1
|
Szabó K, Balogh F, Romhányi D, Erdei L, Toldi B, Gyulai R, Kemény L, Groma G. Epigenetic Regulatory Processes Involved in the Establishment and Maintenance of Skin Homeostasis-The Role of Microbiota. Int J Mol Sci 2025; 26:438. [PMID: 39859154 PMCID: PMC11764776 DOI: 10.3390/ijms26020438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Epigenetic mechanisms are central to the regulation of all biological processes. This manuscript reviews the current understanding of diverse epigenetic modifications and their role in the establishment and maintenance of normal skin functions. In healthy skin, these mechanisms allow for the precise control of gene expression, facilitating the dynamic balance between cell proliferation and differentiation necessary for effective barrier function. Furthermore, as the skin ages, alterations in epigenetic marks can lead to impaired regenerative capacity and increased susceptibility to environmental stressors. The interaction between skin microbiota and epigenetic regulation will also be explored, highlighting how microbial communities can influence skin health by modulating the host gene expression. Future research should focus on the development of targeted interventions to promote skin development, resilience, and longevity, even in an ever-changing environment. This underscores the need for integrative approaches to study these complex regulatory networks.
Collapse
Affiliation(s)
- Kornélia Szabó
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Fanni Balogh
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
| | - Dóra Romhányi
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Lilla Erdei
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Blanka Toldi
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
| | - Rolland Gyulai
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Lajos Kemény
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Gergely Groma
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
2
|
Nunes-Pinto M, Bandeira de Mello RG, Pinto MN, Moro C, Vellas B, Martinez LO, Rolland Y, de Souto Barreto P. Sarcopenia and the biological determinants of aging: A narrative review from a geroscience perspective. Ageing Res Rev 2025; 103:102587. [PMID: 39571617 DOI: 10.1016/j.arr.2024.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND The physiopathology of sarcopenia shares common biological cascades with the aging process, as does any other age-related condition. However, our understanding of the interconnected pathways between diagnosed sarcopenia and aging remains limited, lacking sufficient scientific evidence. METHODS This narrative review aims to gather and describe the current evidence on the relationship between biological aging determinants, commonly referred to as the hallmarks of aging, and diagnosed sarcopenia in humans. RESULTS Among the twelve hallmarks of aging studied, there appears to be a substantial association between sarcopenia and mitochondrial dysfunction, epigenetic alterations, deregulated nutrient sensing, and altered intercellular communication. Although limited, preliminary evidence suggests a promising association between sarcopenia and genomic instability or stem cell exhaustion. DISCUSSION Overall, an imbalance in energy regulation, characterized by impaired mitochondrial energy production and alterations in circulatory markers, is commonly associated with sarcopenia and may reflect the interplay between aging physiology and sarcopenia biology.
Collapse
Affiliation(s)
- Mariá Nunes-Pinto
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; Postgraduate Program in Medical Sciences (Endocrinology), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Renato Gorga Bandeira de Mello
- Postgraduate Program in Medical Sciences (Endocrinology), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Master of Public Health Program, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Milena Nunes Pinto
- School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Cédric Moro
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse UMR1297, France
| | - Bruno Vellas
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| | - Laurent O Martinez
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse UMR1297, France; IHU HealthAge, Toulouse, France
| | - Yves Rolland
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| | - Philipe de Souto Barreto
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| |
Collapse
|
3
|
Ma N, Xu C, Wang Y, Cui K, Kuang H. Telomerase reverse transcriptase protects against diabetic kidney disease by promoting AMPK/PGC-1a-regulated mitochondrial energy homeostasis. Chem Biol Interact 2024; 403:111238. [PMID: 39265716 DOI: 10.1016/j.cbi.2024.111238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Disordered glucose and lipid metabolism, coupled with disturbed mitochondrial bioenergetics, are pivotal in the initiation and development of diabetic kidney disease (DKD). While the essential role of telomerase reverse transcriptase (TERT) in regulating mitochondrial function in the cardiovascular system has been recognized, its specific function in maintaining mitochondrial homeostasis in DKD remains unclear. This study aimed to explore how TERT regulates mitochondrial function and the underlying mechanisms. In vitro, human renal proximal tubular HK-2 cells exposed to high glucose/high fat (HG/HF) presented significant downregulation of TERT and AMPK dephosphorylation. This led to decreased ATP production, altered NAD+/NADH ratios, reduced mitochondrial complex activities, increased mitochondrial dysfunction, lipid accumulation, and reactive oxygen species (ROS) production. Knockdown of TERT (si-TERT) further exacerbated mitochondrial dysfunction, decreased mitochondrial membrane potential, and lowered levels of cellular oxidative phosphorylation and glycolysis, as determined via a Seahorse X24 flux analyzer. Conversely, mitochondrial dysfunction was significantly alleviated after pcDNA-TERT plasmid transfection and adeno-associated virus (AAV) 9-TERT gene therapy in vivo. Notably, treatment with an AMPK inhibitor, activator, and si-PGC-1a (peroxisome proliferator-activated receptor γ coactivator-1α), resulted in mitochondrial dysfunction and decreased expression of genes related to energy metabolism and mitochondrial biogenesis. Our findings reveal that TERT protects mitochondrial function and homeostasis by partially activating the AMPK/PGC-1a signaling pathway. These results establish a crucial foundation for understanding TERT's critical role inmitochondrial regulation and its protective effect on DKD.
Collapse
Affiliation(s)
- Nan Ma
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengye Xu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Wang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kexin Cui
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyu Kuang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
4
|
He X, Zhang Q, Wang Y, Sun J, Zhang Y, Zhang C. Non-coding RNAs in the spotlight of the pathogenesis, diagnosis, and therapy of cutaneous T cell lymphoma. Cell Death Discov 2024; 10:400. [PMID: 39256366 PMCID: PMC11387814 DOI: 10.1038/s41420-024-02165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a group of primary and secondary cutaneous malignancies characterized by aberrant T-cells in the skin. Diagnosing CTCL in its early stage can be difficult because of CTCL's ability to mimic benign cutaneous inflammatory skin diseases. CTCL has multiple subtypes with different disease progression and diagnostic parameters despite similar clinical manifestations. The accurate diagnosis and prognosis of a varied range of diseases require the detection of molecular entities to capture the complete footprint of disease physiology. Non-coding RNAs (ncRNAs) have recently been discovered as major regulators of CTCL gene expression. They can affect tumor cell growth, migration, programmed cell death (PCD), and immunoregulation through interactions with the tumor microenvironment (TME), which in turn affect CTCL progression. This review summarizes recent advances in how ncRNAs regulate CTCL cell activity, especially their role in PCD. It also discusses the potential use of ncRNAs as diagnostic and prognostic biomarkers for different subtypes of CTCL. Furthermore, prospective targets and therapeutic approaches influenced by ncRNAs are presented. A better appreciation of the intricate epigenetic landscape of CTCL is expected to facilitate the creation of innovative targeted therapies for the condition.
Collapse
Affiliation(s)
- Xiao He
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Qian Zhang
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Yimeng Wang
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Jiachen Sun
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Ying Zhang
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Chunlei Zhang
- Department of Dermatology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
5
|
Kienzl P, Deloria AJ, Hunjadi M, Hadolt JM, Haering MF, Bothien A, Mejri D, Korkut-Demirbaş M, Sampl S, Weber G, Pirker C, Laengle S, Braunschmid T, Dragona E, Marian B, Gagos S, Lu L, Henson JD, Lau LMS, Reddel RR, Mikulits W, Stättner S, Holzmann K. Telomere transcripts act as tumor suppressor and are associated with favorable prognosis in colorectal cancer with low proliferating cell nuclear antigen expression. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00986-y. [PMID: 39222177 DOI: 10.1007/s13402-024-00986-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Telomeric repeat-containing RNAs (TERRA) and telomerase RNA component (TERC) regulate telomerase activity (TA) and thereby contribute to telomere homeostasis by influencing telomere length (TL) and the cell immortality hallmark of cancer cells. Additionally, the non-canonical functions of telomerase reverse transcriptase (TERT) and TERRA appear to be involved in the epithelial-mesenchymal transition (EMT), which is important for cancer progression. However, the relationship between TERRA and patient prognosis has not been fully characterized. In this small-scale study, 68 patients with colorectal cancer (CRC) were evaluated for correlations between telomere biology, proliferation, and EMT gene transcripts and disease outcome. The proliferating cell nuclear antigen (PCNA) and the epithelial splicing regulatory proteins 1 and 2 (ESRP1 and ESRP2) showed a positive correlation with TERRA, while TA and TERRA exhibited an inverse correlation. Consistent with previous findings, the present study revealed higher expression levels of TERT and TERC, and increased TA and TL in CRC tumor tissue compared to adjacent non-tumor tissue. In contrast, lower expression levels of TERRA were observed in tumor tissue. Patients with high TERRA expression and low PCNA levels exhibited favorable overall survival rates compared to individuals with the inverse pattern. Furthermore, TERRA suppressed CRC tumor growth in severe combined immunodeficiency disease (SCID) mice. In conclusion, our study extends previously published research on TERRA suggesting its potential therapeutic role in telomerase-positive CRC.
Collapse
Affiliation(s)
- Philip Kienzl
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Abigail J Deloria
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Monika Hunjadi
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
| | - Juliane M Hadolt
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
| | - Max-Felix Haering
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
| | - Angrit Bothien
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
| | - Doris Mejri
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
| | - Medina Korkut-Demirbaş
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
| | - Sandra Sampl
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
| | - Gerhard Weber
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
| | - Christine Pirker
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
| | - Severin Laengle
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Tamara Braunschmid
- Department of Surgery, Social Medical Center South, Kaiser Franz Josef Hospital, Vienna, Austria
- Department of Surgery, Klinik Floridsdorf, Wiener Gesundheitsverbund, Vienna, Austria
| | - Eleni Dragona
- Laboratory of Genetics Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece (BRFAA), Soranou Efesiou 4, Athens, 115 27, Greece
| | - Brigitte Marian
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
| | - Sarantis Gagos
- Laboratory of Genetics Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece (BRFAA), Soranou Efesiou 4, Athens, 115 27, Greece
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, School of Medicine, Yale Cancer Center, Yale University, New Haven, USA
| | - Jeremy D Henson
- Prince of Wales Clinical School, University of NSW, UNSW, Sydney, 2052, Australia
| | - Loretta M S Lau
- Children's Cancer Research Unit, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, Australia
| | - Roger R Reddel
- Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, 2145, Australia
| | - Wolfgang Mikulits
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
| | - Stefan Stättner
- Department of Surgery, Social Medical Center South, Kaiser Franz Josef Hospital, Vienna, Austria
- Department of General, Visceral and Vascular Surgery, Salzkammergut Klinikum, OÖG, Dr. Wilhelm Bock Strasse 1, Vöcklabruck, 4840, Austria
| | - Klaus Holzmann
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria.
| |
Collapse
|
6
|
Yegorov YE. Olovnikov, Telomeres, and Telomerase. Is It Possible to Prolong a Healthy Life? BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1704-1718. [PMID: 38105192 DOI: 10.1134/s0006297923110032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 12/19/2023]
Abstract
The science of telomeres and telomerase has made tremendous progress in recent decades. In this review, we consider it first in a historical context (the Carrel-Hayflick-Olovnikov-Blackburn chain of discoveries) and then review current knowledge on the telomere structure and dynamics in norm and pathology. Central to the review are consequences of the telomere shortening, including telomere position effects, DNA damage signaling, and increased genetic instability. Cell senescence and role of telomere length in its development are discussed separately. Therapeutic aspects and risks of telomere lengthening methods including use of telomerase and other approaches are also discussed.
Collapse
Affiliation(s)
- Yegor E Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
7
|
Gambelli A, Ferrando A, Boncristiani C, Schoeftner S. Regulation and function of R-loops at repetitive elements. Biochimie 2023; 214:141-155. [PMID: 37619810 DOI: 10.1016/j.biochi.2023.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/13/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
R-loops are atypical, three-stranded nucleic acid structures that contain a stretch of RNA:DNA hybrids and an unpaired, single stranded DNA loop. R-loops are physiological relevant and can act as regulators of gene expression, chromatin structure, DNA damage repair and DNA replication. However, unscheduled and persistent R-loops are mutagenic and can mediate replication-transcription conflicts, leading to DNA damage and genome instability if left unchecked. Detailed transcriptome analysis unveiled that 85% of the human genome, including repetitive regions, hold transcriptional activity. This anticipates that R-loops management plays a central role for the regulation and integrity of genomes. This function is expected to have a particular relevance for repetitive sequences that make up to 75% of the human genome. Here, we review the impact of R-loops on the function and stability of repetitive regions such as centromeres, telomeres, rDNA arrays, transposable elements and triplet repeat expansions and discuss their relevance for associated pathological conditions.
Collapse
Affiliation(s)
- Alice Gambelli
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Alessandro Ferrando
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Chiara Boncristiani
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Stefan Schoeftner
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy.
| |
Collapse
|
8
|
Sutterlüty H, Bargl M, Holzmann K. Quantifying telomere transcripts as tool to improve risk assessment for genetic instability and genotoxicity. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503690. [PMID: 37770147 DOI: 10.1016/j.mrgentox.2023.503690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023]
Abstract
Telomere repeat-containing RNAs (TERRA) are transcribed from telomeres as long non-coding RNAs and are part of the telomere structure with protective function. The genetic stability of cells requires telomeric repeats at the ends of chromosomes. Maintenance of telomere length (TL) is essential for proliferative capacity and chromosomal integrity. In contrast, telomere shortening is a recognized risk factor for carcinogenesis and a biomarker of aging due to the cumulative effects of environmental exposures and life experiences such as trauma or stress. In this context, telomere repeats are lost due to cell proliferation, but are also susceptible to stress factors including reactive oxygen species (ROS) inducing oxidative base damage. Quantitative PCR (qPCR) of genomic DNA is an established method to analyze TL as a tool to detect genotoxic events. That same qPCR method can be applied to RNA converted into cDNA to quantify TERRA as a useful tool to perform high-throughput screenings. This short review summarizes relevant qPCR studies using both TL and TERRA quantification, provides an overall view of the molecular mechanisms of telomere protection against ROS by TERRA, and summarizes the presented studies comparing the results at DNA and RNA levels, which indicate that fluctuations at transcript level might reflect a short-term response. Therefore, we conclude that performing both of these measurements together will improve genotoxicity studies.
Collapse
Affiliation(s)
- Hedwig Sutterlüty
- Center for Cancer Research, Comprehensive Cancer Center, Medical University Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Maximilian Bargl
- Center for Cancer Research, Comprehensive Cancer Center, Medical University Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Klaus Holzmann
- Center for Cancer Research, Comprehensive Cancer Center, Medical University Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| |
Collapse
|
9
|
Adeeb M, Therachiyil L, Moton S, Buddenkotte J, Alam MA, Uddin S, Steinhoff M, Ahmad A. Non-coding RNAs in the epigenetic landscape of cutaneous T-cell lymphoma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:149-171. [PMID: 37657857 DOI: 10.1016/bs.ircmb.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Cutaneous T-cell lymphoma (CTCL) is a type of cancer that affects skin, and is characterized by abnormal T-cells in the skin. Epigenetic changes have been found to play a significant role in the development and progression of CTCL. Recently, non-coding RNAs (ncRNAs), such as microRNAs and long non-coding RNAs, have been identified as key players in the regulation of gene expression in CTCL. These ncRNAs can alter the expression of genes involved in cell growth, differentiation, and apoptosis, leading to the development and progression of CTCL. In this review, we summarize the current understanding of the role of ncRNAs in CTCL, including their involvement in DNA methylation, and other biological processes. We also discuss the types of ncRNAs, their role as oncogenic or tumor suppressive, and their putative use as diagnostic and prognostic biomarkers, based on the emerging evidence from laboratory-based as well as patients-based studies. Moreover, we also present the potential targets and pathways affected by ncRNAs. A better understanding of the complex epigenetic landscape of CTCL, including the role of ncRNAs, has the potential to lead to the development of novel targeted therapies for this disease.
Collapse
Affiliation(s)
- Monaza Adeeb
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Safwan Moton
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Majid Ali Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine, New York, NY, USA
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
10
|
Su Y, Li C, Fang Y, Gu X, Zheng Q, Lu J, Li L. The role of LncRNA LBX2-AS1 in cancers: functions, mechanisms and potential clinical utility. Clin Transl Oncol 2023; 25:293-305. [PMID: 36131071 PMCID: PMC9873731 DOI: 10.1007/s12094-022-02944-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/30/2022] [Indexed: 01/29/2023]
Abstract
Increasingly advanced biology technique has revealed that long non-coding RNAs (lncRNA) as critical factors that exert significant regulatory effects on biological functions by modulating gene transcription, epigenetic modifications and protein translation. A newly emerging lncRNA, ladybird homeobox 2 (LBX2)-antisense RNA 1 (LBX2-AS1), was found to be highly expressed in various tumors. Moreover, it is functionally linked to the regulation of essential tumor-related biological processes, such as cell proliferation and apoptosis, through interactions with multiple signaling molecules/pathways. The important roles played by LBX2-AS1 in cancer initiation and progression suggest that this lncRNA has enormous clinical potential for use as a novel biomarker or therapeutic target. In this article, we retrospectively review the latest advances in research exploring the roles of the lncRNA LBX2-AS1 in oncology field, highlighting its involvement in a comprehensive network of molecular mechanisms underlying diverse cancers and examining its potential applications in clinical practice.
Collapse
Affiliation(s)
- Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China
| | - Chengzhi Li
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Yu Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
11
|
Kroupa M, Tomasova K, Kavec M, Skrobanek P, Buchler T, Kumar R, Vodickova L, Vodicka P. TElomeric repeat-containing RNA (TERRA): Physiological functions and relevance in cancer. Front Oncol 2022; 12:913314. [PMID: 35982970 PMCID: PMC9380590 DOI: 10.3389/fonc.2022.913314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Telomeres are complex protective structures located at the ends of linear eukaryotic chromosomes. Their purpose is to prevent genomic instability. Research progress in telomere biology during the past decades has identified a network of telomeric transcripts of which the best-studied is TElomeric Repeat-containing RNA (TERRA). TERRA was shown to be important not only for the preservation of telomere homeostasis and genomic stability but also for the expression of hundreds of genes across the human genome. These findings added a new level of complexity to telomere biology. Herein we provide insights on the telomere transcriptome, its relevance for proper telomere function, and its implications in human pathology. We also discuss possible clinical opportunities of exosomal telomere transcripts detection as a biomarker in cancer precision medicine.
Collapse
Affiliation(s)
- Michal Kroupa
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czechia
- *Correspondence: Michal Kroupa, ; Pavel Vodicka,
| | - Kristyna Tomasova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czechia
| | - Miriam Kavec
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czechia
| | - Pavel Skrobanek
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czechia
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czechia
| | - Rajiv Kumar
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Ludmila Vodickova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czechia
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Pavel Vodicka
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czechia
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czechia
- *Correspondence: Michal Kroupa, ; Pavel Vodicka,
| |
Collapse
|