6G396640 showed only one insertion at position 2179 in the non-parthenocarpic parent. In the case of Csa_6G405890, more variations were observed between the two parents in the form of SNPs and InDels. The study provides insight about genomic regions, closely associated markers and possible candidate genes associated with parthenocarpy in PPC-6 which will be instrumental for functional genomics study and better understanding of parthenocarpy in cucumber.
Collapse
Affiliation(s)
- Shilpa Devi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Parva Kumar Sharma
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Tusar Kanti Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-Indian Institute of Vegetable Research, Varanasi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - G. Boopalakrishnan
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Khushboo Kumari
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neha Kumari Mandal
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - S. Gopala Krishnan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Bharti
- Division of Sample Survey, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Chandrika Ghosal
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anilabha Das Munshi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shyam Sundar Dey
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
9
|
Vignati E, Lipska M, Dunwell JM, Caccamo M, Simkin AJ. Options for the generation of seedless cherry, the ultimate snacking product. PLANTA 2022; 256:90. [PMID: 36171415 PMCID: PMC9519733 DOI: 10.1007/s00425-022-04005-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/21/2022] [Indexed: 05/09/2023]
Abstract
This manuscript identifies cherry orthologues of genes implicated in the development of pericarpic fruit and pinpoints potential options and restrictions in the use of these targets for commercial exploitation of parthenocarpic cherry fruit. Cherry fruit contain a large stone and seed, making processing of the fruit laborious and consumption by the consumer challenging, inconvenient to eat 'on the move' and potentially dangerous for children. Availability of fruit lacking the stone and seed would be potentially transformative for the cherry industry, since such fruit would be easier to process and would increase consumer demand because of the potential reduction in costs. This review will explore the background of seedless fruit, in the context of the ambition to produce the first seedless cherry, carry out an in-depth analysis of the current literature around parthenocarpy in fruit, and discuss the available technology and potential for producing seedless cherry fruit as an 'ultimate snacking product' for the twenty-first century.
Collapse
Affiliation(s)
- Edoardo Vignati
- NIAB East Malling, Department of Genetics, Genomics and Breeding, New Road, West Malling, Kent, ME19 6BJ, UK
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading, Berkshire, RG6 6EU, UK
| | - Marzena Lipska
- NIAB East Malling, Department of Genetics, Genomics and Breeding, New Road, West Malling, Kent, ME19 6BJ, UK
| | - Jim M Dunwell
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading, Berkshire, RG6 6EU, UK
| | - Mario Caccamo
- NIAB, Cambridge Crop Research, Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Andrew J Simkin
- NIAB East Malling, Department of Genetics, Genomics and Breeding, New Road, West Malling, Kent, ME19 6BJ, UK.
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
| |
Collapse
|
10
|
Ectopic Expression of CsSUN in Tomato Results in Elongated Fruit Shape via Regulation of Longitudinal Cell Division. Int J Mol Sci 2022; 23:ijms23179973. [PMID: 36077369 PMCID: PMC9456224 DOI: 10.3390/ijms23179973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Fruit shape, an important agronomic trait of cucumber (Cucumis sativus L.), is tightly controlled by a series of genes such as CsSUN, a homologue of SlSUN that is responsible for the tomato (Solanum lycopersicum) fruit shape via the modulation of cell division. However, the direct genetic evidence about the CsSUN-mediated regulation of fruit shape is still scarce, limiting our mechanistic understanding of the biological functions of CsSUN. Here, we introduced CsSUN into the round-fruited tomato inbred line ‘SN1′ (wild type, WT) via the Agrobacterium tumefaciens-mediated method. The high and constitutive expression of CsSUN was revealed by real-time PCR in all the tested tissues of the transgenic plants, especially in the fruits and ovaries. Phenotypic analyses showed that the ectopic expression of CsSUN increased fruit length while it decreased fruit diameter, thus leading to the enhanced fruit shape index in the transgenic tomato lines relative to the WT. Additionally, the reduction in the seed size and seed-setting rate and the stimulation of seed germination were observed in the CsSUN-expressed tomato. A histological survey demonstrated that the elongated fruits were mainly derived from the significant increasing of the longitudinal cell number, which compensated for the negative effects of decreased cell area in the central columellae. These observations are different from action mode of SlSUN, thus shedding new insights into the SUN-mediated regulation of fruit shape.
Collapse
|
11
|
Mandal NK, Kumari K, Kundu A, Arora A, Bhowmick PK, Iquebal MA, Jaiswal S, Behera TK, Munshi AD, Dey SS. Cross-talk between the cytokinin, auxin, and gibberellin regulatory networks in determining parthenocarpy in cucumber. Front Genet 2022; 13:957360. [PMID: 36092914 PMCID: PMC9459115 DOI: 10.3389/fgene.2022.957360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cucumber is a model plant for studying parthenocarpy with abundant slicing- and pickling-type germplasm. This study was undertaken to understand the role of the important cytokines (CKs), auxin (AUX) and gibberellin (GA) biosynthesis and degradation genes for the induction of parthenocarpy in slicing and pickling germplasm. Two genotypes of gynoecious parthenocarpic cucumber, PPC-6 and DG-8, along with an MABC-derived gynoecious non-parthenocarpic line, IMPU-1, were evaluated in this study. The slicing and pickling cucumber genotypes PPC-6 and DG-8 were strongly parthenocarpic in nature and set fruit normally without pollination. Endogenous auxin and gibberellin were significantly higher in parthenocarpic than non-parthenocarpic genotypes, whereas the concentration of cytokinins varied among the genotypes at different developmental stages. However, the exogenous application of Zeatin and IAA + Zeatin was effective in inducing parthenocarpic fruit in IMPU-1. Expression analysis with important CK, AUX, and GA biosynthesis-related genes was conducted in IMPU-1, PPC-6, and DG-8. The expression of the CK synthase, IPT, IPT3, PaO, LOG1, LOG2, CYP735A1, and CYP735A2 was up-regulated in the parthenocarpic genotypes. Among the transcription factor response regulators (RRs), positive regulation of CSRR8/9b, CSRR8/9d, CSRR8/9e, and CSRR16/17 and negative feedback of the CK signalling genes, such as CsRR3/4a, CsRR3/4b, CsRR8/9a, and CsRR8/9c, were recorded in the parthenocarpic lines. Homeostasis between cytokinin biosynthesis and degradation genes such as CK oxidases (CKXs) and CK dehydrogenase resulted in a non-significant difference in the endogenous CK concentration in the parthenocarpic and non-parthenocarpic genotypes. In addition, up-regulation of the key auxin-inducing proteins and GA biosynthesis genes indicated their crucial role in the parthenocarpic fruit set of cucumber. This study establishes the critical role of the CKs, AUX, and GA regulatory networks and their cross-talk in determining parthenocarpy in slicing and pickling cucumber genotypes.
Collapse
Affiliation(s)
- Neha Kumari Mandal
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Khushboo Kumari
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ajay Arora
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prolay K. Bhowmick
- Division of Genetics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Tusar Kanti Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-Indian Institute of Vegetable Research, Varanasi, India
| | - A. D. Munshi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Shyam S. Dey, , ; A. D. Munshi,
| | - Shyam S. Dey
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Shyam S. Dey, , ; A. D. Munshi,
| |
Collapse
|
12
|
Han J, Ma Z, Chen L, Wang Z, Wang C, Wang L, Chen C, Ren Z, Cao C. Morphological Characterization and Integrated Transcriptome and Proteome Analysis of Organ Development Defective 1 ( odd1) Mutant in Cucumis sativus L. Int J Mol Sci 2022; 23:ijms23105843. [PMID: 35628653 PMCID: PMC9145247 DOI: 10.3390/ijms23105843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Cucumber (Cucumis sativus L.) is an economically important vegetable crop with the unique growth habit and typical trailing shoot architecture of Cucurbitaceae. Elucidating the regulatory mechanisms of growth and development is significant for improving quality and productivity in cucumber. Here we isolated a spontaneous cucumber mutant organ development defective 1 (odd1) with multiple morphological changes including root, plant stature, stem, leaf, male and female flowers, as well as fruit. Anatomical and cytological analyses demonstrated that both cell size and number decreased, and the shoot apical meristem (SAM) was smaller in odd1 compared with WT. Pollen vigor and germination assays and cross tests revealed that odd1 is female sterile, which may be caused by the absence of ovules. Genetic analysis showed that odd1 is a recessive single gene mutant. Using the MutMap strategy, the odd1 gene was found to be located on chromosome 5. Integrated profiling of transcriptome and proteome indicated that the different expression genes related to hormones and SAM maintenance might be the reason for the phenotypic changes of odd1. These results expanded the insight into the molecular regulation of organ growth and development and provided a comprehensive reference map for further studies in cucumber.
Collapse
|
13
|
Abstract
The study of fruit development in zucchini via gene expression has proven to be applicable in breeding programs. Phenotypic and transcriptomic studies of fruit set and parthenocarpy have been previously developed and some relevant genes have been reported. From these studies, three genotypes (MUCU-16, Whitaker, and Cavili) and six genes (CpAUX22, CpIAA4, CpIAMT-1, CpPIN5, CpCYCD6-1, and CpEXPLB1) were selected. The expression of these genes was analyzed in each genotype under three different treatments (pollination, auxin-treatment and non-treatment) during one week post anthesis. Also, a phenotyping analysis was conducted. The different nature of the samples and the genes selected allowed associations between different fruit traits and fruit development stages. There was a rapid response of CpAUX22 and CpIAA4 to the auxin treatment. Also, these genes and the CpIAMT-1 became more overexpressed in pollinated samples over time. The CpPIN5 gene increased its expression over time in all genotypes while CpCYCD6-1 was overexpressed in the early stages of fruit development in all samples. The CpEXPLB1 was highly up-regulated in non-treated samples, suggesting a relationship with fruit abortion. The overexpression of CpAUX22 and the non-overexpression of CpEXPLB1 in early stages may be associated with fruit growth in zucchini.
Collapse
|